Microbially conjugated bile salts found in human bile activate the bile salt receptors TGR5 and FXR
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem, komentáře
PubMed
38517202
PubMed Central
PMC10962891
DOI
10.1097/hc9.0000000000000383
PII: 02009842-202404010-00013
Knihovny.cz E-zdroje
- MeSH
- játra metabolismus MeSH
- lidé MeSH
- receptory cytoplazmatické a nukleární * metabolismus MeSH
- receptory spřažené s G-proteiny * metabolismus MeSH
- transkripční faktory MeSH
- žluč chemie MeSH
- žlučové kyseliny a soli * farmakologie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- komentáře MeSH
- práce podpořená grantem MeSH
- Názvy látek
- farnesoid X-activated receptor MeSH Prohlížeč
- GPBAR1 protein, human MeSH Prohlížeč
- receptory cytoplazmatické a nukleární * MeSH
- receptory spřažené s G-proteiny * MeSH
- transkripční faktory MeSH
- žlučové kyseliny a soli * MeSH
BACKGROUND: Bile salts of hepatic and microbial origin mediate interorgan cross talk in the gut-liver axis. Here, we assessed whether the newly discovered class of microbial bile salt conjugates (MBSCs) activate the main host bile salt receptors (Takeda G protein-coupled receptor 5 [TGR5] and farnesoid X receptor [FXR]) and enter the human systemic and enterohepatic circulation. METHODS: N-amidates of (chenodeoxy) cholic acid and leucine, tyrosine, and phenylalanine were synthesized. Receptor activation was studied in cell-free and cell-based assays. MBSCs were quantified in mesenteric and portal blood and bile of patients undergoing pancreatic surgery. RESULTS: MBSCs were activating ligands of TGR5 as evidenced by recruitment of Gsα protein, activation of a cAMP-driven reporter, and diminution of lipopolysaccharide-induced cytokine release from macrophages. Intestine-enriched and liver-enriched FXR isoforms were both activated by MBSCs, provided that a bile salt importer was present. The affinity of MBSCs for TGR5 and FXR was not superior to host-derived bile salt conjugates. Individual MBSCs were generally not detected (ie, < 2.5 nmol/L) in human mesenteric or portal blood, but Leu-variant and Phe-variant were readily measurable in bile, where MBSCs comprised up to 213 ppm of biliary bile salts. CONCLUSIONS: MBSCs activate the cell surface receptor TGR5 and the transcription factor FXR and are substrates for intestinal (apical sodium-dependent bile acid transporter) and hepatic (Na+ taurocholate co-transporting protein) transporters. Their entry into the human circulation is, however, nonsubstantial. Given low systemic levels and a surplus of other equipotent bile salt species, the studied MBSCs are unlikely to have an impact on enterohepatic TGR5/FXR signaling in humans. The origin and function of biliary MBSCs remain to be determined.
Department of General Visceral and Transplant Surgery University Hospital Aachen Aachen Germany
Institute of Organic Chemistry RWTH Aachen University Aachen Germany
Zobrazit více v PubMed
Hofmann AF. Bile acids: Trying to understand their chemistry and biology with the hope of helping patients. Hepatology. 2009;49:1403–1418. PubMed
Arab JP, Karpen SJ, Dawson PA, Arrese M, Trauner M. Bile acids and nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives. Hepatology. 2017;65:350–362. PubMed PMC
Fickert P, Wagner M. Biliary bile acids in hepatobiliary injury - What is the link? J Hepatol. 2017;67:619–631. PubMed
Fuchs CD, Trauner M. Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat Rev Gastroenterol Hepatol. 2022;19:432–450. PubMed
Jansen PL, Ghallab A, Vartak N, Reif R, Schaap FG, Hampe J, et al. . The ascending pathophysiology of cholestatic liver disease. Hepatology. 2017;65:722–738. PubMed
Albillos A, de Gottardi A, Rescigno M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J Hepatol. 2020;72:558–577. PubMed
Pabst O, Hornef MW, Schaap FG, Cerovic V, Clavel T, Bruns T. Gut-liver axis: Barriers and functional circuits. Nat Rev Gastroenterol Hepatol. 2023;20:447–461. PubMed
Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin Gastroenterol. 2014;30:332–338. PubMed PMC
Campbell C, McKenney PT, Konstantinovsky D, Isaeva OI, Schizas M, Verter J, et al. . Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature. 2020;581:475–479. PubMed PMC
Hang S, Paik D, Yao L, Kim E, Trinath J, Lu J, et al. . Bile acid metabolites control T(H)17 and T(reg) cell differentiation. Nature. 2019;576:143–148. PubMed PMC
Song X, Sun X, Oh SF, Wu M, Zhang Y, Zheng W, et al. . Microbial bile acid metabolites modulate gut RORγ(+) regulatory T cell homeostasis. Nature. 2020;577:410–415. PubMed PMC
Quinn RA, Melnik AV, Vrbanac A, Fu T, Patras KA, Christy MP, et al. . Global chemical effects of the microbiome include new bile-acid conjugations. Nature. 2020;579:123–129. PubMed PMC
Hofmann AF, Hagey LR. Key discoveries in bile acid chemistry and biology and their clinical applications: History of the last eight decades. J Lipid Res. 2014;55:1553–1595. PubMed PMC
Foley MH, Walker ME, Stewart AK, O’Flaherty S, Gentry EC, Patel S, et al. . Bile salt hydrolases shape the bile acid landscape and restrict Clostridioides difficile growth in the murine gut. Nat Microbiol. 2023;8:611–628. PubMed PMC
Lucas LN, Barrett K, Kerby RL, Zhang Q, Cattaneo LE, Stevenson D, et al. . Dominant Bacterial Phyla from the human gut show widespread ability to transform and conjugate bile acids. mSystems. 2021;6:e0080521. PubMed
Wang YZ, Mei PC, Bai PR, An N, He JG, Wang J, et al. . A strategy for screening and identification of new amino acid-conjugated bile acids with high coverage by liquid chromatography-mass spectrometry. Anal Chim Acta. 2023;1239:340691. PubMed
Pedersen KJ, Haange SB, Žížalová K, Viehof A, Clavel T, Leniček M, et al. . Eggerthella lenta DSM 2243 Alleviates Bile Acid Stress Response in Clostridium ramosum and Anaerostipes caccae by Transformation of Bile Acids. Microorganisms. 2022;10:2025. PubMed PMC
Ay Ü, Leníček M, Classen A, Olde Damink SWM, Bolm C, Schaap FG. New Kids on the block: Bile salt conjugates of microbial origin. Metabolites. 2022;12:176. PubMed PMC
Guzior DV, Quinn RA. Review: microbial transformations of human bile acids. Microbiome. 2021;9:140. PubMed PMC
Zeng J, Fan J, Zhou H. Bile acid-mediated signaling in cholestatic liver diseases. Cell Biosci. 2023;13:77. PubMed PMC
Koelfat KVK, Picot D, Chang X, Desille-Dugast M, van Eijk HM, van Kuijk SMJ, et al. . Chyme reinfusion restores the regulatory bile salt-FGF19 Axis in patients with intestinal failure. Hepatology. 2021;74:2670–2683. PubMed PMC
Ramos Pittol JM, Milona A, Morris I, Willemsen ECL, van der Veen SW, Kalkhoven E, et al. . FXR isoforms control different metabolic functions in liver cells via binding to specific DNA motifs. Gastroenterology. 2020;159:1853–1865.e1810. PubMed
Leonhardt J, Haider RS, Sponholz C, Leonhardt S, Drube J, Spengler K, et al. . Circulating bile acids in liver failure activate TGR5 and induce monocyte dysfunction. Cell Mol Gastroenterol Hepatol. 2021;12:25–40. PubMed PMC
Wan Q, Okashah N, Inoue A, Nehmé R, Carpenter B, Tate CG, et al. . Mini G protein probes for active G protein-coupled receptors (GPCRs) in live cells. J Biol Chem. 2018;293:7466–7473. PubMed PMC
García-Cañaveras JC, Donato MT, Castell JV, Lahoz A. Targeted profiling of circulating and hepatic bile acids in human, mouse, and rat using a UPLC-MRM-MS-validated method. J Lipid Res. 2012;53:2231–2241. PubMed PMC
Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M, et al. . A G protein-coupled receptor responsive to bile acids. J Biol Chem. 2003;278:9435–9440. PubMed
Nakhi A, McDermott CM, Stoltz KL, John K, Hawkinson JE, Ambrose EA, et al. . 7-Methylation of chenodeoxycholic acid derivatives yields a substantial increase in TGR5 receptor potency. J Med Chem. 2019;62:6824–6830. PubMed
Keitel V, Stindt J, Häussinger D. Bile acid-activated receptors: GPBAR1 (TGR5) and other G protein-coupled receptors. Handb Exp Pharmacol. 2019;256:19–49. PubMed
Pols TW, Nomura M, Harach T, Lo Sasso G, Oosterveer MH, Thomas C, et al. . TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab. 2011;14:747–757. PubMed PMC
Karababa A, Groos-Sahr K, Albrecht U, Keitel V, Shafigullina A, Görg B, et al. . Ammonia Attenuates LPS-induced upregulation of pro-inflammatory cytokine mRNA in co-cultured astrocytes and microglia. Neurochem Res. 2017;42:737–749. PubMed
Dawson PA, Lan T, Rao A. Bile acid transporters. J Lipid Res. 2009;50:2340–2357. PubMed PMC
Gentry EC, Collins SL, Panitchpakdi M, Belda-Ferre P, Stewart AK, Carrillo-Terrazas M, et al. . Reverse metabolomics for the discovery of chemical structures from humans. Nature. 2024;629:419–426. PubMed PMC
Rimal B, Collins SL, Tanes CE, Rocha ER, Granda MA, Solanki S, et al. . Bile salt hydrolase catalyses formation of amine-conjugated bile acids. Nature. 2024. (doi:10.1038/s41586-023-06990-w). PubMed DOI PMC
Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, et al. . Bile acids: Natural ligands for an orphan nuclear receptor. Science. 1999;284:1365–1368. PubMed
Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell. 1999;3:543–553. PubMed
Folz J, Culver RN, Morales JM, Grembi J, Triadafilopoulos G, Relman DA, et al. . Human metabolome variation along the upper intestinal tract. Nat Metab. 2023;5:777–788. PubMed PMC
Neugebauer KA, Okros M, Guzior DV, Feiner J, Chargo NJ, Rzepka M, et al. . Baat gene knockout alters post-natal development, the gut microbiome, and reveals unusual bile acids in mice. J Lipid Res. 2022;63:100297. PubMed PMC
Shalon D, Culver RN, Grembi JA, Folz J, Treit PV, Shi H, et al. . Profiling the human intestinal environment under physiological conditions. Nature. 2023;617:581–591. PubMed PMC
Suga T, Yamaguchi H, Ogura J, Mano N. Characterization of conjugated and unconjugated bile acid transport via human organic solute transporter α/β. Biochim Biophys Acta Biomembr. 2019;1861:1023–1029. PubMed
Sweeny DJ, Daher G, Barnes S, Diasio RB. Biological properties of the 2-fluoro-beta-alanine conjugates of cholic acid and chenodeoxycholic acid in the isolated perfused rat liver. Biochim Biophys Acta. 1990;1054:21–25. PubMed
Myher JJ, Marai L, Kuksis A, Yousef IM, Fisher MM. Identification of ornithine and arginine conjugates of cholic acid by mass spectrometry. Can J Biochem. 1975;53:583–590. PubMed
Florén CH, Nilsson A. Binding of bile salts to fibre-enriched wheat bran. Hum Nutr Clin Nutr. 1982;36:381–390. PubMed
Begley M, Gahan CG, Hill C. The interaction between bacteria and bile. FEMS Microbiol Rev. 2005;29:625–651. PubMed