Identification of individual goat animals by means of near infrared spectroscopy and chemometrics analysis of commercial meat cuts
Status PubMed-not-MEDLINE Jazyk angličtina Země Indie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38487278
PubMed Central
PMC10933230
DOI
10.1007/s13197-023-05890-1
PII: 5890
Knihovny.cz E-zdroje
- Klíčová slova
- Chemometrics, Commercial cut, Goat, NIR, Provenance, Traceability,
- Publikační typ
- časopisecké články MeSH
Although the identification of animal species and muscles have been reported previously, no studies have been found on the use of NIR spectroscopy to identify individual animals from the analysis of commercial meat cuts. The aim of this study was to evaluate the use of a portable near infrared (NIR) instrument combined with classical chemometrics methods [principal component analysis (PCA) and partial least squares discriminant analysis PLS-DA)] to identify the origin of individual goat animals using the spectral signature of their commercial cut. Samples were collected from several carcasses (6 commercial cuts x 24 animals) sourced from a commercial abattoir in Queensland (Australia). The NIR spectra of the samples were collected using a portable NIR instrument in the wavelength range between 950 and 1600 nm. Overall, the PLS-DA models correctly classify 82% and 79% of the individual goat samples using either the goat rack or loin cut samples, respectively. The study demonstrated that NIR spectroscopy was able to identify individual goat animals based on the spectra properties of some of the commercial cut samples analysed (e.g. loin and rack). These results showed the potential of this technique to identify individual animals as an alternative to other laboratory methods and techniques commonly used in meat traceability.
Centre for Nutrition and Food Sciences Brisbane QLD 4072 Australia
Institute of Animal Science 104 00 Přátelství 815 104 00 Prague Czech Republic
The University of Queensland School of Agriculture and Food Sciences Brisbane QLD 4072 Australia
Zobrazit více v PubMed
Alamprese C, Casale M, Sinelli N, Lanteri S, Casiraghi E. Detection of minced beef adulteration with Turkey meat by UV–vis, NIR and MIR spectroscopy. LWT - Food Sci Technol. 2013;53:225–232. doi: 10.1016/j.lwt.2013.01.027. DOI
Alamprese C, Amigo JM, Casiraghi E, Engelsen SB. Identification and quantification of Turkey meat adulteration in fresh, frozen-thawed and cooked minced beef by FT-NIR spectroscopy and chemometrics. Meat Sci. 2016;121:175–181. doi: 10.1016/j.meatsci.2016.06.018. PubMed DOI
Bai Y, Liu H, Zhang B, Zhang J, Wu H, Zhao S, Qie M, Guo J, Wang Q, Zhao Y. Research progress on traceability and authenticity of beef. Food Rev Int. 2021 doi: 10.1080/87559129.2021.1936000. DOI
Barbin D, Elmasry G, Sun DW, Allen P. Near-infrared hyperspectral imaging for grading and classification of pork. Meat Sci. 2012;90:259–268. doi: 10.1016/j.meatsci.2011.07.011. PubMed DOI
Bureau S, Cozzolino D, Clark CJ. Contributions of Fourier-transform mid infrared (FT-MIR) spectroscopy to the study of fruit and vegetables: a review. Post Bio Technol. 2019;148:1–14. doi: 10.1016/j.postharvbio.2018.10.003. DOI
Cawthorn D-M, Steinman HA, Hoffman LC. A high incidence of species substitution and mislabelling detected in meat products sold in South Africa. Food Control. 2013;32:440–449. doi: 10.1016/j.foodcont.2013.01.008. DOI
Chapman J, Elbourne A, Truong VK, Cozzolino D. Shining light into meat—a review on the recent advances in in vivo and carcass applications of near infrared spectroscopy. Int J Food Sci Technol. 2020;55:935–941. doi: 10.1111/ijfs.14367. DOI
Cozzolino D. Recent trends on the use of infrared spectroscopy to trace and authenticate natural and agricultural food products. App Spectros Rev. 2012;47:518–530. doi: 10.1080/05704928.2012.667858. DOI
Cozzolino D. The role of vibrational spectroscopy as tool to assess economical motivated Fraud and counterfeit issues in agricultural products and foods. Anal Methods. 2015;7:9390–9400. doi: 10.1039/C5AY01792K. DOI
Cozzolino D (2016) Near infrared spectroscopy and food authenticity. In: Advances in food traceability techniques and technologies, pp. 119–136. Elsevier. 10.1016/B978-0-08-100310-7.00007-7
Cozzolino D. Editorial special issue food traceability and security. Int J Food Sci Technol. 2021;56:2579–2579. doi: 10.1111/ijfs.15050. DOI
Cozzolino D, Murray I. Identification of animal meat muscles by visible and near infrared reflectance spectroscopy. LWT-Food Sci Technol. 2004;37:447–452. doi: 10.1016/j.lwt.2003.10.013. DOI
Dixit Y, Casado-Gavalda MP, Cama-Moncunill R, Cullen PJ, Sullivan C. Challenges in model development for meat composition using multipoint NIR spectroscopy from at-line to in-line monitoring: multipoint NIR spectroscopy. J Food Sci. 2017;82:1557–1562. doi: 10.1111/1750-3841.13770. PubMed DOI
Dumalisile P, Manley M, Hoffman LC, Williams PJ. Discriminating muscle type of selected game species using near infrared (NIR) spectroscopy. Food Control. 2020;110:106981. doi: 10.1016/j.foodcont.2019.106981. DOI
Edwards K, Manley M, Hoffman LC, Beganovic A, Kirchler CG, Huck CW, Williams PJ. Differentiation of South African game meat using near-infrared (NIR) spectroscopy and hierarchical modelling. Molecules. 2020;25:1845. doi: 10.3390/molecules25081845. PubMed DOI PMC
Edwards K, Manley M, Hoffman LC, Williams PJ. Non-destructive spectroscopic and imaging techniques for the detection of processed meat Fraud. Foods. 2021;10:448. doi: 10.3390/foods10020448. PubMed DOI PMC
Hoffman LC, Ingle P, Khole AH, Zhang S, Yang Z, Beya M, Bureš D, Cozzolino D. Characterisation and identification of individual intact goat muscle samples (Capra sp.) using a portable near-infrared spectrometer and chemometrics. Foods. 2022;11:2894. doi: 10.3390/foods11182894. PubMed DOI PMC
Jia W, van Ruth S, Scollan N, Koidis A. Hyperspectral imaging (HSI) for meat quality evaluation across the supply chain: current and future trends. Curr Res Food Sci. 2022;5:1017–1027. doi: 10.1016/j.crfs.2022.05.016. PubMed DOI PMC
Jiang H, Ru Y, Chen Q, Wang J, Xu L. Near-infrared hyperspectral imaging for detection and visualization of offal adulteration in ground pork. Spectrochim Acta Part A Mol Biomol Spectros. 2021;249:119307. doi: 10.1016/j.saa.2020.119307. PubMed DOI
Kademi HI, Ulusoy BH, Hecer C. Applications of miniaturized and portable near infrared spectroscopy (NIRS) for inspection and control of meat and meat products. Food Rev Int. 2019;35:201–220. doi: 10.1080/87559129.2018.1514624. DOI
Kamruzzaman M, Sun DW, ElMasry G, Allen P. Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis. Talanta. 2013;103:130–136. doi: 10.1016/j.talanta.2012.10.020. PubMed DOI
Kamruzzaman M, Makino Y, Oshita S, Liu S. Assessment of visible near-infrared hyperspectral imaging as a tool for detection of horsemeat adulteration in minced beef. Food Bioprocess Technol. 2015;8:1054–1062. doi: 10.1007/s11947-015-1470-7. DOI
Kucha CT, Ngadi MO. Rapid assessment of pork freshness using miniaturized NIR spectroscopy. J Food Measur Charact. 2020;14:1105–1115. doi: 10.1007/s11694-019-00360-9. DOI
León-Ecay S, López-Maestresalas A, Murillo-Arbizu MT, Beriain MJ, Mendizabal JA, Arazuri S, Jarén C, Bass PD, Colle MJ, García D. Classification of beef longissimus thoracis muscle tenderness using hyperspectral imaging and chemometrics. Foods. 2022;11:3105. doi: 10.3390/foods11193105. PubMed DOI PMC
López-Maestresalas A, Insausti K, Jarén C, Pérez-Roncal C, Urrutia O, Beriain MJ, Arazuri S. Detection of minced lamb and beef Fraud using NIR spectroscopy. Food Control. 2019;98:465–473. doi: 10.1016/j.foodcont.2018.12.003. DOI
Maduro Dias CSAM, Nunes HP, Melo TMMV, Rosa HJD, Silva CCG, Borba AES. Application of near infrared reflectance (NIR) spectroscopy to predict the moisture, protein, and fat content of beef for gourmet hamburger preparation. Liv Sci. 2021;254:104772. doi: 10.1016/j.livsci.2021.104772. DOI
Mamani-Linares LW, Gallo C, Alomar D. Identification of cattle, llama and horse meat by near infrared reflectance or transflectance spectroscopy. Meat Sci. 2012;90:378–385. doi: 10.1016/j.meatsci.2011.08.002. PubMed DOI
Manning L, Soon JM. Food Safety, Food Fraud, and Food Defense: a fast evolving literature. J Food Sci. 2016;81:823–834. doi: 10.1111/1750-3841.13256. PubMed DOI
Næs T, Isaksson T, Fearn T, Davies T (2002) A user-friendly guide to multivariate calibration and classification, 2nd edn, vol 6. NIR Chichester. 10.1255/978-1-906715-25-0
Olsen O, Borit M. The components of a food traceability system. Trends Food Sci Technol. 2018;77:143–149. doi: 10.1016/j.tifs.2018.05.004. DOI
Power A, Cozzolino D. How fishy is your fish? Authentication, provenance and traceability in fish and seafood by means of vibrational spectroscopy. Appl Sci. 2020;10:4150. doi: 10.3390/app10124150. DOI
Prieto N, Roehe R, Lavin P, Batten G, Andres S. Application of near infrared reflectance spectroscopy to predict meat and meat products quality: a review. Meat Sci. 2009;83:175–186. doi: 10.1016/j.meatsci.2009.04.016. PubMed DOI
Prieto N, Pawluczyk O, Edward M, Dugan R, Aalhus JL. A review of the principles and applications of near-infrared spectroscopy to characterize meat, fat, and meat products. Appl Spectros. 2017;7:1406–1426. doi: 10.1177/0003702817709299. PubMed DOI
Primrose S, Woolfe M, Rollinson S. Food forensics: methods for determining the authenticity of foodstuffs. Trends Food Sci Technol. 2010;21(12):582–590. doi: 10.1016/j.tifs.2010.09.006. DOI
Roberts JJ, Cozzolino D. An overview on the application of chemometrics in food science and technology - an approach to quantitative data analysis. Food Anal Methods. 2016;9:3258–3267. doi: 10.1007/s12161-016-0574-7. DOI
Ropodi AI, Pavlidis DE, Mohareb F, Panagou EZ, Nychas GJE. Multispectral image analysis approach to detect adulteration of beef and pork in raw meats. Food Res Int. 2015;67:12–18. doi: 10.1016/j.foodres.2014.10.032. DOI
Saviztky A, Golay MJE. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem. 1964;36:1627–1639. doi: 10.1021/ac60214a047. DOI
Savoia S, Albera A, Brugiapaglia A, Di Stasio L, Ferragina A, Cecchinato A, Bittante G. Prediction of meat quality traits in the abattoir using portable and hand-held near-infrared spectrometers. Meat Sci. 2020;161:108017. doi: 10.1016/j.meatsci.2019.108017. PubMed DOI
The Traceability Working Group (2019) National Traceability Framework: enhancing Australia’s world-class agricultural traceability systems, Canberra, Australia
Williams P, Dardenne P, Flinn P. Tutorial: items to be include in a report on a near infrared spectroscopy project. J Near Infrared Spectros. 2017;25:85–90. doi: 10.1177/0967033517702395. DOI
Workman J, Weyer L. Practical guide to interpretive near-infrared spectroscopy. Boca Raton: CRC Press Taylor and Francis Group; 2008.
Zhang Y, Zheng M, Zhu R, Ma R. Detection of adulteration in mutton using digital images in time domain combined with deep learning algorithm. Meat Sci. 2022;192:108850. doi: 10.1016/j.meatsci.2022.108850. PubMed DOI
Zhao J, Li A, Jin X, Pan L. Technologies in individual animal identification and meat products traceability. Biotech Biotechnol Equip. 2020;34:48–57. doi: 10.1080/13102818.2019.1711185. DOI
Zheng X, Li Y, Wei W, Peng Y. Detection of adulteration with duck meat in minced lamb meat by using visible near-infrared hyperspectral imaging. Meat Sci. 2019;149:55–62. doi: 10.1016/j.meatsci.2018.11.005. PubMed DOI