• This record comes from PubMed

Radium deposition in human brain tissue: A Geant4-DNA Monte Carlo toolkit study

. 2024 Feb ; 34 (1) : 166-174. [epub] 20231028

Language English Country Germany Media print-electronic

Document type Journal Article

Links

PubMed 38420703
PubMed Central PMC10919964
DOI 10.1016/j.zemedi.2023.09.004
PII: S0939-3889(23)00116-2
Knihovny.cz E-resources

NASA has encouraged studies on 226Ra deposition in the human brain to investigate the effects of exposure to alpha particles with high linear energy transfer, which could mimic some of the exposure astronauts face during space travel. However, this approach was criticized, noting that radium is a bone-seeker and accumulates in the skull, which means that the radiation dose from alpha particles emitted by 226Ra would be heavily concentrated in areas close to cranial bones rather than uniformly distributed throughout the brain. In the high background radiation areas of Ramsar, Iran, extremely high levels of 226Ra in soil contribute to a large proportion of the inhabitants' radiation exposure. A prospective study on Ramsar residents with a calcium-rich diet was conducted to improve the dose uniformity due to 226Ra throughout the cerebral and cerebellar parenchyma. The study found that exposure of the human brain to alpha particles did not significantly affect working memory but was significantly associated with increased reaction times. This finding is crucial because astronauts on deep space missions may face similar cognitive impairments due to exposure to high charge and energy particles. The current study was aimed to evaluate the validity of the terrestrial model using the Geant4 Monte Carlo toolkit to simulate the interactions of alpha particles and representative cosmic ray particles, acknowledging that these radiation types are only a subset of the complete space radiation environment.

See more in PubMed

Boice J.D., Jr, Ellis E.D., Golden A.P., Girardi D.J., Cohen S.S., Chen H., et al. The past informs the future: an overview of the million worker study and the mallinckrodt chemical works cohort. HealthPhys. 2018;114(4):381–385. doi: 10.1097/HP.0000000000000825. PubMed DOI

Mortazavi S.M.J., Bevelacqua J.J., Fornalski K.W., Welsh J., Doss M. Comments on “Space: the final frontier-research relevant to Mars”. HealthPhys. 2018;114(3):344–345. doi: 10.1097/HP.0000000000000823. PubMed DOI PMC

Mortazavi SMJ, Nematollahi S, et al. Does exposure of astronauts' brains to high-let radiation in deep space threaten the success of the mission?. 2020 IEEE Aerospace Conference, Big Sky, MT, USA; 2020. p. 1–7. 10.1109/AERO47225.2020.9172691 DOI

Mortazavi S.M.J., Rangacharyulu C., Bevelacqua J.J., Welsh J., Waligorski M., Doss M. Comments on “The past informs the future: an overview of the million worker study and the mallinckrodt chemical works cohort”. HealthPhys. 2018;115(3):387–388. doi: 10.1097/HP.0000000000000921. PubMed DOI

Agostinelli S., Allison J., Amako K., Apostolakis J., Araujo H., Arce P., et al. Geant4—a simulation toolkit. Nucl Instrum Meth Phys Res Sect A: Accelerators Spectrometers Detectors Assoc Equip. 2003;506(3):250–303. doi: 10.1016/S0168-9002(03)01368-8. DOI

Incerti S., Baldacchino G., Bernal M., Capra R., Champion C., Francis Z., et al. The GEANT4-DNA project. Int J Model Simulat Sci Comput. 2010;01(02):157–178. doi: 10.1142/S1793962310000122. DOI

Bernal M.A., Bordage M.C., Brown J.M.C., Davídková M., Delage E., El Bitar Z., et al. Track structure modeling in liquid water: a review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit. Phys Med. 2015;31(8):861–874. doi: 10.1016/j.ejmp.2015.10.087. PubMed DOI

Incerti S., Kyriakou I., Bernal M.A., Bordage M.C., Francis Z., Guatelli S., et al. Geant4-DNA example applications for track structure simulations in liquid water: a report from the Geant4-DNA Project. Med Phys. 2018;45(8):e722–e739. doi: 10.1002/mp.13048. PubMed DOI

Karamitros M., Incerti S., Mantero A. Modeling radiation chemistry in the Geant4 toolkit. Prog Nucl Sci Technol. 2011:503–508. doi: 10.15669/pnst.2.503. DOI

Karamitros M., Luan S., Bernal M.A., Allison J., Baldacchino G., Davidkova M., et al. Diffusion-controlled reactions modeling in Geant4-DNA. J Comput Phys. 2014;274:841–882. doi: 10.1016/j.jcp.2014.06.011. DOI

Buxton G.V., Greenstock C.L., Helman W.P., Ross A.B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution. J Phys Chem Ref Data. 1988;17:513–886. doi: 10.1063/1.555805. DOI

Ramos-Méndez J., Shin W.G., Karamitros M., et al. Independent reaction times method in Geant4-DNA: implementation and performance. Med Phys. 2020;47(11):5919–5930. doi: 10.1002/mp.14490. PubMed DOI PMC

Milligan J.R., Wu C.C.L., Ng J.Y.Y., Aguilera J.A., Ward J.F. Characterization of the reaction rate coefficient of DNA with the hydroxyl radical. Radiat Res. 1996;146(5):510–513. PubMed

Francis Z., Villagrasa C., Clairand I. Simulation of DNA damage clustering after proton irradiation using an adapted DBSCAN algorithm. Comput Methods Programs Biomed. 2011;101(3):265–270. doi: 10.1016/j.cmpb.2010.12.012. PubMed DOI

Dos Santos M., Villagrasa C., Clairand I., Incerti S. Influence of the DNA density on the number of clustered damages created by protons of different energies. Nucl Instrum Methods Phys Res, Sect B. 2013;298:47–54. doi: 10.1016/j.nimb.2013.01.009. DOI

O'Neill PM, Golge S, Slaba TC. Badhwar-O'Neill 2014 galactic cosmic ray flux model description (No. NASA/TP-2015-218569); 2015.

Israel M.H., Lave K.A., Wiedenbeck M.E., Binns W.R., Christian E.R., Cummings A.C., von Rosenvinge T.T. Elemental composition at the cosmic-ray source derived from the ACE-CRIS instrument. I. 6C to 28Ni. Astrophys J. 2018;865(1):69.

Slaba T.C., Whitman K. The Badhwar-O'Neill 2020 GCR model. Space Weather. 2020;18(6)

Meylan S., Incerti S., Karamitros M., Tang N., Bueno M., Clairand I., Villagrasa C. Simulation of early DNA damage after the irradiation of a fibroblast cell nucleus using Geant4-DNA. Sci Rep. 2017;7(1):11923. doi: 10.1038/s41598-017-11851-4. PubMed DOI PMC

Lampe N., Karamitros M., Breton V., et al. Mechanistic DNA damage simulations in Geant4-DNA part 1: A parameter study in a simplified geometry. Phys Med. 2018;48:135–145. doi: 10.1016/j.ejmp.2018.02.011. PubMed DOI

Charlton D.E., Nikjoo H., Humm J.L. Calculation of initial yields of single- and double-strand breaks in cell nuclei from electrons, protons and alpha particles. Int J Radiat Biol. 1989;56(1):1–19. doi: 10.1080/09553008914551141. PubMed DOI

Friedland W., Schmitt E., Kundrát P., et al. Comprehensive track-structure based evaluation of DNA damage by light ions from radiotherapy-relevant energies down to stopping. Sci Rep. 2017;7:45161. doi: 10.1038/srep45161. PubMed DOI PMC

Friedland W., Dingfelder M., Kundrát P., Jacob P. Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mutat Res. 2011;711(1–2):28–40. doi: 10.1016/j.mrfmmm.2011.01.003. PubMed DOI

Welsh J.S., Bevelacqua J.J., Mortazavi S.M.J. Ramsar, Iran, as a Natural Radiobiological Surrogate for Mars. Health Phys. 2022;122(4):508–512. doi: 10.1097/HP.0000000000001521. PMID: 35244616. PubMed DOI

Roots R., Chatterjee A., Chang P., Lommel L., Blakely E.A. Characterization of hydroxyl radical-induced damage after sparsely and densely ionizing irradiation. Int J Radiat Biol Relat Stud Phys Chem Med. 1985;47(2):157–166. doi: 10.1080/09553008514550231. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...