Multi-objective liver cancer algorithm: A novel algorithm for solving engineering design problems
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38486727
PubMed Central
PMC10937593
DOI
10.1016/j.heliyon.2024.e26665
PII: S2405-8440(24)02696-3
Knihovny.cz E-zdroje
- Klíčová slova
- Engineering design optimization, Liver cancer algorithm, MOLCA, Multi objective optimization, Non-dominated solution, Pareto front, Pareto solution,
- Publikační typ
- časopisecké články MeSH
This research introduces the Multi-Objective Liver Cancer Algorithm (MOLCA), a novel approach inspired by the growth and proliferation patterns of liver tumors. MOLCA emulates the evolutionary tendencies of liver tumors, leveraging their expansion dynamics as a model for solving multi-objective optimization problems in engineering design. The algorithm uniquely combines genetic operators with the Random Opposition-Based Learning (ROBL) strategy, optimizing both local and global search capabilities. Further enhancement is achieved through the integration of elitist non-dominated sorting (NDS), information feedback mechanism (IFM) and Crowding Distance (CD) selection method, which collectively aim to efficiently identify the Pareto optimal front. The performance of MOLCA is rigorously assessed using a comprehensive set of standard multi-objective test benchmarks, including ZDT, DTLZ and various Constraint (CONSTR, TNK, SRN, BNH, OSY and KITA) and real-world engineering design problems like Brushless DC wheel motor, Safety isolating transformer, Helical spring, Two-bar truss and Welded beam. Its efficacy is benchmarked against prominent algorithms such as the non-dominated sorting grey wolf optimizer (NSGWO), multiobjective multi-verse optimization (MOMVO), non-dominated sorting genetic algorithm (NSGA-II), decomposition-based multiobjective evolutionary algorithm (MOEA/D) and multiobjective marine predator algorithm (MOMPA). Quantitative analysis is conducted using GD, IGD, SP, SD, HV and RT metrics to represent convergence and distribution, while qualitative aspects are presented through graphical representations of the Pareto fronts. The MOLCA source code is available at: https://github.com/kanak02/MOLCA.
Applied Science Research Center Applied Science Private University Amman 11931 Jordan
Computer Science Department Al al Bayt University Mafraq 25113 Jordan
Department of Electrical Engineering Shri K J Polytechnic Bharuch 392 001 India
Hourani Center for Applied Scientific Research Al Ahliyya Amman University Amman 19328 Jordan
MEU Research Unit Middle East University Amman 11831 Jordan
School of Computer Sciences Universiti Sains Malaysia Pulau Pinang 11800 Malaysia
School of Engineering and Technology Sunway University Malaysia Petaling Jaya 27500 Malaysia
University Centre for Research and Development Chandigarh University Mohali 140413 India
Zobrazit více v PubMed
Holland J.H., Reitman J.S. Cognitive systems based on adaptive algorithms. ACM SIGART Bull. 1977;(63) doi: 10.1145/1045343.1045373. 49–49. DOI
Tsai C.-F., Eberle W., Chu C.-Y. Genetic algorithms in feature and instance selection. Knowl. Base Syst. 2013;39:240–247. doi: 10.1016/j.knosys.2012.11.005. DOI
Lin M.-H., Tsai J.-F., Yu C.-S. A review of deterministic optimization methods in engineering and management. Math. Probl Eng. 2012;2012:1–15. doi: 10.1155/2012/756023. DOI
Shmoys D.B., Swamy C. Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science. 2004. Stochastic optimization is (almost) as easy as deterministic optimization; pp. 228–237. 2004. DOI
Dorigo M., Birattari M., Stutzle T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006;1:28–39.
Kennedy J. Encyclopedia of Machine Learning. EDN. Springer; 2011. Particle swarm optimization; pp. 760–766.
Storn R., Price K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 1997;11(4):341–359. doi: 10.1023/A:1008202821328. DOI
Zhang C., Zhou L., Li Y. Pareto optimal reconfiguration planning and distributed parallel motion control of mobile modular robots. IEEE Trans. Ind. Electron. 2023;1 doi: 10.1109/TIE.2023.3321997. –10. DOI
Zhu B., Sun Y., Zhao J., Han J., Zhang P., Fan T. A critical scenario search method for intelligent vehicle testing based on the social cognitive optimization algorithm. IEEE Trans. Intell. Transport. Syst. 2023;24(8):7974–7986. doi: 10.1109/TITS.2023.3268324. DOI
Cao B., Zhao J., Yang P., Gu Y., Muhammad K., Rodrigues J.J.P.C., de Albuquerque V.H.C. Multiobjective 3-D topology optimization of next-generation wireless data center network. IEEE Trans. Ind. Inf. 2020;16(5):3597–3605. doi: 10.1109/TII.2019.2952565. DOI
Zhang L., Sun C., Cai G., Koh L.H. Charging and discharging optimization strategy for electric vehicles considering elasticity demand response. eTransportation. 2023;18 doi: 10.1016/j.etran.2023.100262. DOI
Cao B., Li Z., Liu X., Lv Z., He H. Mobility-aware multiobjective task offloading for vehicular edge computing in digital twin environment. IEEE J. Sel. Area. Commun. 2023;41(10):3046–3055. doi: 10.1109/JSAC.2023.3310100. DOI
Cao B., Wang X., Zhang W., Song H., Lv Z. A many-objective optimization model of industrial Internet of things based on private blockchain. IEEE Network. 2020;34(5):78–83. doi: 10.1109/MNET.011.1900536. DOI
BoussäıD I., Lepagnot J., Siarry P. A survey on optimization metaheuristics. Inf. Sci. 2013;237:82–117. doi: 10.1016/j.ins.2013.02.041. DOI
Helbig M., Engelbrecht A.P. Performance measures for dynamic multi-objective optimisation algorithms. Inf. Sci. 2013;250:61–81. doi: 10.1016/j.ins.2013.06.051. DOI
Beyer H.-G., Sendhoff B. Robust optimization–a comprehensive survey. Comput. Methods Appl. Mech. Eng. 2007;196(33–34):3190–3218. doi: 10.1016/j.cma.2007.03.003. DOI
Coello Coello C.A.C. A comprehensive survey of evolutionarybased multiobjective optimization techniques. Knowl. Inf. Syst. 1999;1(3):269–308. doi: 10.1007/BF03325101. DOI
Deb K. vol. 16. Wiley; 2001. (Multi-objective Optimization Using Evolutionary Algorithms).
von Lucken C., Bar, an B., Brizuela C. A survey on multi-” objective evolutionary algorithms for many-objective problems. Comput. Optim. Appl. 2014;58:707–756.
Nguyen T.T., Yang S., Branke J. Evolutionary dynamic optimization: a survey of the state of the art. Swarm Evol. Comput. 2012;6:1–24. doi: 10.1016/j.swevo.2012.05.001. DOI
Padhye N., Mittal P., Deb K. Feasibility preserving constraint-handling strategies for real parameter evolutionary optimization. Comput. Optim. Appl. 2015;62(3):851–890. doi: 10.1007/s10589-015-9752-6. DOI
Kaidi W., Khishe M., Mohammadi M. Dynamic levy flight chimp optimization. Knowl. Base Syst. 2022;235 doi: 10.1016/j.knosys.2021.107625. DOI
Khishe M., Nezhadshahbodaghi M., Mosavi M.R., Martín D. A weighted chimp optimization algorithm. IEEE Access. 2021;9:158508–158539. doi: 10.1109/ACCESS.2021.3130933. DOI
Khishe M., Orouji N., Mosavi M.R. Multi-objective chimp optimizer: an innovative algorithm for multi-objective problems. Expert Syst. Appl. 2023;211 doi: 10.1016/j.eswa.2022.118734. DOI
Khishe M., Mosavi M.R. Chimp optimization algorithm. Expert Syst. Appl. 2020;149 doi: 10.1016/j.eswa.2020.113338. PubMed DOI PMC
Bo Q., Cheng W., Khishe M. Evolving chimp optimization algorithm by weighted opposition-based technique and greedy search for multimodal engineering problems. Appl. Soft Comput. 2023;132 doi: 10.1016/j.asoc.2022.109869. DOI
Khishe M. Greedy opposition-based learning for chimp optimization algorithm. Artif. Intell. Rev. 2023;56(8):7633–7663. doi: 10.1007/s10462-022-10343-w. DOI
Asrari A., Lotfifard S., Payam M.S. Pareto dominancebased multiobjective optimization method for distribution network reconfiguration. IEEE Trans. Smart Grid. 2016;7(3):1401–1410. doi: 10.1109/TSG.2015.2468683. DOI
Zhou A., Qu B.-Y., Li H., Zhao S.-Z., Suganthan P.N., Zhang Q. Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 2011;1(1):32–49. doi: 10.1016/j.swevo.2011.03.001. 3// DOI
Deb K. Search Methodologies. 449. Springer; 2014. Multi-objective optimization; p. 403. EDN.
Padhye N., Deb K. Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation. 2010. Evolutionary multi-objective optimization and decision making for selective laser sintering; pp. 1259–1266. DOI
Gharehchopogh F.S., Abdollahzadeh B., Barshandeh S., Arasteh B. A multi-objective mutation-based dynamic Harris Hawks optimization for botnet detection in IoT. Int. Things. 2023;24 doi: 10.1016/j.iot.2023.100952. DOI
Gharehchopogh F.S., Ibrikci T. An improved African vultures optimization algorithm using different fitness functions for multi-level thresholding image segmentation. Multimed. Tool. Appl. 2023:1–47. doi: 10.1007/s11042-023-16300-1. DOI
Gharehchopogh F.S. An improved Harris Hawks optimization algorithm with multi-strategy for community detection in social networks. JBE. 2023;20(3):1175–1197. doi: 10.1007/s42235-022-00303-z. DOI
Gharehchopogh F.S., Ucan A., Ibrikci T., Arasteh B., Isik G. Slime mould algorithm: a comprehensive survey of its variants and applications. Arch. Comput. Methods Eng.: State of the Art Reviews. 2023;30(4):2683–2723. doi: 10.1007/s11831-023-09883-3. PubMed DOI PMC
Piri J., Mohapatra P., Acharya B., Gharehchopogh F.S., Gerogiannis V.C., Kanavos A., Manika S. Feature selection using artificial gorilla troop optimization for biomedical data: a case analysis with COVID-19 data. Mathematics. 2022;10(15):2742. doi: 10.3390/math10152742. DOI
Xiao Z., Shu J., Jiang H., Lui J.C.S., Min G., Liu J., Dustdar S. Multi-objective parallel task offloading and content caching in D2D-aided MEC networks. IEEE Trans. Mobile Comput. 2022:1–16. doi: 10.1109/TMC.2022.3199876. DOI
Cao B., Zhao J., Gu Y., Ling Y., Ma X. Applying graph-based differential grouping for multiobjective large-scale optimization. Swarm Evol. Comput. 2020;53 doi: 10.1016/j.swevo.2019.100626. DOI
Duan Y., Zhao Y., Hu J. An initialization-free distributed algorithm for dynamic economic dispatch problems in microgrid: modeling, optimization and analysis. Sustain. Energy, Grids and Networks. 2023;34 doi: 10.1016/j.segan.2023.101004. DOI
Deb K., Pratap A., Agarwal S., Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002;6(2):182–197. doi: 10.1109/4235.996017. DOI
Coello Coello C.A., Lechuga M.S. Proceedings of the 2002 Congress on Evolutionary Computation. 2002. MOPSO: a proposal for multiple objective particle swarm optimization; pp. 1051–1056. 2002. CEC. DOI
Alaya I., Solnon C., Ghedira K. Ant colony optimization for multi-objective optimization problems. ICTAI. 2007;1:450–457. doi: 10.1109/ICTAI.2007.108. DOI
Xue F., Sanderson A.C., Graves R.J. The 2003 Congress on Evolutionary Computation. 2003. Pareto-based multiobjective differential evolution; pp. 862–869. 2003. CEC’03.
Knowles J.D., Corne D.W. Approximating the nondominated front using the Pareto archived evolution strategy. Evol. Comput. 2000;8(2):149–172. doi: 10.1162/106365600568167. PubMed DOI
Wolpert D. No free lunch theorem for optimization. IEEE Trans. Evol. Comput. 1997:467–482.
Jin Y., Olhofer M., Sendhoff B. Dynamic weighted aggregation for evolutionary multi-objective optimization. Why does it work and how? 2001
Branke J., Deb K., Dierolf H., Osswald M. International Conference on Parallel Problem Solving from Nature. 2004. Finding knees in multi-objective optimization; pp. 722–731.
Kollat J.B., Reed P. A framework for visually interactive decision-making and design using evolutionary multiobjective optimization [Video] Environ. Model. Software. 2007;22(12):1691–1704. doi: 10.1016/j.envsoft.2007.02.001. DOI
Mirjalili S., Jangir P., Saremi S. Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Appl. Intell. 2017;46(1):79–95. doi: 10.1007/s10489-016-0825-8. DOI
Premkumar M., Jangir P., Sowmya R., Alhelou H.H., Mirjalili S., Kumar B.S. Multi-objective equilibrium optimizer: framework and development for solving multi-objective optimization problems. J. Comput. Design and Eng. 2021;9(1):24–50. doi: 10.1093/jcde/qwab065. DOI
Premkumar M., Jangir P., Sowmya R., Alhelou H.H., Heidari A.A., Chen H. MOSMA: multi-objective slime mould algorithm based on elitist non-dominated sorting. IEEE Access. 2020;9:3229–3248. doi: 10.1109/ACCESS.2020.3047936. DOI
Premkumar M., Jangir P., Santhosh Kumar B., Sowmya R., Haes Alhelou H., Abualigah L., Yildiz A.R., Mirjalili S. A new arithmetic optimization algorithm for solving real-world multiobjective CEC-2021 constrained optimiza- tion problems: diversity analysis and validations. IEEE Access. 2021;9:84263–84295.
Buch H., Trivedi I.N. A new non-dominated sorting ions motion algorithm: development and applications, Deci- SionSci. Letture. 2020;9(1):59–76.
Zhang Q., Li H. MOEA/D: a multi-objective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007;11(6):712–731. doi: 10.1109/TEVC.2007.892759. DOI
Deb K., Pratap A., Agarwal S., Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002;6(2):182–197. doi: 10.1109/4235.996017. DOI
Mirjalili S., Jangir P., Mirjalili S.Z., Saremi S., Trivedi I.N. Optimization of problems with multiple objectives using the multi-verse optimization algorithm. Knowl. Base Syst. 2017;134:50–71. doi: 10.1016/j.knosys.2017.07.018. DOI
Jangir P., Jangir N. A new non-dominated sorting grey wolf optimizer (NS-GWO) algorithm: development and application to solve engineering designs and economic constrained emission dispatch problem with integration of wind power. Eng. Appl. Artif. Intell. 2018;72:449–467. doi: 10.1016/j.engappai.2018.04.018. DOI
Premkumar M., Jangir P., Sowmya R. MOGBO: a new Multiobjective Gradient-Based Optimizer for real-world structural optimization problems. Knowl. Base Syst. 2021;218 doi: 10.1016/j.knosys.2021.106856. DOI
Kumar S., Jangir P., Tejani G.G., Premkumar M., Alhelou H.H. MOPGO: a new physics-based multi-objective plasma generation optimizer for solving structural optimization problems. IEEE Access. 2021;9:84982–85016. doi: 10.1109/ACCESS.2021.3087739. DOI
Jangir P., Heidari A.A., Chen H. Elitist non-dominated sorting Harris hawks optimization: framework and developments for multi-objective problems. Expert Syst. Appl. 2021;186 doi: 10.1016/j.eswa.2021.115747. DOI
Kumar S., Jangir P., Tejani G.G., Premkumar M. MOTEO: a novel physics-based multiobjective thermal exchange optimization algorithm to design truss structures. Knowl. Base Syst. 2022;242 doi: 10.1016/j.knosys.2022.108422. DOI
Kumar S., Jangir P., Tejani G.G., Premkumar M. A decomposition based multi-objective heat transfer search algorithm for structure optimization. Knowl. Base Syst. 2022;253 doi: 10.1016/j.knosys.2022.109591. DOI
Ganesh N., Shankar R., Kalita K., Jangir P., Oliva D., Pérez-Cisneros M. A novel decomposition-based multi-objective symbiotic organism search optimization algorithm. Mathematics. 2023;11(8):1898. doi: 10.3390/math11081898. DOI
Pandya S.B., Visumathi J., Mahdal M., Mahanta T.K., Jangir P. A novel MOGNDO algorithm for security-constrained optimal power flow problems. Electronics. 2022;11(22):3825. doi: 10.3390/electronics11223825. DOI
Jangir P. Non-dominated sorting moth flame optimizer: a novel multi-objective optimization algorithm for solving engineering design problems. Eng. Technol. open Access J. 2018;2(1):17–31.
Jangir P., Jangir N. Non-dominated sorting whale optimization algorithm, Global J. Res. Eng. 2017;17(4):15–42.
Jangir P. ‘MONSDA:-A novel multi-objective non-dominated sorting dragonfly algorithm. Global J. Res. Eng.: Front. Electr. Electron. Eng. 2020;20:28–52.
Binh T.T., Korn U. MOBES: a multiobjective evolution strategy for constrained optimization problems. Third Int. Conf. Genetic Algorithms. 1997;Mendel 97:27.
Osyczka A., Kundu S. A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm. Struct. Optim. 1995;10(2):94–99. doi: 10.1007/BF01743536. DOI
Zheng J., Zhang Z., Zou J., Yang S., Ou J., Hu Y. A dynamic multiobjective particle swarm optimization algorithm based on adversarial decomposition and neighborhood evolution. Swarm Evol. Comput. 2022;69 doi: 10.1016/j.swevo.2021.100987. DOI
Ben-Said A., Moukrim A., Guibadj R.N., Verny J. Using decompositionbased multi-objective algorithm to solve selective pickup and delivery problems with time windows. Comput. Oper. Res. 2022;145 doi: 10.1016/j.cor.2022.105867. DOI
Zouache D., Abdelaziz F.B. Guided manta ray foraging optimization using epsilon dominance for multi-objective optimization in engineering design. Expert Syst. Appl. 2022;189 doi: 10.1016/j.eswa.2021.116126. DOI
Yin S., Luo Q., Zhou Y. IBMSMA: an indicator-based multi-swarm slime mould algorithm for multi-objective truss optimization problems. JBE. 2022:1–28.
Li S., Chen H., Chen Y., Xiong Y., Song Z. Hybrid method with parallel-factor theory, a support vector machine, and particle filter optimization for intelligent machinery failure identification. Machines. 2023;11(8):837. doi: 10.3390/machines11080837. DOI
Houssein E.H., Oliva D., Samee N.A., Mahmoud N.F., Emam M.M. Liver Cancer Algorithm: a novel bio-inspired optimizer. Comput. Biol. Med. 2023;165 doi: 10.1016/j.compbiomed.2023.107389. ISSN 0010-4825. PubMed DOI