Monitoring of Caffeine Consumption Effect on Skin Blood Properties by Diffuse Reflectance Spectroscopy
Status retracted Language English Country Czech Republic Media print
Document type Journal Article, Retracted Publication
PubMed
38466004
PubMed Central
PMC11019616
DOI
10.33549/physiolres.935138
PII: 935138
Knihovny.cz E-resources
- MeSH
- Caffeine * MeSH
- Skin * blood supply MeSH
- Humans MeSH
- Spectrum Analysis methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Retracted Publication MeSH
- Names of Substances
- Caffeine * MeSH
Caffeine is the most widely consumed psychoactive substance worldwide, affecting numerous tissues and organs, with notable impacts on the central nervous system, heart, and blood vessels. The effect of caffeine on vascular smooth muscle cells is an initial transient contraction followed by significant vasodilatation. In this study we investigate the use of diffuse reflectance spectroscopy (DRS) for monitoring of vascular changes in human skin induced by caffeine consumption. DRS spectra were recorded on volar sides of the forearms of eight healthy volunteers at time intervals of 0, 30, 60, 120, and 180 min after consumption of caffeine, while one subject served as a negative control. Analytical diffusion approximation solutions for diffuse reflectance from three-layer structures were used to assess skin composition (e.g. dermal blood volume fraction and oxygen saturation) by fitting these solutions to experimental data. The results demonstrate that cutaneous vasodynamics induced by caffeine consumption can be monitored by DRS, while changes in the control subject not consuming caffeine were insignificant.
See more in PubMed
Echeverri D, Montes FR, Cabrera MG, Prieto A. Caffeine’s Vascular Mechanisms of Action. Int J Vasc Med. 2010;2010:834060. doi: 10.1155/2010/834060. PubMed DOI PMC
Spott T, Svaasand LO. Collimated light sources in the diffusion approximation. Appl Optics. 2000;39:6453–6465. doi: 10.1364/AO.39.006453. PubMed DOI
Jacques SL. Optical properties of biological tissues: a review. Phys Med Biol. 2013;58:R37–R61. doi: 10.1088/0031-9155/58/11/R37. PubMed DOI
Lamola AA, Bhutani VK, Wong RJ, Stevenson DK, McDonagh AF. The effect of hematocrit on the efficacy of phototherapy for neonatal jaundice. Pediatr Res. 2013;74:54–60. doi: 10.1038/pr.2013.67. PubMed DOI
Friebel M, Roggan A, Muller G, Meinke M. Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase function. JBO. 2006;11:34021. doi: 10.1117/1.2203659. PubMed DOI
Rajaram N, Gopal A, Zhang XJ, Tunnell JW. Experimental Validation of the Effects of Microvasculature Pigment Packaging on In Vivo Diffuse Reflectance Spectroscopy. Laser Surg Med. 2010;42:680–688. doi: 10.1002/lsm.20933. PubMed DOI PMC
Milanic M, Jia WC, Nelson JS, Majaron B. Numerical Optimization of Sequential Cryogen Spray Cooling and Laser Irradiation for Improved Therapy of Port Wine Stain. Laser Surg Med. 2011;43:164–175. doi: 10.1002/lsm.21040. PubMed DOI PMC
Bashkatov AN, Genina EA, Tuchin VV. Optical Properties of Skin, Subcutaneous, and Muscle Tissues: A Review. J Innov Opt Heal Sci. 2011;4:9–38. doi: 10.1142/S1793545811001319. DOI
Nachabe R, Hendriks BHW, van der Voort M, Desjardins AE, Sterenborg HJCM. Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm. Biomed Opt Express. 2010;1:1432–1442. doi: 10.1364/BOE.1.001432. PubMed DOI PMC
Bydlon TM, Nachabe R, Ramanujam N, Sterenborg HJCM, Hendriks BHW. Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption. J Biophotonics. 2015;8:9–24. doi: 10.1002/jbio.201300198. PubMed DOI
Naglic P, Vidovic L, Milanic M, Randeberg LL, Majaron B. Combining the diffusion approximation and Monte Carlo modeling in analysis of diffuse reflectance spectra from human skin. Photonic Therap Diag X. 2014;8926:89260U. doi: 10.1117/12.2035747. DOI
Bjorgan A, Milanic M, Randeberg LL. Estimation of skin optical parameters for real-time hyperspectral imaging applications. J Biomed Opt. 2014;19:066003. doi: 10.1117/1.JBO.19.6.066003. PubMed DOI
Verdel N, Marin A, Vidovic L, Milanic M, Majaron B. Analysis of hemodynamics in human skin using photothermal radiometry and diffuse reflectance spectroscopy. SPIE Proc. 2017;10413:104130O. doi: 10.1117/12.2286043. DOI
Yang A, Palmer AA, de Wit H. Genetics of caffeine consumption and responses to caffeine. Psychopharmacology (Berl) 2010;211:245–257. doi: 10.1007/s00213-010-1900-1. PubMed DOI PMC
Kmetova K, Maronek M, Borbelyova V, Hodosy J, Celec P. Acute effect of cola and caffeine on locomotor activity in drosophila and rat. Physiol Res. 2021;70:287–292. doi: 10.33549/physiolres.934629. PubMed DOI PMC
Broz P, Rajdl D, Racek J, Trefil L, Stehlik P. Effect of Beer Consumption on Methylation and Redox Metabolism. Physiol Res. 2022;71:573–582. doi: 10.33549/physiolres.934863. PubMed DOI PMC
Sirotkin AV, Kolesarova A. The anti-obesity and health-promoting effects of tea and coffee. Physiol Res. 2021;70:161–168. doi: 10.33549/physiolres.934674. PubMed DOI PMC
Zhao Y, Yang G, Niu S, Zhang M, Gao F, Liu K. Evaluation of tissue perfusion status in moderate to late preterm. Physiol Res. 2022;71:607–614. doi: 10.33549/physiolres.934888. PubMed DOI PMC