The use of scanning electron microscopy and fixation methods to evaluate the interaction of blood with the surfaces of medical devices
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2108/2021
Univerzita Hradec Králové
2108/2021
Univerzita Hradec Králové
PubMed
38409219
PubMed Central
PMC10897226
DOI
10.1038/s41598-024-55136-z
PII: 10.1038/s41598-024-55136-z
Knihovny.cz E-zdroje
- MeSH
- histologické techniky * MeSH
- mikroskopie elektronová rastrovací MeSH
- oxid osmičelý * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- oxid osmičelý * MeSH
Testing the hemocompatibility of medical devices after their interaction with blood entails the need to evaluate the activation of blood elements and the degree of their coagulation and adhesion to the device surface. One possible way to achieve this is to use scanning electron microscopy (SEM). The aim was to develop a novel SEM-based method to assess the thrombogenic potential of medical devices and their adhesiveness to blood cells. As a part of this task, also find a convenient procedure of efficient and non-destructive sample fixation for SEM while reducing the use of highly toxic substances and shortening the fixation time. A polymeric surgical mesh was exposed to blood so that blood elements adhered to its surface. Such prepared samples were then chemically fixed for a subsequent SEM measurement; a number of fixation procedures were tested to find the optimal one. The fixation results were evaluated from SEM images, and the degree of blood elements' adhesion was determined from the images using ImageJ software. The best fixation was achieved with the May-Grünwald solution, which is less toxic than chemicals traditionally used. Moreover, manipulation with highly toxic osmium tetroxide can be avoided in the proposed procedure. A convenient methodology for SEM image analysis has been developed too, enabling to quantitatively evaluate the interaction of blood with the surfaces of various medical devices. Our method replaces the subjective assessment of surface coverage with a better-defined procedure, thus offering more precise and reliable results.
Zobrazit více v PubMed
Kuchinka J, Willems C, Telyshev DV, Groth T. Control of blood coagulation by hemocompatible material surfaces—A review. Bioengineering. 2021;8:215. PubMed PMC
Elvers FL, Stamouli M, Adelmeijer J, Jeyanesan D, Bernal W, Maas C, Patel VC, Lisman T. In vivo generation of thrombin in patients with liver disease without apparent evidence of activation of the intrinsic or extrinsic pathway of coagulation. J. Thromb. Haemost. 2023;21:2078–2088. PubMed
Ehlerding G, Erlenkötter A, Gauly A, Griesshaber B, Kennedy J, Rauber L, Ries W, Schmidt-Gürtler H, Stauss-Grabo M, Wagner S, Zawada AM, Zschätzsch S, Kempkes-Koch M. Performance and hemocompatibility of a novel polysulfone dialyzer: A randomized controlled Trial. Kidney. 2021;2:937–947. PubMed PMC
Roberts TR, Seekell RP, Zang Y, Harea G, Zhang Z, Batchinsky AI. In vitro hemocompatibility screening of a slippery liquid impregnated surface coating for extracorporeal organ support applications. Perfusion. 2022;39(1):76–84. PubMed
ISO. EN ISO 10993-1:2018 Biological Evaluation of Medical Devices—Part 1: Evaluation and Testing within a Risk Management Process (2018).
van Oeveren W, Tielliu IF, de Hart J. Comparison of modified chandler, roller pump, and ball valve circulation models for in vitro testing in high blood flow conditions: Application in thrombogenicity testing of different materials for vascular applications. Int. J. Biomater. 2012;2012:673163. PubMed PMC
Schatz T, Howard S, Porter D, Grove K, Smith ME, Chen Y. Improved method for the ASTM platelet and leukocyte assay: Use of minimal heparinization in a screening test for hemocompatibility of blood-contacting medical devices. J. Med. Device. 2019;13(1):011004.
Paavilainen L, Edvinsson Å, Asplund A, Hober S, Kampf C, Pontén F, Wester K. The impact of tissue fixatives on morphology and antibody-based protein profiling in tissues and cells. J. Histochem. Cytochem. 2010;58:237–246. PubMed PMC
Ichikawa T, Wang D, Miyazawa K, Miyata K, Oshima M, Fukuma T. Chemical fixation creates nanoscale clusters on the cell surface by aggregating membrane proteins. Commun. Biol. 2022;5:487. PubMed PMC
Huebinger J, Spindler J, Holl KJ, Koos B. Quantification of protein mobility and associated reshuffling of cytoplasm during chemical fixation. Sci Rep. 2018;8:17756. PubMed PMC
Eltoum I, Fredenburgh J, Myers RB, Grizzle WE. Introduction to the theory and practice of fixation of tissues. J. Histotechnol. 2001;24:173–190.
Xu M, Liu J, Sun J, Xu X, Hu Y, Liu B. Optical microscopy and electron microscopy for the morphological evaluation of tendons: A mini review. Orthop Surg. 2020;12:366–371. PubMed PMC
Gauer JS, Duval C, Xu R-G, Macrae FL, McPherson HR, Tiede C, Tomlinson D, Watson SP, Ariëns RAS. Fibrin-glycoprotein VI interaction increases platelet procoagulant activity and impacts clot structure. J. Thromb. Haemost. 2023;21:667–681. PubMed
Ul-Hamid A. A beginners’ guide to scanning electron microscopy. 1. Cham: Springer; 2018.
Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC. Glutaraldehyde: Behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques. 2004;37:798–802. PubMed
Tayri-Wilk T, Slavin M, Zamel J, Blass A, Cohen S, Motzik A, Sun X, Shalev DE, Ram O, Kalisman N. Mass spectrometry reveals the chemistry of formaldehyde cross-linking in structured proteins. Nat. Commun. 2020;11:3128. PubMed PMC
Modenez IA, Sastre D, Moraes FC, Netto CM. Influence of glutaraldehyde cross-linking modes on the recyclability of immobilized Lipase B from candida Antarctica for transesterification of soy bean oil. Molecules. 2018;23:2230. PubMed PMC
Thumtecho S, Sriapha C, Tongpoo A, Udomsubpayakul U, Wananukul W, Trakulsrichai S. Poisoning of glutaraldehyde-containing products: Clinical characteristics and outcomes. Clin. Toxicol. (Phila) 2021;59:480–487. PubMed
Matei A, Puscas C, Patrascu I, Lehene M, Ziebro J, Scurtu F, Baia M, Porumb D, Totos R, Silaghi-Dumitrescu R. Stability of glutaraldehyde in biocide compositions. Int. J. Mol. Sci. 2020;21:3372. PubMed PMC
Hopwood D. Some aspects of fixation with glutaraldehyde. A biochemical and histochemical comparison of the effects of formaldehyde and glutaraldehyde fixation on various enzymes and glycogen, with a note on penetration of glutaraldehyde into liver. J. Anat. 1967;101:83–92. PubMed PMC
National Center for Biotechnology Information. PubChem Compound Summary for CID 712, Formaldehyde (2023).
National Center for Biotechnology Information. PubChem Compound Summary for CID 3485, Glutaraldehyde (2023).
Wilson S, Law SP, McEwan NR, Wright R, Macaskill JS. Development of a fixative protocol using formaldehyde and gluteraldehyde for preservation of microbial art on agar plates. J. Appl. Microbiol. 2022;133:665–672. PubMed PMC
Al Shehadat S, Gorduysus MO, Hamid SSA, Abdullah NA, Samsudin AR, Ahmad A. Optimization of scanning electron microscope technique for amniotic membrane investigation: A preliminary study. Eur. J. Dent. 2018;12:574–578. PubMed PMC
Hopwood D. Fixatives and fixation: A review. Histochem. J. 1969;1:323–360. PubMed
Buesa RJ. Histology without formalin? Ann. Diagn. Pathol. 2008;12:387–396. PubMed
Suvarna, S. K., Layton, C., Bancroft J. D. (eds) Bancroft’s Theory and Practice of Histological Techniques 8th edn (Elsevier, 2019).
Campbell BC, Paez-Segala MG, Looger LL, Petsko GA, Liu CF. Chemically stable fluorescent proteins for advanced microscopy. Nat. Methods. 2022;19:1612–1621. PubMed PMC
National Center for Biotechnology Information. PubChem Compound Summary for CID 30318, Osmium tetroxide. 2023.
Koga D, Kusimi S, Watanabe T. Optimizing the reaction temperature to facilitate an efficient osmium maceration procedure. Biomed. Res. 2020;41:161–168. PubMed
de Lima-Faria JM, Guimarães LN, da Silva VC, da Costa SI, Fernandes MN, Martinez DST, de Sabóia-Morais SMT. Distribution and behavior of lipid droplets in hepatic cells analyzed by variations of citochemical technique and scanning electron microscopy. MethodsX. 2022;9:101769. PubMed PMC
Graham L, Orenstein JM. Processing tissue and cells for transmission electron microscopy in diagnostic pathology and research. Nat. Protoc. 2007;2:2439–2450. PubMed PMC
Troiano NW, Ciovacco WA, Kacena MA. The effects of fixation and dehydration on the histological quality of undecalcified murine bone specimens embedded in methylmethacrylate. J. Histotechnol. 2009;32:27–31. PubMed PMC
Golding CG, Lamboo LL, Beniac DR, Booth TF. The scanning electron microscope in microbiology and diagnosis of infectious disease. Sci. Rep. 2016;6:26516. PubMed PMC
Nikara S, Ahmadi E, Nia AA. Effects of different preparation techniques on the microstructural features of biological materials for scanning electron microscopy. J. Agric. Food Res. 2020;2:100036.
Bhattacharya R, Saha S, Kostina O, Muravnik L, Mitra A. Replacing critical point drying with a low-cost chemical drying provides comparable surface image quality of glandular trichomes from leaves of Millingtonia hortensis L. f. in scanning electron micrograph. Appl. Microsc. 2020;50:15. PubMed PMC
Sharma R, Digaum JL, West H, Schwarz CM, Kuebler SM. Gentle method for removing metal and restoring function after scanning electron microscopy. J. Micro. Nanopattern. Mater. Metrol. 2021;20:023601.
Andrsova, Z., Kejzlar, P., Volesky, L., Petru, M. The effect of deposition of metal charge compensation coating on surface morfology of samples for SEM. In Proceedings 9th International Conference on Nanomaterials—Research & Application 848–853 (TANGER Ltd., Ostrava, 2018).
Bender M, Palankar R. Platelet shape changes during thrombus formation: Role of actin-based protrusions. Hamostaseologie. 2021;41:14–21. PubMed
Application Booklet: LeicaEM CPD300 Automated Critical Point Dryer. Leica Microsystems (2014).
Piaton E, Fabre M, Goubin-Versini I, Bretz-Grenier M-F, Courtade-Saïdi M, Vincent S, Belleannée G, Thivolet F, Boutonnat J, Debaque H, Fleury-Feith J, Vielh P, Cochand-Priollet B, Egelé C, Bellocq J-P, Michiels J-F. Technical recommendations and best practice guidelines for May–Grünwald-Giemsa staining: Literature review and insights from the quality assurance. Ann. Pathol. 2015;35:294–305. PubMed
Montanaro J, Gruber D, Leisch N. Improved ultrastructure of marine invertebrates using non-toxic buffers. PeerJ. 2016;4:e1860. PubMed PMC
Seyferth D. Cadet’s fuming arsenical liquid and the cacodyl compounds of bunsen. Organometallics. 2001;20:1488–1498.
Melo LL, Vaz AR, Salvadori MC, Cattani M. Grain sizes and surface roughness in platinum and gold thin films. J. Metastable Nanocrystal. Mater. 2004;20–21:623–628.
Nguyen TH, Palankar R, Bui VC, Medvedev N, Greinacher A, Delcea M. Rupture forces among human blood platelets at different degrees of activation. Sci. Rep. 2016;6:25402. PubMed PMC
Helenius J, Heisenberg CP, Gaub HE, Muller DJ. Single-cell force spectroscopy. J. Cell Sci. 2008;121:1785–1791. PubMed
Koltai K, Kesmarky G, Feher G, Tibold A, Toth K. Platelet aggregometry testing: Molecular mechanisms, techniques and clinical implications. Int. J. Mol. Sci. 2017;18:1803. PubMed PMC
Vanslembrouck B, Chen JH, Larabell C, van Hengel J. Microscopic visualization of cell-cell adhesion complexes at micro and nanoscale. Front. Cell Dev. Biol. 2022;10:819534. PubMed PMC