• This record comes from PubMed

Identification of Plasmatic MicroRNA-206 as New Predictor of Early Recurrence of Atrial Fibrillation After Catheter Ablation Using Next-generation Sequencing

. 2024 May ; 28 (3) : 301-310. [epub] 20240308

Language English Country New Zealand Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
Institutional support project Fakultni Nemocnice u Svaté Anny v Brně
Specific research of the Masaryk University MUNI/A/1156/2021 Ministerstvo Školství, Mládeže a Tělovýchovy
"National Institute for Research of Metabolic European Union Next Generation
Cardiovascular Diseases" (Programme EXCELES European Union Next Generation
No. LX22NPO5104) European Union Next Generation

Links

PubMed 38459249
PubMed Central PMC11068688
DOI 10.1007/s40291-024-00698-x
PII: 10.1007/s40291-024-00698-x
Knihovny.cz E-resources

BACKGROUND: Catheter ablation (CA) of atrial fibrillation (AF) is indicated in patients with recurrent and symptomatic AF episodes. Despite the strict inclusion/exclusion criteria, AF recurrence after CA remains high. Identification of a novel biomarker that would predict AF recurrence would help to stratify the patients. The aim of the study was to seek novel biomarkers among the plasmatic microRNAs (miRNAs, miRs). METHODS: A prospective monocentric study was conducted. A total of 49 consecutive AF patients indicated for CA were included. Blood sampling was performed prior to CA. RNA was isolated from plasma using commercial kits. In the exploration phase, small RNA sequencing was performed in ten AF patients (five with and five without AF recurrence) using Illumina instrument. In the validation phase, levels of selected miRNAs were determined using quantitative reverse transcription polymerase chain reaction (qRT-PCR) in all participants. RESULTS: Altogether, 22 miRNAs were identified as altered between the groups by next-generation sequencing (using the DESeq2 algorithm). Using qRT-PCR, levels of the five most altered miRNAs (miR-190b/206/326/505-5p/1296-5p) were verified in the whole cohort. Plasma levels of hsa-miR-206 were significantly higher in patients with early (within 6 months) AF recurrence and showed an increase of risk recurrence,2.65 times by every increase in its level by 1 unit in the binary logistic regression. CONCLUSION: We have identified a set of 22 plasmatic miRNAs that differ between the patients with and without AF recurrence after CA and confirmed hsa-miR-206 as a novel miRNA associated with early AF recurrence. Results shall be verified in a larger independent cohort.

See more in PubMed

Lippi G, Sanchis-Gomar F, Cervellin G. Global epidemiology of atrial fibrillation: an increasing epidemic and public health challenge. Int J Stroke. 2021;16(2):217–221. doi: 10.1177/1747493019897870. PubMed DOI

Ceornodolea AD, Bal R, Severens JL. Epidemiology and management of atrial fibrillation and stroke: review of data from Four European Countries. Stroke Res Treat. 2017;2017:1–12. doi: 10.1155/2017/8593207. PubMed DOI PMC

Di Carlo A, Bellino L, Consoli D, et al. Prevalence of atrial fibrillation in the Italian elderly population and projections from 2020 to 2060 for Italy and the European Union: the FAI Project. EP Eur. 2019;21(10):1468–1475. doi: 10.1093/europace/euz141. PubMed DOI

Schnabel RB, Yin X, Gona P, et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. The Lancet. 2015;386(9989):154–162. doi: 10.1016/S0140-6736(14)61774-8. PubMed DOI PMC

Cotté FE, Chaize G, Gaudin AF, Samson A, Vainchtock A, Fauchier L. Burden of stroke and other cardiovascular complications in patients with atrial fibrillation hospitalized in France. Europace. 2016;18(4):501–507. doi: 10.1093/europace/euv248. PubMed DOI PMC

Ringborg A, Nieuwlaat R, Lindgren P, et al. Costs of atrial fibrillation in five European countries: results from the Euro Heart Survey on atrial fibrillation. Europace. 2008;10(4):403–411. doi: 10.1093/europace/eun048. PubMed DOI

Ball J, Carrington MJ, McMurray JJV, Stewart S. Atrial fibrillation: Profile and burden of an evolving epidemic in the 21st century. Int J Cardiol. 2013;167(5):1807–1824. doi: 10.1016/j.ijcard.2012.12.093. PubMed DOI

Hindricks G, Potpara T, Dagres N, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2021;42(5):373–498. doi: 10.1093/eurheartj/ehaa612. PubMed DOI

Parameswaran R, Al-Kaisey AM, Kalman JM. Catheter ablation for atrial fibrillation: current indications and evolving technologies. Nat Rev Cardiol. 2021;18(3):210–225. doi: 10.1038/s41569-020-00451-x. PubMed DOI

Ganesan AN, Shipp NJ, Brooks AG, et al. Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis. J Am Heart Assoc. 2013;2(2):e004549. doi: 10.1161/JAHA.112.004549. PubMed DOI PMC

Galenko O, Jacobs V, Knight S, et al. The role of microRNAs in the development, regulation, and treatment of atrial fibrillation. J Interv Card Electrophysiol. 2019;55(3):297–305. doi: 10.1007/s10840-018-0495-z. PubMed DOI

Kornej J, Hindricks G, Arya A, Sommer P, Husser D, Bollmann A. The APPLE score – a novel score for the prediction of rhythm outcomes after repeat catheter ablation of atrial. Cavarretta E, ed. PLoS ONE. 2017;12(1):e0169933. doi: 10.1371/journal.pone.0169933. PubMed DOI PMC

Winkle RA, Jarman JWE, Mead RH, et al. Predicting atrial fibrillation ablation outcome: the CAAP-AF score. Heart Rhythm. 2016;13(11):2119–2125. doi: 10.1016/j.hrthm.2016.07.018. PubMed DOI

Mohanty S, Mohanty P, Di Biase L, et al. impact of metabolic syndrome on procedural outcomes in patients with atrial fibrillation undergoing catheter ablation. J Am Coll Cardiol. 2012;59(14):1295–1301. doi: 10.1016/j.jacc.2011.11.051. PubMed DOI

Boyalla V, Harling L, Snell A, et al. Biomarkers as predictors of recurrence of atrial fibrillation post ablation: an updated and expanded systematic review and meta-analysis. Clin Res Cardiol. 2022;111(6):680–691. doi: 10.1007/s00392-021-01978-w. PubMed DOI PMC

O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018;9:402. doi: 10.3389/fendo.2018.00402. PubMed DOI PMC

Sardu C, Santamaria M, Paolisso G, Marfella R. microRNA expression changes after atrial fibrillation catheter ablation. Pharmacogenomics. 2015;16(16):1863–1877. doi: 10.2217/pgs.15.117. PubMed DOI

Šustr F, Stárek Z, Souček M, Novák J. Non-coding RNAs and Cardiac Arrhythmias. In: Xiao J, editor. Non-coding RNAs in cardiovascular diseases. Vol 1229. Advances in experimental medicine and biology. Springer Singapore; 2020. pp. 287–300. PubMed

Kiliszek M, Maciak K, Maciejak A, et al. Serum microRNA in patients undergoing atrial fibrillation ablation. Sci Rep. 2020;10(1):4424. doi: 10.1038/s41598-020-61322-6. PubMed DOI PMC

Sardu C, Santulli G, Santamaria M, et al. Effects of alpha lipoic acid on multiple cytokines and biomarkers and recurrence of atrial fibrillation within 1 year of catheter ablation. Am J Cardiol. 2017;119(9):1382–1386. doi: 10.1016/j.amjcard.2017.01.040. PubMed DOI PMC

Dretzke J, Chuchu N, Agarwal R, et al. Predicting recurrent atrial fibrillation after catheter ablation: a systematic review of prognostic models. EP Eur. 2020;22(5):748–760. doi: 10.1093/europace/euaa041. PubMed DOI PMC

Liżewska-Springer A, Dąbrowska-Kugacka A, Lewicka E, Drelich Ł, Królak T, Raczak G. Echocardiographic predictors of atrial fibrillation recurrence after catheter ablation: a literature review. Cardiol J. 2020;27(6):848–856. doi: 10.5603/CJ.a2018.0067. PubMed DOI PMC

Sardu C, Santulli G, Guerra G, et al. Modulation of SERCA in patients with persistent atrial fibrillation treated by epicardial thoracoscopic ablation: the CAMAF Study. J Clin Med. 2020;9(2):544. doi: 10.3390/jcm9020544. PubMed DOI PMC

Cao F, Li Z, Ding WM, Yan L, Zhao QY. LncRNA PVT1 regulates atrial fibrosis via miR-128-3p-SP1-TGF-β1-Smad axis in atrial fibrillation. Mol Med Camb Mass. 2019;25(1):7. doi: 10.1186/s10020-019-0074-5. PubMed DOI PMC

Van Den Berg NWE, Kawasaki M, Berger WR, et al. MicroRNAs in atrial fibrillation: from expression signatures to functional implications. Cardiovasc Drugs Ther. 2017;31(3):345–365. doi: 10.1007/s10557-017-6736-z. PubMed DOI PMC

Santulli G, Iaccarino G, De Luca N, Trimarco B, Condorelli G. Atrial fibrillation and microRNAs. Front Physiol. 2014;5:15. doi: 10.3389/fphys.2014.00015. PubMed DOI PMC

Xiao J, Zhang Y, Tang Y, et al. hsa-miR-4443 inhibits myocardial fibroblast proliferation by targeting THBS1 to regulate TGF-β1/α-SMA/collagen signaling in atrial fibrillation. Braz J Med Biol Res Rev Bras Pesqui Medicas E Biol. 2021;54(4):e10692. doi: 10.1590/1414-431X202010692. PubMed DOI PMC

Geurts S, Mens MMJ, Bos MM, Ikram MA, Ghanbari M, Kavousi M. Circulatory MicroRNAs in plasma and atrial fibrillation in the general population: the Rotterdam Study. Genes. 2021;13(1):11. doi: 10.3390/genes13010011. PubMed DOI PMC

McManus DD, Tanriverdi K, Lin H, et al. Plasma microRNAs are associated with atrial fibrillation and change after catheter ablation (the miRhythm study) Heart Rhythm. 2015;12(1):3–10. doi: 10.1016/j.hrthm.2014.09.050. PubMed DOI PMC

Zhou Q, Maleck C, von Ungern-Sternberg SNI, et al. Circulating MicroRNA-21 correlates with left atrial low-voltage areas and is associated with procedure outcome in patients undergoing atrial fibrillation ablation. Circ Arrhythm Electrophysiol. 2018;11(6):e006242. doi: 10.1161/CIRCEP.118.006242. PubMed DOI PMC

Namino F, Yamakuchi M, Iriki Y, et al. Dynamics of soluble thrombomodulin and circulating miRNAs in patients with atrial fibrillation undergoing radiofrequency catheter ablation. Clin Appl Thromb. 2019;25:107602961985157. doi: 10.1177/1076029619851570. PubMed DOI PMC

Liu T, Zhong S, Rao F, Xue Y, Qi Z, Wu S. Catheter ablation restores decreased plasma miR-409-3p and miR-432 in atrial fibrillation patients. Europace. 2016;18(1):92–99. doi: 10.1093/europace/euu366. PubMed DOI

da Menezes Junior AS, Ferreira LC, Barbosa LJV, da Silva ME, Saddi VA, Silva AMTC. Circulating MicroRNAs as specific biomarkers in atrial fibrillation: a meta-analysis. Non-Coding RNA. 2023;9(1):13. doi: 10.3390/ncrna9010013. PubMed DOI PMC

Liu R, Zheng S, Peng S, et al. Prognostic value and clinicopathological features of MicroRNA-206 in various cancers: a meta-analysis. Imazeki F, ed. BioMed Res Int. 2020;2020:1–9. doi: 10.1155/2020/2159704. PubMed DOI PMC

Mccarthy J. MicroRNA-206: The skeletal muscle-specific myomiR. Biochim Biophys Acta BBA Gene Regul Mech. 2008;1779(11):682–691. doi: 10.1016/j.bbagrm.2008.03.001. PubMed DOI PMC

Jin Y, Zhou TY, Cao JN, et al. MicroRNA-206 downregulates Connexin43 in cardiomyocytes to induce cardiac arrhythmias in a transgenic mouse model. Heart Lung Circ. 2019;28(11):1755–1761. doi: 10.1016/j.hlc.2018.09.008. PubMed DOI

Wei J, Zhang Y, Li Z, et al. GCH1 attenuates cardiac autonomic nervous remodeling in canines with atrial-tachypacing via tetrahydrobiopterin pathway regulated by microRNA-206. Pacing Clin Electrophysiol. 2018;41(5):459–471. doi: 10.1111/pace.13289. PubMed DOI

Zhang Y, Zheng S, Geng Y, et al. MicroRNA Profiling of Atrial Fibrillation in Canines: MiR-206 Modulates Intrinsic Cardiac Autonomic Nerve Remodeling by Regulating SOD1. Gupta S, ed. PLoS ONE. 2015;10(3):e0122674. doi: 10.1371/journal.pone.0122674. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...