Plasma-Activated Polydimethylsiloxane Microstructured Pattern with Collagen for Improved Myoblast Cell Guidance
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38474025
PubMed Central
PMC10932060
DOI
10.3390/ijms25052779
PII: ijms25052779
Knihovny.cz E-zdroje
- Klíčová slova
- PDMS, coating, collagen type I, cytocompatibility, microstructure, myoblast cell, nanostructured pattern, replication, soft lithography,
- MeSH
- buněčná adheze MeSH
- dimethylpolysiloxany chemie MeSH
- kolagen * chemie MeSH
- myoblasty MeSH
- myši MeSH
- povrchové vlastnosti MeSH
- savci MeSH
- tkáňové inženýrství * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dimethylpolysiloxany MeSH
- kolagen * MeSH
We focused on polydimethylsiloxane (PDMS) as a substrate for replication, micropatterning, and construction of biologically active surfaces. The novelty of this study is based on the combination of the argon plasma exposure of a micropatterned PDMS scaffold, where the plasma served as a strong tool for subsequent grafting of collagen coatings and their application as cell growth scaffolds, where the standard was significantly exceeded. As part of the scaffold design, templates with a patterned microstructure of different dimensions (50 × 50, 50 × 20, and 30 × 30 μm2) were created by photolithography followed by pattern replication on a PDMS polymer substrate. Subsequently, the prepared microstructured PDMS replicas were coated with a type I collagen layer. The sample preparation was followed by the characterization of material surface properties using various analytical techniques, including scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). To evaluate the biocompatibility of the produced samples, we conducted studies on the interactions between selected polymer replicas and micro- and nanostructures and mammalian cells. Specifically, we utilized mouse myoblasts (C2C12), and our results demonstrate that we achieved excellent cell alignment in conjunction with the development of a cytocompatible surface. Consequently, the outcomes of this research contribute to an enhanced comprehension of surface properties and interactions between structured polymers and mammalian cells. The use of periodic microstructures has the potential to advance the creation of novel materials and scaffolds in tissue engineering. These materials exhibit exceptional biocompatibility and possess the capacity to promote cell adhesion and growth.
Zobrazit více v PubMed
Rajendran A.K., Kim H.D., Kim J.-W., Bae J.W., Hwang N.S. Nanotechnology in tissue engineering and regenerative medicine. Korean J. Chem. Eng. 2023;40:286–301. doi: 10.1007/s11814-022-1363-1. DOI
Kirkpatrick C.J., Mittermayer C. Theoretical and practical aspects of testing potential biomaterials in vitro. J. Mater. Sci. Mater. Med. 1990;1:9–13. doi: 10.1007/BF00705347. DOI
De Jong W.H., Carraway J.W., Geertsma R.E. Chapter 6—In vivo and in vitro testing for the biological safety evaluation of biomaterials and medical devices. In: Boutrand J.P., editor. Biocompatibility and Performance of Medical Devices. 2nd ed. Woodhead Publishing; Sawston, UK: 2020. pp. 123–166.
Hunckler M.D., Levine A.D. Navigating ethical challenges in the development and translation of biomaterials research. Front. Bioeng. Biotechnol. 2022;10:949280. doi: 10.3389/fbioe.2022.949280. PubMed DOI PMC
Vacanti C.A. The history of tissue engineering. J. Cell. Mol. Med. 2006;10:569–576. doi: 10.1111/j.1582-4934.2006.tb00421.x. PubMed DOI PMC
Vacanti J.P., Langer R. Tissue engineering: The design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet. 1999;354:S32–S34. doi: 10.1016/S0140-6736(99)90247-7. PubMed DOI
Duval C., Cohen C., Chagnoleau C., Flouret V., Bourreau E., Bernerd F. Key Regulatory Role of Dermal Fibroblasts in Pigmentation as Demonstrated Using a Reconstructed Skin Model: Impact of Photo-Aging. PLoS ONE. 2014;9:e114182. doi: 10.1371/journal.pone.0114182. PubMed DOI PMC
El Ghalbzouri A., Jonkman M.F., Dijkman R., Ponec M. Basement Membrane Reconstruction in Human Skin Equivalents Is Regulated by Fibroblasts and/or Exogenously Activated Keratinocytes. J. Investig. Dermatol. 2005;124:79–86. doi: 10.1111/j.0022-202X.2004.23549.x. PubMed DOI
van Osch G.J., van der Veen S.W., Verwoerd-Verhoef H.L. In Vitro Redifferentiation of Culture-Expanded Rabbit and Human Auricular Chondrocytes for Cartilage Reconstruction. Plast. Reconstr. Surg. 2001;107:433–440. doi: 10.1097/00006534-200102000-00020. PubMed DOI
Yamanouchi K., Satomura K., Gotoh Y., Kitaoka E., Tobiume S., Kume K., Nagayama M. Bone Formation by Transplanted Human Osteoblasts Cultured Within Collagen Sponge with Dexamethasone In Vitro. J. Bone Miner. Res. 2001;16:857–867. doi: 10.1359/jbmr.2001.16.5.857. PubMed DOI
Li Z., Liu H., Wang R., Ji C., Wei Y., Shi M., Wang Y., Du Y., Zhang Y., Yuan Q., et al. Bioactive Core–Shell CaF2 Upconversion Nanostructure for Promotion and Visualization of Engineered Bone Reconstruction. ACS Nano. 2020;14:16085–16095. doi: 10.1021/acsnano.0c08013. PubMed DOI
Demoor M., Ollitrault D., Gomez-Leduc T., Bouyoucef M., Hervieu M., Fabre H., Lafont J., Denoix J.-M., Audigié F., Mallein-Gerin F., et al. Cartilage tissue engineering: Molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochim. Et. Biophys. Acta (BBA)-Gen. Subj. 2014;1840:2414–2440. doi: 10.1016/j.bbagen.2014.02.030. PubMed DOI
Smetana K. Kmenové buňky. Kontakt. 2010;12:251–254.
Dahlberg A., Delaney C., Bernstein I.D. Ex vivo expansion of human hematopoietic stem and progenitor cells. Blood. 2011;117:6083–6090. doi: 10.1182/blood-2011-01-283606. PubMed DOI PMC
Quintarelli C., Dotti G., Hasan S.T., De Angelis B., Hoyos V., Errichiello S., Mims M., Luciano L., Shafer J., Leen A.M., et al. High-avidity cytotoxic T lymphocytes specific for a new PRAME-derived peptide can target leukemic and leukemic-precursor cells. Blood. 2011;117:3353–3362. doi: 10.1182/blood-2010-08-300376. PubMed DOI PMC
Griffith L., Naughton G. Tissue Engineering—Current Challenges and Expanding Opportunities. Science. 2002;295:1009–1014. doi: 10.1126/science.1069210. PubMed DOI
Cook J.L., Hung C.T., Kuroki K., Stoker A.M., Cook C.R., Pfeiffer F.M., Sherman S.L., Stannard J.P. Animal models of cartilage repair. Bone Jt. Res. 2014;3:89–94. doi: 10.1302/2046-3758.34.2000238. PubMed DOI PMC
Mathur A., Loskill P., Shao K., Huebsch N., Hong S., Marcus S.G., Marks N., Mandegar M., Conklin B.R., Lee L.P., et al. Human iPSC-based cardiac microphysiological system for drug screening applications. Sci. Rep. 2015;5:8883. doi: 10.1038/srep08883. PubMed DOI PMC
Holmes A.M., Solari R., Holgate S.T. Animal models of asthma: Value, limitations and opportunities for alternative approaches. Drug Discov. Today. 2011;16:659–670. doi: 10.1016/j.drudis.2011.05.014. PubMed DOI
Park K. Facing the truth about nanotechnology in drug delivery. ACS Nano. 2013;7:7442–7447. doi: 10.1021/nn404501g. PubMed DOI PMC
Däullary T., Fey C., Berger C., Metzger M., Zdzieblo D. Biomaterials for Organ and Tissue Regeneration. Elsevier; Amsterdam, The Netherlands: 2020. Bioartificial gut—Current state of small intestinal tissue engineering; pp. 273–297.
Dai C., Shih S., Khachemoune A. Skin substitutes for acute and chronic wound healing: An updated review. J. Dermatol. Treat. 2020;31:639–648. doi: 10.1080/09546634.2018.1530443. PubMed DOI
Dvořánková B., Holíková Z., Vacík J., Königová R., Kapounková Z., Michálek J., Přádn M., Smetana K. Reconstruction of epidermis by grafting of keratinocytes cultured on polymer support—Clinical study. Int. J. Dermatol. 2003;42:219–223. doi: 10.1046/j.1365-4362.2003.01792.x. PubMed DOI
Chouhan D., Dey N., Bhardwaj N., Mandal B.B. Emerging and innovative approaches for wound healing and skin regeneration: Current status and advances. Biomaterials. 2019;216:119267. doi: 10.1016/j.biomaterials.2019.119267. PubMed DOI
Tiruvannamalai-Annamalai R., Armant D.R., Matthew H.W. A glycosaminoglycan based, modular tissue scaffold system for rapid assembly of perfusable, high cell density, engineered tissues. PLoS ONE. 2014;9:e84287. doi: 10.1371/journal.pone.0084287. PubMed DOI PMC
Wei J., Yoshinari M., Takemoto S., Hattori M., Kawada E., Liu B., Oda Y. Adhesion of mouse fibroblasts on hexamethyldisiloxane surfaces with wide range of wettability. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007;81B:66–75. doi: 10.1002/jbm.b.30638. PubMed DOI
Ikada Y. Surface modification of polymers for medical applications. Biomaterials. 1994;15:725–736. doi: 10.1016/0142-9612(94)90025-6. PubMed DOI
Sahin O., Ashokkumar M., Ajayan P.M. Chapter 3—Micro- and nanopatterning of biomaterial surfaces. In: Brodoceanu D., Kraus T., editors. Fundamental Biomaterials: Metals. Woodhead Publishing; Sawston, UK: 2018. pp. 67–78.
Michaljaničová I., Slepička P., Heitz J., Barb R., Sajdl P., Švorčík V. Comparison of KrF and ArF excimer laser treatment of biopolymer surface. Appl. Surf. Sci. 2015;339:144–150. doi: 10.1016/j.apsusc.2015.02.137. DOI
Slepička P., Siegel J., Lyutakov O., Slepičková Kasálková N., Kolská Z., Bačáková L., Švorčík V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. doi: 10.1016/j.biotechadv.2017.12.011. PubMed DOI
Neděla O., Slepička P., Sajdl P., Veselý M., Švorčík V. Surface analysis of ripple pattern on PS and PEN induced with ring-shaped mask due to KrF laser treatment. Surf. Interface Anal. 2017;49:25–33. doi: 10.1002/sia.6054. DOI
Fajstavr D., Slepička P., Švorčík V. LIPSS with gold nanoclusters prepared by combination of heat treatment and KrF exposure. Appl. Surf. Sci. 2019;465:919–928. doi: 10.1016/j.apsusc.2018.09.167. DOI
Fajstavr D., Michaljaničová I., Slepička P., Neděla O., Sajdl P., Kolská Z., Švorčík V. Surface instability on polyethersulfone induced by dual laser treatment for husk nanostructure construction. React. Funct. Polym. 2018;125:20–28. doi: 10.1016/j.reactfunctpolym.2018.02.005. DOI
Krajcar R., Siegel J., Slepička P., Fitl P., Švorčík V. Silver nanowires prepared on PET structured by laser irradiation. Mater. Lett. 2014;117:184–187. doi: 10.1016/j.matlet.2013.11.112. DOI
Michaljaničová I., Slepička P., Kasálková N.S., Sajdl P., Švorčík V. Plasma and laser treatment of PMP for biocompatibility improvement. Vacuum. 2014;107:184–190. doi: 10.1016/j.vacuum.2014.01.023. DOI
Slepicka P., Slepickova Kasalkova N., Siegel J., Kolska Z., Bacakova L., Svorcik V. Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action. Biotechnol. Adv. 2015;33:1120–1129. doi: 10.1016/j.biotechadv.2015.01.001. PubMed DOI
Michaljaničová I., Slepička P., Rimpelová S., Slepičková Kasálková N., Švorčík V. Regular pattern formation on surface of aromatic polymers and its cytocompatibility. Appl. Surf. Sci. 2016;370:131–141. doi: 10.1016/j.apsusc.2016.02.160. DOI
Slepička P., Michaljaničová I., Rimpelová S., Švorčík V. Surface roughness in action–Cells in opposition. Mater. Sci. Eng. C. 2017;76:818–826. doi: 10.1016/j.msec.2017.03.061. PubMed DOI
Ehrhardt M., Lai S., Lorenz P., Zimmer K. Guiding of LIPSS formation by excimer laser irradiation of pre-patterned polymer films for tailored hierarchical structures. Appl. Surf. Sci. 2020;506:144785. doi: 10.1016/j.apsusc.2019.144785. DOI
Rahmawan Y., Xu L., Yang S. Self-assembly of nanostructures towards transparent, superhydrophobic surfaces. J. Mater. Chem. A. 2013;1:2955–2969. doi: 10.1039/C2TA00288D. DOI
Arole V., Munde S. Fabrication of nanomaterials by top-down and bottom-up approaches–an overview. J. Mater. Sci. 2014;1:89–93.
Cheng X. Nanolithography. Elsevier; Amsterdam, The Netherlands: 2014. Nanostructures: Fabrication and applications; pp. 348–375.
Ifkovits J.L., Burdick J.A. Review: Photopolymerizable and Degradable Biomaterials for Tissue Engineering Applications. Tissue Eng. 2007;13:2369–2385. doi: 10.1089/ten.2007.0093. PubMed DOI
Kaihara S., Borenstein J., Koka R., Lalan S., Ochoa E.R., Ravens M., Pien H., Cunningham B., Vacanti J.P. Silicon micromachining to tissue engineer branched vascular channels for liver fabrication. Tissue Eng. 2000;6:105–117. doi: 10.1089/107632700320739. PubMed DOI
Cha C., Piraino F., Khademhosseini A. Chapter 9—Microfabrication Technology in Tissue Engineering. In: Blitterswijk C.A.V., De Boer J., editors. Tissue Engineering. 2nd ed. Academic Press; Oxford, UK: 2014. pp. 283–310.
Kim H.N., Jiao A., Hwang N.S., Kim M.S., Kang D.H., Kim D.-H., Suh K.-Y. Nanotopography-guided tissue engineering and regenerative medicine. Adv. Drug Deliv. Rev. 2013;65:536–558. doi: 10.1016/j.addr.2012.07.014. PubMed DOI PMC
Kelleher C.M., Vacanti J.P. Engineering extracellular matrix through nanotechnology. J. R. Soc. Interface. 2010;7((Suppl. S6)):S717–S729. doi: 10.1098/rsif.2010.0345.focus. PubMed DOI PMC
Marczak J., Kusinski J., Major R., Rycyk A., Sarzynski A., Strzelec M., Czyz K. Laser interference patterning of diamond-like carbon layers for directed migration and growth of smooth muscle cell depositions. Opt. Appl. 2014;44:575–586.
Molnar P., Wang W., Natarajan A., Rumsey J.W., Hickman J.J. Photolithographic patterning of C2C12 myotubes using vitronectin as growth substrate in serum-free medium. Biotechnol. Prog. 2007;23:265–268. doi: 10.1021/bp060302q. PubMed DOI PMC
Shimizu K., Fujita H., Nagamori E. Micropatterning of single myotubes on a thermoresponsive culture surface using elastic stencil membranes for single-cell analysis. J. Biosci. Bioeng. 2010;109:174–178. doi: 10.1016/j.jbiosc.2009.07.016. PubMed DOI
Huang N.F., Lee R.J., Li S. Engineering of aligned skeletal muscle by micropatterning. Am. J. Transl. Res. 2010;2:43. PubMed PMC
Ostrovidov S., Hosseini V., Ahadian S., Fujie T., Parthiban S.P., Ramalingam M., Bae H., Kaji H., Khademhosseini A. Skeletal muscle tissue engineering: Methods to form skeletal myotubes and their applications. Tissue Eng. Part B Rev. 2014;20:403–436. doi: 10.1089/ten.teb.2013.0534. PubMed DOI PMC
Skoog S.A., Kumar G., Narayan R.J., Goering P.L. Biological responses to immobilized microscale and nanoscale surface topographies. Pharmacol. Ther. 2018;182:33–55. doi: 10.1016/j.pharmthera.2017.07.009. PubMed DOI
Chen Z., Zhou B., Wang X., Zhou G., Zhang W., Yi B., Wang W., Liu W. Synergistic effects of mechanical stimulation and crimped topography to stimulate natural collagen development for tendon engineering. Acta Biomater. 2022;145:297–315. doi: 10.1016/j.actbio.2022.04.026. PubMed DOI
Rosella E., Jia N., Mantovani D., Greenera J. A microfluidic approach for development of hybrid collagen-chitosan extracellular matrix-like membranes for on-chip cell cultures. J. Mater. Sci. Technol. 2021;63:54–61. doi: 10.1016/j.jmst.2020.02.059. DOI
Oztürk-Oncel M.O., Erkoc-Biradli F.Z., Rasier R., Marcali M., Elbuken C., Garipcan B. Rose petal topography mimicked poly(dimethylsiloxane) substrates for enhanced corneal endothelial cell behavior. Mater. Sci. Eng. C. 2021;126:112147. doi: 10.1016/j.msec.2021.112147. PubMed DOI
Comelles J., Fernandez-Majada V., Acevedo V., Rebollo-Calderon B., Martínez E. Soft topographical patterns trigger a stiffness-dependent cellular response to contact guidance. Mater. Today Bio. 2023;19:100593. doi: 10.1016/j.mtbio.2023.100593. PubMed DOI PMC
Gong X., Kulwatno J., Mills K.L. Rapid fabrication of collagen bundles mimicking tumor-associated collagen architectures. Acta Biomater. 2020;108:128–141. doi: 10.1016/j.actbio.2020.03.019. PubMed DOI
Nuhn J.A.M., Perez A.M., Schneider I.C. Contact guidance diversity in rotationally aligned collagen matrices. Acta Biomater. 2018;66:248–257. doi: 10.1016/j.actbio.2017.11.039. PubMed DOI PMC
Lewis M., David G., Jacobs D., Kuczwara P., Woessner A.E., Kim J.W., Quinn K.P., Song Y. Neuro-regenerative behavior of adipose-derived stem cells in aligned collagen I hydrogels. Mater. Today Bio. 2023;22:100762. doi: 10.1016/j.mtbio.2023.100762. PubMed DOI PMC
Muzzio N., Martinez-Cartagena M.E., Romero G. Soft nano and microstructures for the photomodulation of cellular signaling and behavior. Adv. Drug Deliv. Rev. 2022;190:114554. doi: 10.1016/j.addr.2022.114554. PubMed DOI PMC
Almonacid Suarez A.M., van der Hama I., Brinker M.G.L., van Rijn P., Harmsen M.C. Topography-driven alterations in endothelial cell phenotype and contact guidance. Heliyon. 2020;6:e04329. doi: 10.1016/j.heliyon.2020.e04329. PubMed DOI PMC
Cai D., Neyer A., Kuckuk R., Heise H. Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication. Opt. Mater. 2008;30:1157–1161. doi: 10.1016/j.optmat.2007.05.041. DOI
Colas A., Curtis J. Handbook of Polymer Applications in Medicine and Medical Devices: 7. Silicones. Elsevier Inc.; Amsterdam, The Netherlands: 2013.
Dahrouch M., Schmidt A., Leemans L., Linssen H., Götz H. Synthesis and properties of poly(butylene terephthalate)-poly(ethylene oxide)-poly(dimethylsiloxane) block copolymers. Macromol. Symp. 2003;199:147–162. doi: 10.1002/masy.200350913. DOI
Ariati R., Sales F., Souza A., Lima R.A., Ribeiro J. Polydimethylsiloxane Composites Characterization and Its Applications: A Review. Polymers. 2021;13:4258. doi: 10.3390/polym13234258. PubMed DOI PMC
Wolf M.P., Salieb-Beugelaar G.B., Hunziker P. PDMS with designer functionalities—Properties, modifications strategies, and applications. Prog. Polym. Sci. 2018;83:97–134. doi: 10.1016/j.progpolymsci.2018.06.001. DOI
Zhou J., Ellis A.V., Voelcker N.H. Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis. 2010;31:2–16. doi: 10.1002/elps.200900475. PubMed DOI
Lee D., Yang S. Surface modification of PDMS by atmospheric-pressure plasma-enhanced chemical vapor deposition and analysis of long-lasting surface hydrophilicity. Sens. Actuators B Chem. 2012;162:425–434. doi: 10.1016/j.snb.2011.12.017. DOI
Wu M.H. Simple poly (dimethylsiloxane) surface modification to control cell adhesion. Sens. Actuators B Chem. 2009;41:11–16. doi: 10.1002/sia.2964. DOI
Sugiura S., Edahiro J.-I., Sumaru K., Kanamori T. Surface modification of polydimethylsiloxane with photo-grafted poly (ethylene glycol) for micropatterned protein adsorption and cell adhesion. Colloids Surf. B Biointerfaces. 2008;63:301–305. doi: 10.1016/j.colsurfb.2007.12.013. PubMed DOI
Kidambi S., Udpa N., Schroeder S.A., Findlan R., Lee I., Chan C. Cell adhesion on polyelectrolyte multilayer coated polydimethylsiloxane surfaces with varying topographies. Tissue Eng. 2007;13:2105–2117. doi: 10.1089/ten.2006.0151. PubMed DOI PMC
Armugam A., Teong S.P., Lim D.S.W., Chan S.P., Yi G., Yew D.S., Beh C.W., Zhang Y. Broad spectrum antimicrobial PDMS-based biomaterial for catheter fabrication. Biomater. Res. 2021;25:33. doi: 10.1186/s40824-021-00235-5. PubMed DOI PMC
Tohfafarosh M., Sevit A., Patel J., Kiel J.W., Greenspon A., Prutkin J.M., Kurtz S.M. Characterization of outer insulation in long-term-implanted leads. J. Long-Term Eff. Med. Implant. 2016;26:225–232. doi: 10.1615/JLongTermEffMedImplants.2016016455. PubMed DOI
Holländer J., Hakala R., Suominen J., Moritz N., Yliruusi J., Sandler N. 3D printed UV light cured polydimethylsiloxane devices for drug delivery. Int. J. Pharm. 2018;544:433–442. doi: 10.1016/j.ijpharm.2017.11.016. PubMed DOI
Spiller D., Losi P., Briganti E., Sbrana S., Kull S., Martinelli I., Soldani G. PDMS content affects in vitro hemocompatibility of synthetic vascular grafts. J. Mater. Sci. Mater. Med. 2007;18:1097–1104. doi: 10.1007/s10856-006-0067-0. PubMed DOI
Daniels A. Silicone breast implant materials. Swiss Med. Wkly. 2012;142:w13614. doi: 10.4414/smw.2012.13614. PubMed DOI
Abbasi F., Mirzadeh H., Simjoo M. Hydrophilic interpenetrating polymer networks of poly (dimethyl siloxane)(PDMS) as biomaterial for cochlear implants. J. Biomater. Sci. Polym. Ed. 2006;17:341–355. doi: 10.1163/156856206775997287. PubMed DOI
Fiddes L.K., Raz N., Srigunapalan S., Tumarkan E., Simmons C.A., Wheeler A.R., Kumacheva E. A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions. Biomaterials. 2010;31:3459–3464. doi: 10.1016/j.biomaterials.2010.01.082. PubMed DOI
Hsu Y.-H., Moya M.L., Hughes C.C.W., George S.C., Lee A.P. A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays. Lab A Chip. 2013;13:2990–2998. doi: 10.1039/c3lc50424g. PubMed DOI PMC
Fujii T. PDMS-based microfluidic devices for biomedical applications. Microelectron. Eng. 2002;61:907–914. doi: 10.1016/S0167-9317(02)00494-X. DOI
Bosc D., Maalouf A., Haesaert S., Henrio F. Investigation into defects occurring on the polymer surface, during the photolithography process. Appl. Surf. Sci. 2007;253:6162–6164. doi: 10.1016/j.apsusc.2007.01.019. DOI
Juárez-Moreno A., Brito-Argáez L.G., Ávila-Ortega A., Oliva A.I., Avilés F., Cauich-Rodríguez J.V. Effect of the type of plasma on the polydimethylsiloxane/collagen,composites adhesive properties. Int. J. Adhes. Adhes. 2017;77:85–95. doi: 10.1016/j.ijadhadh.2017.03.010. DOI
Chuah Y.J., Heng Z.T., Tan J.S., Tay L.M., Lim C.S., Kang Y., Wang D.A. Surface modifications to polydimethylsiloxane substrate for stabilizing prolonged bone marrow stromal cell culture. Colloids Surf. B Biointerfaces. 2020;191:110995. doi: 10.1016/j.colsurfb.2020.110995. PubMed DOI
Jandura D., Pudis D., Berezina S. Photonic devices prepared by embossing in PDMS. Appl. Surf. Sci. 2017;395:145–149. doi: 10.1016/j.apsusc.2016.08.086. DOI
Potrich C., Lunelli L., Cocuzza M., Marasso S.L., Pirri C.F., Pederzolli C. Simple PDMS microdevice for biomedical applications. Talanta. 2019;193:44–50. doi: 10.1016/j.talanta.2018.09.080. PubMed DOI
Aggarwal R.T., Lai L., Li H. Microarray fabrication techniques for multiplexed bioassay applications. Anal. Biochem. 2023;683:115369. doi: 10.1016/j.ab.2023.115369. PubMed DOI
Roughton B.C., Iyer L.K., Bertelsen E., Topp E.M., Camarda K.V. Protein aggregation and lyophilization: Protein structural descriptors as predictors of aggregation propensity. Comput. Chem. Eng. 2013;58:369–377. doi: 10.1016/j.compchemeng.2013.07.008. PubMed DOI PMC
Kim C.-L., Kim D.-E. Self-healing Characteristics of Collagen Coatings with Respect to Surface Abrasion. Sci. Rep. 2016;6:20563. doi: 10.1038/srep20563. PubMed DOI PMC
Kefallinou D., Grigoriou M., Constantoudis V., Raptis I., Xenogiannopoulou E., Dimoulas A., Boumpas D.T., Tserepi A. Enhanced and stabilized mesenchymal stem cell growth inside plasma pre-treated and collagen-coated PDMS-based microfluidic chambers. Surf. Coat. Technol. 2023;466:129658. doi: 10.1016/j.surfcoat.2023.129658. DOI
Wu S.T., Huang C.Y., Weng C.C., Chang C.C., Li B.R., Hsu C.S. Rapid Prototyping of an Open-Surface Microfluidic Platform Using Wettability-Patterned Surfaces Prepared by an Atmospheric-Pressure Plasma Jet. ACS Omega. 2019;4:16292–16299. doi: 10.1021/acsomega.9b01317. PubMed DOI PMC
Ma H., Ma Z., Zhao Q., Li Y., Zhu K., Zhang H., Chen X. Arrow-shaped patterned microchannel for enhancing droplet coalescence and demulsification of oil-in-water emulsions with high oil content. Colloids Surf. A Physicochem. Eng. Asp. 2024;685:133177. doi: 10.1016/j.colsurfa.2024.133177. DOI
Wang W., Bai X., Sun S., Gao Y., Li F., Hu S. Polysiloxane-Based Polyurethanes with High Strength and Recyclability. Int. J. Mol. Sci. 2022;23:12613. doi: 10.3390/ijms232012613. PubMed DOI PMC
Somaiah C., Kumar A., Mawrie D., Sharma A., Patil S.D., Bhattacharyya J., Swaminathan R., Jaganathan B.G. Collagen Promotes Higher Adhesion, Survival and Proliferation of Mesenchymal Stem Cells. PLoS ONE. 2015;10:e0145068. doi: 10.1371/journal.pone.0145068. PubMed DOI PMC
Chua P.F., Lim W.K. The strategic uses of collagen in adherent cell cultures. Cell Biol. Int. 2023;47:367–373. doi: 10.1002/cbin.11966. PubMed DOI PMC
Chuah Y.J., Koh Y.T., Lim K., Menon N.V., Wu Y., Kang Y. Simple surface engineering of polydimethylsiloxane with polydopamine for stabilized mesenchymal stem cell adhesion and multipotency. Sci. Rep. 2015;5:18162. doi: 10.1038/srep18162. PubMed DOI PMC
Lam M.T., Sim S., Zhu X., Takayama S. The effect of continuous wavy micropatterns on silicone substrates on the alignment of skeletal muscle myoblasts and myotubes. Biomaterials. 2006;27:4340–4347. doi: 10.1016/j.biomaterials.2006.04.012. PubMed DOI
Akther F., Yakob S.B., Nguyen N.-T., Ta H.T. Surface Modification Techniques for Endothelial Cell Seeding in PDMS Microfluidic Devices. Biosensors. 2020;10:182. doi: 10.3390/bios10110182. PubMed DOI PMC
Palchesko R.N., Zhang L., Sun Y., Feinberg A.W. Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PLoS ONE. 2012;7:e51499. doi: 10.1371/journal.pone.0051499. PubMed DOI PMC
Borók A., Laboda K., Bonyár A. PDMS Bonding Technologies for Microfluidic Applications: A Review. Biosensors. 2021;11:292. doi: 10.3390/bios11080292. PubMed DOI PMC
Parizek M., Slepickova Kasalkova N., Bacakova L., Slepicka P., Lisa V., Blazkova M., Svorcik V. Improved Adhesion, Growth and Maturation of Vascular Smooth Muscle Cells on Polyethylene Grafted with Bioactive Molecules and Carbon Particles. Int. J. Mol. Sci. 2009;10:4352–4374. doi: 10.3390/ijms10104352. PubMed DOI PMC
Yao L., Wang S., Cui W., Sherlock R., O’connell C., Damodaran G., Gorman A., Windebank A., Pandit A. Effect of functionalized micropatterned PLGA on guided neurite growth. Acta Biomater. 2009;5:580–588. doi: 10.1016/j.actbio.2008.09.002. PubMed DOI
Bielajew B.J., Hu J.C., Athanasiou K.A. Collagen: Quantification, biomechanics, and role of minor subtypes in cartilage. Nat. Rev. Mater. 2020;5:730–747. doi: 10.1038/s41578-020-0213-1. PubMed DOI PMC