Optimization of production conditions, isolation, purification, and characterization of tannase from filamentous fungi
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38512632
DOI
10.1007/s12223-024-01154-3
PII: 10.1007/s12223-024-01154-3
Knihovny.cz E-zdroje
- Klíčová slova
- Application, Fungus, Pine needles, Purification, Solid-state fermentation, Tannase,
- MeSH
- barvicí látky metabolismus chemie MeSH
- fermentace MeSH
- fungální proteiny genetika metabolismus izolace a purifikace chemie MeSH
- Fusarium enzymologie genetika MeSH
- fylogeneze MeSH
- houby enzymologie genetika MeSH
- karboxylesterhydrolasy * metabolismus genetika izolace a purifikace chemie MeSH
- kultivační média chemie MeSH
- molekulová hmotnost MeSH
- Penicillium * enzymologie genetika MeSH
- RNA ribozomální 18S genetika MeSH
- stabilita enzymů MeSH
- substrátová specifita MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- barvicí látky MeSH
- fungální proteiny MeSH
- karboxylesterhydrolasy * MeSH
- kultivační média MeSH
- RNA ribozomální 18S MeSH
- tannase MeSH Prohlížeč
Tannase-producing filamentous fungi residing alongside tannin-rich ambient in the Northwest Himalayas were isolated at laboratory conditions and further identified by 18S ribosomal RNA gene sequencing. Five most potent tannase producing strains (EI ≥ 2.0), designated Aspergillus fumigatus AN1, Fusarium redolens AN2, Penicillium crustosum AN3, Penicillium restrictum AN4, and Penicillium commune AN5, were characterized. The strain Penicillium crustosum AN3 exhibited a maximum zone dia (25.66 mm ± 0.38). During solid-state fermentation, a maximal amount of tannase was attained with Penicillium crustosum AN3 using pine needles (substrate) by adopting response surface methodology for culture parameter optimization. Gel filtration chromatography yielded 46.48% of the partially purified enzyme with 3.94-fold of tannase purification. We found two subunits in enzyme-117.76 KDa and 88.51 KDa, respectively, in the SDS-PAGE. Furthermore, the characterization of partially purified tannase revealed a maximum enzyme activity of 8.36 U/mL at 30 °C using a substrate concentration (methyl gallate) of 10 mM. To broaden the knowledge of crude enzyme application, dye degradation studies were subjected to extracellular crude tannase from Penicillium crustosum AN3 where the maximum degradation achieved at a low enzyme concentration (5 ppm).
Zobrazit více v PubMed
Aguilar CN, Augur C, Favela Torres E, Viniegra Gonzalez G (2001) Production of tannase by Aspergillus niger Aa-20 in submerged and solid state fermentation: influence of glucose and tannic acid. J Ind Microbiol Biotechnol 26:296–302 PubMed DOI
Aguilar CN, Rodriguez R, Gutierrez SG, Augur C, Favela TE, Prado BLA, Ramirez CA, Contreras EJC (2007) Microbial tannases: advances and perspectives. App Microbiol Biotechnol 76:47–59 DOI
Aissam H, Errachidi F, Penninckx MJ, Merzouki M, Benlemlih M (2005) Production of tannase by Aspergillus niger HA37 growing on tannic acid and olive mill waste waters. World J Microbiol Biotechnol 21:609–614 DOI
Altschul SF, Thomas LM, Alejandro AS, Jinghui Z, Zhang Z, Webb M, David JL (1990) Gaped BLAST and PSIBLAST: a new generation of protein database search program. Nuc Acid Res 25:3389–3402 DOI
Batra A, Saxena RK (2005) Potential tannase producers from the genera Aspergillus and Penicillium. Process Biochem 40(5):1553–1557 DOI
Battestin V, Macedo GA (2007) Partial purification and biochemical characterization of tannase from a newly isolated strain of Paecilomyces variotii. Food Biotechnol 21:207–216 DOI
Beena PS, Soorej MB, Elyas KK, Sarita GB, Chandrasekaran M (2010) Acidophilic tannase from marine Aspergillus awamori BTMFW032. J Microbiol Biotechnol 20:1403–1414 PubMed DOI
Belmares R, Contreras EJC, Rodriguez HR, Coronel AR, Aguilar CN (2004) Microbial production of tannase: an enzyme with potential use in food industry. Food Science and Technology 37:857–864
Belur PD, Mugeraya G (2011) Microbial production of tannase: state of the art. Res J Microbiol 6(1):25–40 DOI
Beniwal et al (2013) Production of tannase through solid state fermentation using Indian Rosewood (Dalbergia sissoo) sawdust—a timber industry waste. Ann Microbiol 63:583–590 DOI
Beverini M, Metche M (1990) Identification, purification and physiochemical properties of tannase of Aspergillus oryzae. Sci Des Aliments 10:807–816
Box GEP, Wilson KB (1951) On the experimental attainment of optimal conditions. J Roy Stat 13:1–45 DOI
Bradoo S, Gupta R, Saxena R (1996) Screening of extracellular tannase-producing fungi: development of a rapid simple plate assay. J Gen App Microbiol 42:325–329 DOI
Chávez-González M, Rodríguez-Durán LV, Balagurusamy N, Prado-Barragán A, Rodríguez R, Contreras JC, Aguilar CN (2012) Biotechnological advances and challenges of tannase: an overview. Food and Bioprocess Technol 5:445–459 DOI
Coman G, Bahrim G (2011) Optimization of xylanase production by streptomyces sp. using response surface methodology and central composite design. Ann Microbiol 61:773–779 PubMed DOI PMC
Costa AM, Ribeiro WX, Kato E, Monteiro ARG, Peralta RM (2008) Production of tannase by Aspergillus tamarii in submerged cultures. Braz Arch Biol Technol 51(2):399–404 DOI
Davis BJ (1964) Disc electrophoresis–II method and application to human serum proteins. Ann N Y Acad Sci 121:404–427 PubMed DOI
de Melo AG, Souza da Costa PN, Maia da Costa N, Thomas AB, da Silva LBR, Batista LR, Ferreira RL, Cardoso PG (2013) Screening and identification of tannase-producing fungi isolated from Brazilian caves. African J Microbiol Res 7:483–487
Deschamps AM, Otuk G, Lebeault JM (1983) Production of tannase and degradation of chestnut tannin by bacteria. J Fermentation Technol 61:55–59
Dhiman S, Mukherjee G, Kumar A, Majumdar RS (2021) Enhanced production of tannase through RSM by Bacillus haynesii SSRY4 MN031245 under submerged fermentation. J Sci Ind Res 80:675–680
Felsenstein J (1985) Phylogenies and comparative method. Am Nat 125:1–15 DOI
Gaikaiwari RP, Wagh SA, Kulkarni BD (2012) Extraction and purification of tannase by reverse micelle system. Sep Purif Technol 89:288–296 DOI
Gayen S, Ghosh U (2013) Purification and characterization of tannase produced by mixed solid-state fermentation of wheat bran and marigold flower by Penicillium notatum NCIM 923. Biomed Res Int:1–6
Gopi K, Jayaprakashvel M (2017) Dye degrading potential of laccase and tannase from endophytic fungi. Res J Pharm Technol 10(11):4108–4110 DOI
Hamada A, Abou Bakr Malak A, El Sahn Amr A, El Banna (2013) Screening of tannase-producing fungi isolated from tannin-rich sources. Int J Agric Food Res 2:1–12
Hankin L, Anagnostakis SL (1975) The use of solid media for detection of enzyme production by fungi. Mycologia 67:597–607 DOI
Hankin L, Zucker M, Sands DC (1971) Improved solid medium for the detection and enumeration of pectolytic bacteria. App Microbiol 22:205–209 DOI
Hatamoto O, Watarai T, Kikuchi M, Mizusawa K, Sekine H (1996) Cloning and sequencing of the gene encoding tannase and a structural study of the tannase subunit from Aspergillus oryzae. Gene 175(1–2):215–221 PubMed DOI
Ire F, Nwanguma A (2020) Comparative evaluation on tannase production by Lasiodiplodia plurivora ACN-10 under submerged fermentation (SmF) and solid-state fermentation (SSF). Asian J Biotechnol Bioresour Technol 6(1):39–49 DOI
Jana A, Maity C, Halder SK, Mondal KC, Pati BR, Mohapatra PKD (2013) Enhanced tannase production by Bacillus subtilis PAB2 with concomitant antioxidant production. Biocatal Agric Biotechnol 2:363–371 DOI
Jana A, Halder SK, Baneerjee A, Paul T, Pati BR, Mondal K, Mohapatra, PKD (2014) Biosynthesis, structural architecture and biotechnological potential of bacterial tannase: a molecular advancement. Bioresour Technol 157:327–340
Joshi S, Basalingappa K, Prasad N (2020) Isolation and screening of tannase producing fungi. Int J Inn Biochem Sci 13:104–108
Kachouri S, Halouli S, Lomascolo A, Asther M, Hamadi M (2005) Decolorization of black oxidized olive – mill wastewater by a new tannase-producing Aspergillus flavus strain isolated from soil. World J Microbiol Biotechnol 21:1465–1470 DOI
Kamal IM, Abdeltawab NF, Ragab YM, Farag MA, Ramadan MA (2022) Biodegradation, decolorization, and detoxification of di-azo dye direct red 81 by halotolerant, alkali-thermo-tolerant bacterial mixed cultures. Microorganisms 10(5):994 PubMed DOI PMC
Kasieczka-Burnecka M, Kuc K, Kalinowska K, Turkiewicz M (2007) Purification and characterization of two cold adapted extracellular tannin acyl hydrolases from an Antarctic strain Verticillium sp P9. App Microbiol Biotechnol 77:77–89 DOI
Kumar R, Sharma J, Singh R (2007) Production of tannase from Aspergillus ruber under solid state fermentation using jamun (Syzygium cumini) leaves. Microbiol Res 162:384–390 PubMed DOI
Kumar M, Rana S, Beniwal V, Salar RK (2015) Optimization of tannase production by a novel Klebsiella pneumonia KP715242 using central composite designs. Biotechnol Rep 7:128–134 DOI
Laemmlli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 DOI
Lal D, Gardner JJ (2012) Production characterization and purification of tannase from Aspergillus niger. Euro J Exp Biol 2(5):1430–1438
Lekha PK, Lonsane BK (1994) Comparative titres, location and properties of tannin acyl hydrolase produced by Aspergillus niger PKL 104 in solid state, liquid surface and submerged fermentations. Process Biochem 29:497–503 DOI
Lekha PK, Lonsane BK (1997) Production and application of tannin acylhydrolase: state of the art. Adv App Microbiol 44:215–260 DOI
Lekshmi et al (2020) Pomegranate peel is a low-cost substrate for the production of tannase by Bacillus velezensis TA3 under solid-state fermentation. J King Saud Univ Sci 32:1831–1837 DOI
Lekshmi R, Arif Nisha S, Thirumalai Vasan P, Kaleeswaran B (2021) A comprehensive review on tannase: Microbes associated production of tannase exploiting tannin rich agro-industrial wastes with special reference to its potential environmental and industrial applications. Environ Res 201:111625 PubMed DOI
Madhavakrishna W, Bose SM, Nayudamma Y (1960) Estimation of tannase and certain oxidizing enzymes Indian vegetables tanstuffs. Bull Cent Leather Res Inst 7:1–11
Mahapatra K, Nanda RK, Bag SS, Banerjee R, Pandey A, Szakacs G (2005) Purification characterization and some studies on secondary structure of tannase from Aspergillus awamori nakazawa. Process Biochem 40:3251–3254 DOI
Mukherjee G, Banerjee R (2004) Biosynthesis of tannase and gallic acid from tannin rich substrates by Rhizopus oryzae and Aspergillus foetidus. J Basic Microbiol 44:42–48 PubMed DOI
Naidu RB, Saisubramanian N, Sivasubramanian S, Selvakumar D, Janardhanan S, Puvanakrishnan R (2008) Optimization of tannase production from Aspergillus foetidus using by statistical design methods. Curr T Biotechnol Pharm 2:523–530
Paranthaman R, Vidyalakshmi R, Murugesh S, Singaravadimel K (2008) Optimization of fermentation condition for production of tannase enzyme by Aspergillus oryzae using sugarcane bagasse and rice rice straw. Global J Biotechnol Biochem 3(2):105–110
Paranthaman R, Vidyalakshmi R, Alagusundaram K (2009) Production of tannase from flues milling by products using solid state fermentation. Acad J Plant Sci 2(3):124–127
Paranthaman R, Murgesh S, Singharavadivel K (2010) Bioprocessing of paddy straw for the production and purification of gallic acid using Penicillium chrysogenum. Electro J Environ Agric Food Chem 9(9):14
Philip DC, Lavanya B, Latha S (2015) Purification of tannase from Aspergillus niger under solid-state fermentation. World J Pharm Pharm Sci 4:993–1001
Pinto GAS, Laaite SGF, Terzi SC, Couri S (2001) Selection of tannase-producing Aspergillus niger strains. Brazilian J Microbiol 32:24–26 DOI
Raaman N, Mahendran B, Jaganathan C, Sukumar S, Chandrasekaran V (2010) Optimization of extracellular tannase production from Paecilomyces variotii. World J Microbiol Biotechnol 26:1033–1039 DOI
Raghuwanshi S, Dutt K, Gupta P, Misra S, Saxena RK (2011) Bacillus sphaericus: the highest bacterial tannase producer with potential for gallic acid synthesis. J Biosci Bioeng 111:635–640 PubMed DOI
Ramírez-Coronel MA, Viniegra GG, Darvill A, Augur C (2003) A novel tannase from Aspergillus niger with beta-glucosidase activity. Microbiol 149:2941–2946 DOI
Rodríguez-Durán LV, Contreras-Esquivel JC, Rodríguez R, Prado-Barragán A, Aguilar CN (2011) Optimization of tannase production by Aspergillus niger in solid-state packed-bed bioreactor. J Microbiol Biotechnol 21:960–967 PubMed DOI
Rout S, Banerjee R (2006) Production of tannase under mSSF and its application in fruit juice debittering. Indian J Biotechnol 5:346–350
Sabu A, Pandey A, Daud MJ, Szakac C (2005) Tamarind seed powder and palm kernel cake: two novel agro residues for production of tannase under solid state fermentation by Aspergillus niger ATCC16620. Bioresour Technol 96:1223–1228 PubMed DOI
Sharma S, Bhat TK, Dawra RK (2000) A spectrophotometric method for assay of tannase using rhodanine. Ann Biochem 278:85–89 DOI
Sivashanmugam K, Jayaraman G (2011) Production and partial purification of extra-cellular tannase by Klebsiella pneumoniae MTCC 7162 isolated from tannery effluent. African J Biotechnol 10:1364–1374
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Bio Evol 28(10):2731–2739 DOI
Thakur N, Nath AK (2016) Possible applications of tannase from Penicillium crustosum AN 3. J Env Bio-Sci 30(1):519–522
Thakur N, Nath AK (2017a) Detection and production of gallic acid from novel fungal strain- Penicillium crustosum AN3 KJ820682. Curr T Biotechnol Pharm 11(1):60–66
Thakur N, Nath AK (2017b) Isolation of tannase-producing bacteria from small ruminants. Indian J Small Rumin 23(2):264–266 DOI
Wang D, Xu Y, Shan T (2008) Effects of oils and oil-related substrates on the synthetic activity of membrane-bound lipase from Rhizopus chinensis and optimization of the lipase fermentation media. Biochem Eng J 41(1):30–37 DOI
Yamada H, Adachi O, Watanabe M, Sato N (1968) Studies on fungal tannase. part I: formation, purification and catalytic properties of tannase of Aspergillus flavus. Agric Biol Chem 32:1070–1078
Zarate PA, Hernandez MAC, Montanez JC, Cerada REB, Aguilar CN (2014) Bacterial tannases: production, properties and applications. Rev Mex Ing Quim 13(1):63–74