Characterisation and Identification of Individual Intact Goat Muscle Samples (Capra sp.) Using a Portable Near-Infrared Spectrometer and Chemometrics
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36141022
PubMed Central
PMC9498649
DOI
10.3390/foods11182894
PII: foods11182894
Knihovny.cz E-zdroje
- Klíčová slova
- carcass, chemometrics, classification, goat meat, infrared,
- Publikační typ
- časopisecké články MeSH
Adulterated, poor-quality, and unsafe foods, including meat, are still major issues for both the food industry and consumers, which have driven efforts to find alternative technologies to detect these challenges. This study evaluated the use of a portable near-infrared (NIR) instrument, combined with chemometrics, to identify and classify individual-intact fresh goat muscle samples. Fresh goat carcasses (n = 35; 19 to 21.7 Kg LW) from different animals (age, breeds, sex) were used and separated into different commercial cuts. Thus, the longissimus thoracis et lumborum, biceps femoris, semimembranosus, semitendinosus, supraspinatus, and infraspinatus muscles were removed and scanned (900-1600 nm) using a portable NIR instrument. Differences in the NIR spectra of the muscles were observed at wavelengths of around 976 nm, 1180 nm, and 1430 nm, associated with water and fat content (e.g., intramuscular fat). The classification of individual muscle samples was achieved by linear discriminant analysis (LDA) with acceptable accuracies (68-94%) using the second-derivative NIR spectra. The results indicated that NIR spectroscopy could be used to identify individual goat muscles.
Institute of Animal Science Přátelství 815 104 00 Prague Czech Republic
School of Agriculture and Food Sciences The University of Queensland Brisbane QLD 4072 Australia
Zobrazit více v PubMed
Abbas O., Zadravec M., Baeten V., Mikuš T., Lešić T., Vulić A., Prpić J., Jemeršić L., Pleadin J. Analytical methods used for the authentication of food of animal origin. Food Chem. 2018;246:6–17. doi: 10.1016/j.foodchem.2017.11.007. PubMed DOI
Guy F., Prache S., Thomas A., Bauchart D., Andueza D. Prediction of lamb meat fatty acid composition using near infrared reflectance spectroscopy (NIRS) Food Chem. 2011;127:1280–1286. doi: 10.1016/j.foodchem.2011.01.084. PubMed DOI
Kademi H.I., Ulusoy B.H., Hecer C. Applications of miniaturized and portable near infrared spectroscopy (NIRS) for inspection and control of meat and meat products. Food Rev. Int. 2019;35:201–220. doi: 10.1080/87559129.2018.1514624. DOI
Prieto N., Roehe R., Lavín P., Batten G., Andrés S. Application of near infrared reflectance spectroscopy to predict meat and meat products quality: A review. Meat Sci. 2009;83:175–186. doi: 10.1016/j.meatsci.2009.04.016. PubMed DOI
Rady A., Adedeji A. Assessing different processed meats for adulterants using visible-near-infrared spectroscopy. Meat Sci. 2018;136:59–67. doi: 10.1016/j.meatsci.2017.10.014. PubMed DOI
Viljoen M., Hoffman L.C., Brand T.S. Prediction of the chemical composition of mutton with near infrared reflectance spectroscopy. Small Rumin. Res. 2007;69:88–94. doi: 10.1016/j.smallrumres.2005.12.019. PubMed DOI
Weeranantanaphan J., Downey G., Allen P., Sun D.W. A review of near infrared spectroscopy in muscle food analysis: 2005–2010. J. Near Infrared Spectrosc. 2011;19:61–104. doi: 10.1255/jnirs.924. DOI
Damez J.L., Clerjon S. Quantifying and predicting meat and meat products quality attributes using electromagnetic waves: An overview. Meat Sci. 2013;95:879–896. doi: 10.1016/j.meatsci.2013.04.037. PubMed DOI
Kamruzzaman M., Elmasry G., Sun D.W., Allen P. Application of NIR hyperspectral imaging for discrimination of lamb muscles. J. Food Eng. 2011;104:332–340. doi: 10.1016/j.jfoodeng.2010.12.024. DOI
McVey C., Elliot C.T., Cannavan A., Kelly S.D., Petchkongkaew A., Simon A., Haughey S.A. Portable spectroscopy for high throughput food authenticity screening: Advancements in technology and integration into digital traceability systems. Trends Food Sci. Technol. 2021;118:777–790. doi: 10.1016/j.tifs.2021.11.003. DOI
Cawthorn D.-M., Steinman H.A., Hoffman L.C. A high incidence of species substitution and mislabelling detected in meat products sold in South Africa. Food Control. 2013;32:440–449. doi: 10.1016/j.foodcont.2013.01.008. DOI
Barbin D., Elmasry G., Sun D.W., Allen P. Near-infrared hyperspectral imaging for grading and classification of pork. Meat Sci. 2012;90:259–268. doi: 10.1016/j.meatsci.2011.07.011. PubMed DOI
Dixit Y., Casado-Gavalda M.P., Cama-Moncunill R., Cullen P.J., Sullivan C. Challenges in Model Development for Meat Composition Using Multipoint NIR Spectroscopy from At-Line to In-Line Monitoring. J. Food Sci. 2017;82:1557–1562. doi: 10.1111/1750-3841.13770. PubMed DOI
Dumalisile P., Manley M., Hoffman L., Williams P.J. Discriminating muscle type of selected game species using near infrared (NIR) spectroscopy. Food Control. 2020;110:106981. doi: 10.1016/j.foodcont.2019.106981. DOI
Teixeira A., Oliveira A., Paulos K., Leite A., Marcia A., Amorim A., Pereira E., Silva S., Rodrigues S. An approach to predict chemical composition of goat Longissimus thoracis et lumborum muscle by Near Infrared Reflectance spectroscopy. Small Rumin. Res. 2015;126:40–43. doi: 10.1016/j.smallrumres.2015.03.006. DOI
An J., Li Y., Zhang C., Zhang D. Rapid non-destructive prediction of multiple quality attributes for different commercial meat cut types using optical system. Food Sci. Anim. Resour. 2022;42:655–6571. doi: 10.5851/kosfa.2022.e28. PubMed DOI PMC
Dieters L.S.E., Meale S.J., Quigley S.P., Hoffman L.C. Meat quality characteristics of lot-fed Australian Rangeland goats are unaffected by live weight at slaughter. Meat Sci. 2021;175:108437. doi: 10.1016/j.meatsci.2021.108437. PubMed DOI
Savitzky A., Golay M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964;36:1627–1639. doi: 10.1021/ac60214a047. DOI
Bureau S., Cozzolino D., Clark C.J. Contributions of Fourier-transform mid infrared (FT-MIR) spectroscopy to the study of fruit and vegetables: A review. Postharvest Biol. Technol. 2019;148:1–14. doi: 10.1016/j.postharvbio.2018.10.003. DOI
Oliveri P., Downey G. Multivariate class modelling for the verification of food authenticity claims. TRAC Trends Anal. Chem. 2012;35:74–86. doi: 10.1016/j.trac.2012.02.005. DOI
Elmasry G., Iqbal A., Sun D.W., Allen P., Ward P. Quality classification of cooked, sliced Turkey hams using NIR hyperspectral imaging system. J. Food Eng. 2011;103:333–344. doi: 10.1016/j.jfoodeng.2010.10.031. DOI
Cozzolino D., Murray I. Identification of animal meat muscles by visible and near infrared reflectance spectroscopy. LWT-Food Sci. Technol. 2004;37:447–452. doi: 10.1016/j.lwt.2003.10.013. DOI
Ding H., Wang G., Lei W., Wang R., Huang L., Xia Q., Wu J. Non-invasive quantitative assessment of oxidative metabolism in quadriceps muscles by near infrared spectroscopy. Br. J. Sports Med. 2001;35:441–444. doi: 10.1136/bjsm.35.6.441. PubMed DOI PMC
Workman J., Weer L. Practical Guide to Interpretive Near-Infrared Spectroscopy. CRC Press Taylor and Francis Group; Boca Raton, FL, USA: 2008.
Van Wyk G.L., Hoffman L.C., Strydom P.E., Frylinck L. Differences in meat quality of six muscles obtained from southern African large frame indigenous Veld goat and Boer goat wethers and bucks. Animals. 2022;12:382. doi: 10.3390/ani12030382. PubMed DOI PMC