• This record comes from PubMed

The Stability of Hydrogen-Bonded Ion-Pair Complex Unexpectedly Increases with Increasing Solvent Polarity

. 2024 May 13 ; 63 (20) : e202403218. [epub] 20240404

Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic

Document type Journal Article

Grant support
GAČR 22-15374S Grantová Agentura České Republiky
CZ.10.03.01/00/22_003/0000048 REFRESH- Research Excellence for Region Sustainability and High-tech Industries
CZ.10.03.01/00/22_003/0000048 REFRESH - Research Excellence for Region Sustainability and High-tech Industries
IGA_PrF_2024_017 Univerzita Palackého v Olomouci

The generally observed decrease of the electrostatic energy in the complex with increasing solvent polarity has led to the assumption that the stability of the complexes with ion-pair hydrogen bonds decreases with increasing solvent polarity. Besides, the smaller solvent-accessible surface area (SASA) of the complex in comparison with the isolated subsystems results in a smaller solvation energy of the latter, leading to a destabilization of the complex in the solvent compared to the gas phase. In our study, which combines Nuclear Magnetic Resonance, Infrared Spectroscopy experiments, quantum chemical calculations, and molecular dynamics (MD) simulations, we question the general validity of this statement. We demonstrate that the binding free energy of the ion-pair hydrogen-bonded complex between 2-fluoropropionic acid and n-butylamine (CH3CHFCOO-…NH3But+) increases with increased solvent polarity. This phenomenon is rationalized by a substantial charge transfer between the subsystems that constitute the ion-pair hydrogen-bonded complex. This unexpected finding introduces a new perspective to our understanding of solvation dynamics, emphasizing the interplay between solvent polarity and molecular stability within hydrogen-bonded systems.

See more in PubMed

R. Lo, D. Manna, M. Lamanec, M. Dračínský, P. Bouř, T. Wu, G. Bastien, J. Kaleta, V. M. Miriyala, V. Špirko, A. Mašínová, D. Nachtigallová, P. Hobza, Nat. Commun. 2022, 13, 2107(1–7).

R. Lo, D. Manna, M. Lamanec, W. Wang, A. Bakandritsos, M. Dračínský, R. Zbořil, D. Nachtigallová, P. Hobza, J. Am. Chem. Soc. 2021, 143, 10930–10939.

M. Lamanec, R. Lo, D. Nachtigallová, A. Bakandritsos, E. Mohammadi, M. Dračínský, R. Zbořil, P. Hobza, W. Wang, Angew. Chem. Int. Ed. 2021, 60, 1942–1950.

Y. Yamada, H. Ohba, Y. Noboru, S. Daicho, Y. Nibu, J. Phys. Chem. A. 2012, 116, 9271–9278.

R. Lo, A. Mašínová, M. Lamanec, D. Nachtigallová, P. Hobza, J. Comput. Chem. 2023, 44, 329–333.

V. M. Miriyala, R. Lo, P. Bouř, T. Wu, D. Nachtigallová, P. Hobza, J. Phys. Chem. A 2022, 126, 7938–7943.

R. Lo, M. Lamanec, W. Wang, D. Manna, A. Bakandritsos, M. Dračínský, R. Zbořil, D. Nachtigallová, P. Hobza, Phys. Chem. Chem. Phys. 2021, 23, 4365–4375.

R. Lo, D. Manna, P. Hobza, Chem. Commun. 2021, 57, 3363–3366.

R. Lo, D. Manna, P. Hobza, J. Phys. Chem. A. 2021, 125, 2923–2931.

R. Lo, D. Manna, P. Hobza, Chem. Commun. 2022, 58, 1045–1048.

R. Lo, D. Manna, V. M. Miriyala, D. Nachtigallová, P. Hobza, Phys. Chem. Chem. Phys. 2023, 25, 25961–25964.

D. Manna, R. Lo, D. Nachtigallová, Z Trávníček, P. Hobza, Chem. Eur. J. 2023, 29, e202300635.

R. Lo, D. Manna, V. M. Miriyala, D. Nachtigallová, Z Trávníček, P. Hobza, J. Comput. Chem. 2024, 45, 204–209.

M. D. Driver, M. J. Williamson, J. L. Cook, C. A. Hunter, Chem. Sci. 2020, 11, 4456–4466.

J. L. Cook, C. A. Hunter, C. M. R. Low, A. Perez-Velasco, J. G. Vinter, Angew. Chem. Int. Ed. 2007, 46, 3706–3709.

A. J. A. Aquino, D. Tunega, G. Haberhauer, M. H. Gerzabek, H. Lischka, J. Phys. Chem. A. 2002, 106, 1862–1871.

C. C. Robertson, J. S. Wright, E. J. Carrington, R. N. Perutz, C. A. Hunter, L. Brammer, Chem. Sci. 2017, 8, 5392–5398.

J. Zuo, B. Zhao, H. Guo, D. Xie, Phys. Chem. Chem. Phys. 2017, 19, 9770–9777.

J. Wang, L. Shao, P. Yan, C. Liu, X. Liu, X. M. Zhang, J. Phys. Org. Chem. 2019, 32, e3912.

C. A. Hunter, Angew. Chem. Int. Ed. 2004, 43, 5310–5324.

R. Cabot, C. A. Hunter, Chem. Commun. 2009, 2005–2007.

N. Y. Meredith, S. Borsley, I. V. Smolyar, G. S. Nichol, C. M. Baker, K. B. Ling, S. L. Cockroft, Angew. Chem. Int. Ed. 2022, 61, e202206604.

R. J. Burns, I. K. Mati, K. B. Muchowska, C. Adam, S. L. Cockroft, Angew. Chem. Int. Ed. 2020, 59, 16717–16724.

M. H. Kolář, P. Hobza, Chem. Rev. 2016, 116, 5155–5187.

P. Hobza, Z. Havlas, Chem. Rev. 2000, 100, 4253–4264.

M. Meot-Ner(Mautner), Chem. Rev. 2005, 105, 213–284.

A. J. V. Lomboy, R. Q. Topper, J. Phys. Chem. A 2021, 125, 2546–2557.

K. Fumino, V. Fossog, P. Stange, K. Wittler, W. Polet, R. Hempelmann, R. Ludwig, ChemPhysChem 2014, 15, 2604–2609.

K. Fumino, A.-M. Bonsa, B. Golub, D. Paschek, R. Ludwig, ChemPhysChem 2015, 16, 299–304.

H. K. Stassen, R. Ludwig, A. Wulf, J. Dupont, Chem. Eur. J. 2015, 21, 8324–8335.

P. Stange, K. Fumino, R. Ludwig, Angew. Chem. Int. Ed. 2013, 52, 2990–2994.

K. Fumino, V. Fossog, P. Stange, D. Paschek, R. Hempelmann, R. Ludwig, Angew. Chem. Int. Ed. 2015, 54, 2792–2795.

K. Fumino, P. Stange, V. Fossog, R. Hempelmann, R. Ludwig, Angew. Chem. Int. Ed. 2013, 52, 12439–12442.

P. A. Hunt, C. R. Ashworth, R. P. Matthews, Chem. Soc. Rev. 2015, 44, 1257–1288.

J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999–3094.

G. Norjmaa, G. Ujaque, A. Lledós, Top. Catal. 2022, 65, 118–140.

R. B. Sunoj, M. Anand, Phys. Chem. Chem. Phys. 2012, 14, 12715–12736.

C. Hadad, E. Florez, N. Acelas, G. Merino, A. Restreppo, Int. J. Quantum Chem. 2019, 119, e25766.

G. N. Simm, P. L. Türtscher, M. Reiher, J. Comput. Chem. 2020, 41, 1144–1145.

Y. Basdogan, M. C. Groenenboom, E. Henderson, S. De, S. B. Rempe, J. A. Keith, J. Chem. Theory Comput. 2020, 16, 633–642.

D. Manna, R. Lo, D. Nachtigallová, P. Hobza, (Manuscript in preparation).

D. Paschek, B. Goluba, R. Ludwig, Phys. Chem. Chem. Phys. 2015, 17, 8431–8440.

M. Strauch, C. Roth, F. Kubatzki, R. Ludwig, ChemPhysChem 2014, 15, 265–270.

C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158–6170.

S. Grimme, J. Antony, S. Ehrlich, H. A. Krieg, J. Chem. Phys. 2010, 132, 154104.

F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.

A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin Trans. 2 1993, 2, 799–805.

A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B. 2009, 113, 6378–6396.

M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2003, 24, 669–681.

A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899–926.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 Rev.C.01, Wallingford, CT 2016.

B. Kaduk, T. Kowalczyk, T. Van Voorhis, Chem. Rev. 2012, 112, 321 and references therein.

E. Apra, E. J. Bylaska, W. A. De Jong, N. Govind, K. Kowalski, T. P. Straatsma, M. Valiev, H. van Dam, Y. Alexeev, J. Anchell, et al., J. Chem. Phys. 2020, 152, 184102.

G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15–50.

G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.

S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465.

J. Schneider, J. Hamaekers, S. T. Chill, S. Smidstrup, J. Bulin, R. Thesen, A. Blom, K. Stokbro, Modell. Simul. Mater. Sci. Eng. 2017, 25, 085007.

S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P. A. Khomyakov, U. G. Vej-Hansen, J. Phys. Condens. Matter 2019, 32, 015901.

M. Parrinello, A. Rahman, Phys. Rev. Lett. 1980, 45, 1196–1199.

M. Parrinello, A. Rahman, J. Appl. Phys. 1981, 52, 7182–7190.

T. K. Woo, P. M. Margl, P. E. Blöchl, T. A. Ziegler, J. Phys. Chem. B 1997, 101, 7877–7880.

C. Jarzynski, Phys. Rev. Lett. 1997, 78, 2690–2693.

H. Oberhofer, C. Dellago, P. L. Geissler, J. Phys. Chem. B 2005, 109, 6902–6915.

F. Neese, WIREs Comput. Mol. Sci. 2022, 12, e1606.

W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 1996, 14, 33–38.

G. J. Martyna, M. L. Klein, M. Tuckerman, J. Chem. Phys. 1992, 97, 2635–2643.

G. J. Martyna, M. E. Tuckerman, D. J. Tobias, M. L. Klein, Mol. Phys. 1996, 87, 1117–1157.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...