Early hydration of C4AF with silica fume and its role on katoite composition

. 2024 May ; 294 (2) : 168-176. [epub] 20240228

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38418930

Grantová podpora
23-05122S Czech Science Foundation

C4AF is considered the least reactive main clinker phase, but its reactivity may be affected by adding supplementary cementitious materials (SCMs). Pure C4AF was synthesised in a laboratory furnace, and the role of silica fume without gypsum on its early hydration properties was monitored. Burning was carried out in four stages to achieve 99% purity of C4AF. Heat flow development was monitored by isothermal calorimetry over 7 days of hydration at 20°C and 40°C. The role of silica fume on hydrogarnet phase katoite (Ca3Al2(SiO4)3 - x(OH)4 x x = 1.5-3) formation during early hydration was studied. Rapid dissolution of C4AF, formation of metastable C-(A,F)-H and its conversion to C3(A, F)H6 was evidenced by isothermal calorimetry as a large exotherm. Changes in microstructure during early hydration were documented by SE micrographs, EDS point analyses, X-ray mapping and line scans by SEM-EDS. The phase composition was characterised by DTA-TGA and QXRD after 7 days of hydration. The katoite diffraction pattern is similar for the reference sample and sample with silica fume, but substitution in its structure can be revealed by X-ray microanalyses. The composition of katoite is variable due to the various extent of substitution of 4OH- by SiO4 4- due to silica fume.

Zobrazit více v PubMed

Dilnesa, B. Z., Wieland, E., Lothenbach, B., Dähn, R., & Scrivener, K. L. (2014). Fe‐containing phases in hydrated cements. Cement and Concrete Research, 58, 45–55.

Meller, N., Hall, C., & Crawshaw, J. (2004). ESEM evidence for through‐solution transport during brownmillerite hydration. Journal of Materials Science, 39(21), 6611–6614.

Black, L., Breen, C., Yarwood, J., Phipps, J., & Maitland, G. (2006). In situ Raman analysis of hydrating C3A and C4AF pastes in presence and absence of sulphate. Advances in Applied Ceramics, 105(4), 209–216.

Dilnesa, B. Z., Lothenbach, B., Le Saout, G., Renaudin, G., Mesbah, A., Filinchuk, Y., Wichser, A., & Wieland, E. (2011). Iron in carbonate containing AFm phases. Cement and Concrete Research, 41(3), 311–323.

Dilnesa, B. Z., Lothenbach, B., Renaudin, G., Wichser, A., & Kulik, D. (2014). Synthesis and characterization of hydrogarnet Ca3(Al xFe1 ‐ X)2(SiO4)y(OH) 4(3 ‐y). Cement and Concrete Research, 59, 96–111.

Möschner, G., Lothenbach, B., Winnefeld, F., Ulrich, A., Figi, R., & Kretzschmar, R. (2009). Solid solution between Al‐ettringite and Fe‐ettringite (Ca6[Al1 ‐ xFex(OH)6]2(SO4)3·26H2O). Cement and Concrete Research, 39(6), 482–489.

Rahhal, V., Cabrera, O., Delgado, A., Pedrajas, C., & Talero, R. (2010). C4AF ettringite and calorific synergic effect contribution. Journal of Thermal Analysis and Calorimetry, 100(1), 57–63.

Ectors, D., Neubauer, J., & Goetz‐Neunhoeffer, F. (2013). The hydration of synthetic brownmillerite in presence of low Ca‐sulfate content and calcite monitored by quantitative in‐situ‐XRD and heat flow calorimetry. Cement and Concrete Research, 54, 61–68.

Cuesta, A., Santacruz, I., Sanfélix, S. G., Fauth, F., Aranda, M. A. G., & De La Torre, A. G. (2015). Hydration of C4AF in the presence of other phases: A synchrotron X‐ray powder diffraction study. Construction & Building Materials, 101, 818–827.

Staněk, T., & Sulovský, P. (2015). Active low‐energy belite cement. Cement and Concrete Research, 68, 203–210.

Boháč, M., Kubátová, D., Krejčí Kotlánová, M., Khongová, I., Zezulová, A., Novotný, R., Palou, M. T., Staněk, T., & Všianský, D. (2022). The role of Li2O, MgO and CuO on SO3 activated clinkers. Cement and Concrete Research, 152(November 2021), 106672.

Boháč, M., Khongová, I., Zezulová, A., Kotlánová Krejčí, M., Kubátová, D., & Staněk, T. (2022). The role of CuO on the microstructure and phase composition of SO3‐activated clinker. Journal of Microscopy, 286(2), 92–97.

Staněk, T., Dzurov, M., Khongová, I., & Boháč, M. (2022). The incorporation of Cu into the clinker phases. Journal of Microscopy, 286(2), 108–113.

Zhang, G., Ren, Q., He, J., Jiang, S., Cheng, X., Yu, Y., Huang, S., Zhang, C., & Zhou, M. (2021). New understanding of early hydration of C4AF under surface vitrification. Powder Technology, 377, 372–378.

Deng, Q., Zhao, M., Rao, M., & Wang, F. (2020). Effect of CuO‐doping on the hydration mechanism and the chloride‐binding capacity of C4AF and high ferrite Portland clinker. Construction & Building Materials, 252, 119119.

Rößler, C., Zimmer, D., Trimby, P., & Ludwig, H. M. (2022). Chemical—crystallographic characterisation of cement clinkers by EBSD‐EDS analysis in the SEM. Cement and Concrete Research, 154(September 2021).

Rose, J., Bénard, A., El Mrabet, S., Masion, A., Moulin, I., Briois, V., Olivi, L., & Bottero, J.‐Y. (2006). Evolution of iron speciation during hydration of C4AF. Waste Management (New York, N.Y.), 26(7), 720–724.

Scrivener, K., Martirena, F., Bishnoi, S., & Maity, S. (2018). Calcined clay limestone cements (LC3). Cement and Concrete Research, 114(1), 49–56.

Kang, S.‐H., Hong, S.‐G., & Moon, J. (2020). Performance comparison between densified and undensified silica fume in ultra‐high performance. Materials (Basel), 13(17), 3901.

Passaglia, E., & Rinaldi, R. (1984). Katoite, a new member of the Ca3Al2(SiO4)3‐Ca3Al2(SiO4)3(OH)12 series and a new nomenclature for the hydrogrossular group of minerals. Bulletin de Minéralogie, 107(5), 605–618.

Foldvari, M. (2011). Handbook of thermogravimetric system of minerals and its use in geological practice. Geological Institute of Hungary.

Jiménez, A., Rives, V., & Vicente, M. A. (2022). Thermal study of the hydrocalumite–katoite–calcite system. Thermochimica Acta, 713(April), 179242.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...