New Kids on the Block: Bile Salt Conjugates of Microbial Origin
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Project-ID 403224013 - SFB 1382
Deutsche Forschungsgemeinschaft
PubMed
35208250
PubMed Central
PMC8876647
DOI
10.3390/metabo12020176
PII: metabo12020176
Knihovny.cz E-zdroje
- Klíčová slova
- bile salt receptor, bile salt signaling, bile salts, gut microbiota, microbial metabolites,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Biotransformation of host bile salts by gut microbes results in generation of secondary bile salt species that have biological and physicochemical properties that are distinct from the parent compounds. There is increased awareness that a bile salt-gut microbiome axis modulates various processes in the host, including innate and adaptive immunity, by interaction of microbial bile salt metabolites with host receptors. Omics and targeted approaches have vastly expanded the number and repertoire of secondary bile salt species. A new class of microbial bile salt metabolites was reported in 2020 and comprises bile salts that are conjugated by microbial enzymes. Amino acids other than those employed by host enzymes (glycine and taurine) are used as substrates in the formation of these microbial bile salt conjugates (MBSCs). Leucocholic acid, phenylalanocholic acid and tyrosocholic acid were the first MBSCs identified in mice and humans. The number of distinct MBSCs is now approaching 50, with variation both at the level of bile salt and amino acid employed for conjugation. Evidence is emerging that MBSC generation is a common feature of human gut bacteria, and initial links with disease states have been reported. In this review, we discuss this intriguing new class of secondary bile salts, with yet enigmatic function.
Zobrazit více v PubMed
Hofmann A.F. Biliary secretion and excretion in health and disease: Current concepts. Ann. Hepatol. 2007;6:15–27. doi: 10.1016/S1665-2681(19)31949-0. PubMed DOI
Russell D.W. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 2003;72:137–174. doi: 10.1146/annurev.biochem.72.121801.161712. PubMed DOI
Philipp B. Bacterial degradation of bile salts. Appl. Microbiol. Biotechnol. 2011;89:903–915. doi: 10.1007/s00253-010-2998-0. PubMed DOI
Hofmann A.F., Hagey L.R., Krasowski M.D. Bile salts of vertebrates: Structural variation and possible evolutionary significance. J. Lipid Res. 2010;51:226–246. doi: 10.1194/jlr.R000042. PubMed DOI PMC
Huijghebaert S.M., Hofmann A.F. Pancreatic carboxypeptidase hydrolysis of bile acid-amino conjugates: Selective resistance of glycine and taurine amidates. Gastroenterology. 1986;90:306–315. doi: 10.1016/0016-5085(86)90925-X. PubMed DOI
Ridlon J.M., Harris S.C., Bhowmik S., Kang D.J., Hylemon P.B. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes. 2016;7:22–39. doi: 10.1080/19490976.2015.1127483. PubMed DOI PMC
Hofmann A.F., Roda A. Physicochemical properties of bile acids and their relationship to biological properties: An overview of the problem. J. Lipid Res. 1984;25:1477–1489. doi: 10.1016/S0022-2275(20)34421-7. PubMed DOI
Ridlon J.M., Kang D.J., Hylemon P.B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 2006;47:241–259. doi: 10.1194/jlr.R500013-JLR200. PubMed DOI
Quinn R.A., Melnik A.V., Vrbanac A., Fu T., Patras K.A., Christy M.P., Bodai Z., Belda-Ferre P., Tripathi A., Chung L.K., et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature. 2020;579:123–129. doi: 10.1038/s41586-020-2047-9. PubMed DOI PMC
Lucas L.N., Barrett K., Kerby R.L., Zhang Q., Cattaneo L.E., Stevenson D., Rey F.E., Amador-Noguez D. Dominant Bacterial Phyla from the Human Gut Show Widespread Ability to Transform and Conjugate Bile Acids. mSystems. 2021;6:e0080521. doi: 10.1128/mSystems.00805-21. PubMed DOI
Mallonee D.H., Hylemon P.B. Sequencing and expression of a gene encoding a bile acid transporter from Eubacterium sp. strain VPI 12708. J. Bacteriol. 1996;178:7053–7058. doi: 10.1128/jb.178.24.7053-7058.1996. PubMed DOI PMC
Dawson P.A. Bile Formation and the Enterohepatic Circulation. In: Said H.M., editor. Physiology of the Gastrointestinal Tract. 6th ed. Academic Press; Cambridge, MA, USA: 2018.
Sun A.Q., Balasubramaniyan N., Chen H., Shahid M., Suchy F.J. Identification of functionally relevant residues of the rat ileal apical sodium-dependent bile acid cotransporter. J. Biol. Chem. 2006;281:16410–16418. doi: 10.1074/jbc.M600034200. PubMed DOI
Chen F., Ma L., Dawson P.A., Sinal C.J., Sehayek E., Gonzalez F.J., Breslow J., Ananthanarayanan M., Shneider B.L. Liver receptor homologue-1 mediates species- and cell line-specific bile acid-dependent negative feedback regulation of the apical sodium-dependent bile acid transporter. J. Biol. Chem. 2003;278:19909–19916. doi: 10.1074/jbc.M207903200. PubMed DOI
Lack L., Weiner I.M. Intestinal bile salt transport: Structure-activity relationships and other properties. Am. J. Physiol. 1966;210:1142–1152. doi: 10.1152/ajplegacy.1966.210.5.1142. PubMed DOI
Chopyk D.M., Grakoui A. Contribution of the Intestinal Microbiome and Gut Barrier to Hepatic Disorders. Gastroenterology. 2020;159:849–863. doi: 10.1053/j.gastro.2020.04.077. PubMed DOI PMC
Dawson P.A., Hubbert M.L., Rao A. Getting the mOST from OST: Role of organic solute transporter, OSTalpha-OSTbeta, in bile acid and steroid metabolism. Biochim. Biophys. Acta. 2010;1801:994–1004. doi: 10.1016/j.bbalip.2010.06.002. PubMed DOI PMC
Anwer M.S., O’Maille E.R., Hofmann A.F., DiPietro R.A., Michelotti E. Influence of side-chain charge on hepatic transport of bile acids and bile acid analogues. Am. J. Physiol. 1985;249:G479–G488. doi: 10.1152/ajpgi.1985.249.4.G479. PubMed DOI
Stieger B., Meier Y., Meier P.J. The bile salt export pump. Pflügers Arch.-Eur. J. Physiol. 2007;453:611–620. doi: 10.1007/s00424-006-0152-8. PubMed DOI
Heuman D.M., Pandak W.M., Hylemon P.B., Vlahcevic Z.R. Conjugates of ursodeoxycholate protect against cytotoxicity of more hydrophobic bile salts: In vitro studies in rat hepatocytes and human erythrocytes. Hepatology. 1991;14:920–926. doi: 10.1002/hep.1840140527. PubMed DOI
Kawamata Y., Fujii R., Hosoya M., Harada M., Yoshida H., Miwa M., Fukusumi S., Habata Y., Itoh T., Shintani Y., et al. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 2003;278:9435–9440. doi: 10.1074/jbc.M209706200. PubMed DOI
Maruyama T., Miyamoto Y., Nakamura T., Tamai Y., Okada H., Sugiyama E., Nakamura T., Itadani H., Tanaka K. Identification of membrane-type receptor for bile acids (M-BAR) Biochem. Biophys. Res. Commun. 2002;298:714–719. doi: 10.1016/S0006-291X(02)02550-0. PubMed DOI
Reich M., Klindt C., Deutschmann K., Spomer L., Häussinger D., Keitel V. Role of the G Protein-Coupled Bile Acid Receptor TGR5 in Liver Damage. Dig. Dis. 2017;35:235–240. doi: 10.1159/000450917. PubMed DOI
Chaudhari S.N., Harris D.A., Aliakbarian H., Luo J.N., Henke M.T., Subramaniam R., Vernon A.H., Tavakkoli A., Sheu E.G., Devlin A.S. Bariatric surgery reveals a gut-restricted TGR5 agonist with anti-diabetic effects. Nat. Chem. Biol. 2021;17:20–29. doi: 10.1038/s41589-020-0604-z. PubMed DOI PMC
Sato H., Macchiarulo A., Thomas C., Gioiello A., Une M., Hofmann A.F., Saladin R., Schoonjans K., Pellicciari R., Auwerx J. Novel potent and selective bile acid derivatives as TGR5 agonists: Biological screening, structure-activity relationships, and molecular modeling studies. J. Med. Chem. 2008;51:1831–1841. doi: 10.1021/jm7015864. PubMed DOI
Zhang L., Huang X., Meng Z., Dong B., Shiah S., Moore D.D., Huang W. Significance and Mechanism of CYP7a1 Gene Regulation during the Acute Phase of Liver Regeneration. Mol. Endocrinol. 2009;23:137–145. doi: 10.1210/me.2008-0198. PubMed DOI PMC
Raufman J.-P., Cheng K., Zimniak P. REVIEW: Activation of Muscarinic Receptor Signaling by Bile Acids: Physiological and Medical Implications. Dig. Dis. Sci. 2003;48:1431–1444. doi: 10.1023/A:1024733500950. PubMed DOI
Farhana L., Nangia-Makker P., Arbit E., Shango K., Sarkar S., Mahmud H., Hadden T., Yu Y., Majumdar A.P.N. Bile acid: A potential inducer of colon cancer stem cells. Stem Cell Res. Ther. 2016;7:181. doi: 10.1186/s13287-016-0439-4. PubMed DOI PMC
Nagahashi M., Yuza K., Hirose Y., Nakajima M., Ramanathan R., Hait N.C., Hylemon P.B., Zhou H., Takabe K., Wakai T. The roles of bile acids and sphingosine-1-phosphate signaling in the hepatobiliary diseases. J. Lipid Res. 2016;57:1636–1643. doi: 10.1194/jlr.R069286. PubMed DOI PMC
Keitel V., Stindt J., Häussinger D. Bile Acid-Activated Receptors: GPBAR1 (TGR5) and Other G Protein-Coupled Receptors. Handb. Exp. Pharmacol. 2019;256:19–49. doi: 10.1007/164_2019_230. PubMed DOI
Parks D.J., Blanchard S.G., Bledsoe R.K., Chandra G., Consler T.G., Kliewer S.A., Stimmel J.B., Willson T.M., Zavacki A.M., Moore D.D., et al. Bile acids: Natural ligands for an orphan nuclear receptor. Science. 1999;284:1365–1368. doi: 10.1126/science.284.5418.1365. PubMed DOI
Huang W., Ma K., Zhang J., Qatanani M., Cuvillier J., Liu J., Dong B., Huang X., Moore D.D. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration. Science. 2006;312:233–236. doi: 10.1126/science.1121435. PubMed DOI
Schaap F.G., Trauner M., Jansen P.L. Bile acid receptors as targets for drug development. Nat. Rev. Gastroenterol. Hepatol. 2014;11:55–67. doi: 10.1038/nrgastro.2013.151. PubMed DOI
Panzitt K., Wagner M. FXR in liver physiology: Multiple faces to regulate liver metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 2021;1867:166133. doi: 10.1016/j.bbadis.2021.166133. PubMed DOI
Hang S., Paik D., Yao L., Kim E., Trinath J., Lu J., Ha S., Nelson B.N., Kelly S.P., Wu L., et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature. 2019;576:143–148. doi: 10.1038/s41586-019-1785-z. PubMed DOI PMC
Song C., Hiipakka R.A., Liao S. Selective activation of liver X receptor alpha by 6alpha-hydroxy bile acids and analogs. Steroids. 2000;65:423–427. doi: 10.1016/S0039-128X(00)00127-6. PubMed DOI
De Marino S., Carino A., Masullo D., Finamore C., Marchiano S., Cipriani S., Di Leva F.S., Catalanotti B., Novellino E., Limongelli V., et al. Hyodeoxycholic acid derivatives as liver X receptor alpha and G-protein-coupled bile acid receptor agonists. Sci. Rep. 2017;7:43290. doi: 10.1038/srep43290. PubMed DOI PMC
Sun L., Cai J., Gonzalez F.J. The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 2021;18:335–347. doi: 10.1038/s41575-020-00404-2. PubMed DOI
Hollman D.A., Milona A., van Erpecum K.J., van Mil S.W. Anti-inflammatory and metabolic actions of FXR: Insights into molecular mechanisms. Biochim. Biophys. Acta. 2012;1821:1443–1452. doi: 10.1016/j.bbalip.2012.07.004. PubMed DOI
Perez M.J., Briz O. Bile-acid-induced cell injury and protection. World J. Gastroenterol. 2009;15:1677–1689. doi: 10.3748/wjg.15.1677. PubMed DOI PMC
Lloyd-Price J., Arze C., Ananthakrishnan A.N., Schirmer M., Avila-Pacheco J., Poon T.W., Andrews E., Ajami N.J., Bonham K.S., Brislawn C.J., et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569:655–662. doi: 10.1038/s41586-019-1237-9. PubMed DOI PMC
Koelfat K.V.K., Picot D., Chang X., Desille-Dugast M., van Eijk H.M., van Kuijk S.M.J., Lenicek M., Layec S., Carsin M., Dussaulx L., et al. Chyme Reinfusion Restores the Regulatory Bile Salt-FGF19 Axis in Patients with Intestinal Failure. Hepatology. 2021;74:2670–2683. doi: 10.1002/hep.32017. PubMed DOI PMC
Florén C.H., Nilsson A. Binding of bile salts to fibre-enriched wheat bran. Hum. Nutr Clin. Nutr. 1982;36:381–390. PubMed
Begley M., Gahan C.G., Hill C. The interaction between bacteria and bile. FEMS Microbiol. Rev. 2005;29:625–651. doi: 10.1016/j.femsre.2004.09.003. PubMed DOI
Jones B.V., Begley M., Hill C., Gahan C.G., Marchesi J.R. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl. Acad. Sci. USA. 2008;105:13580–13585. doi: 10.1073/pnas.0804437105. PubMed DOI PMC
Barrasa J.I., Olmo N., Lizarbe M.A., Turnay J. Bile acids in the colon, from healthy to cytotoxic molecules. Toxicol. Vitr. 2013;27:964–977. doi: 10.1016/j.tiv.2012.12.020. PubMed DOI
Batta A.K., Salen G., Arora R., Shefer S., Batta M., Person A. Side chain conjugation prevents bacterial 7-dehydroxylation of bile acids. J. Biol. Chem. 1990;265:10925–10928. doi: 10.1016/S0021-9258(19)38535-7. PubMed DOI
Marion S., Desharnais L., Studer N., Dong Y., Notter M.D., Poudel S., Menin L., Janowczyk A., Hettich R.L., Hapfelmeier S., et al. Biogeography of microbial bile acid transformations along the murine gut. J. Lipid Res. 2020;61:1450–1463. doi: 10.1194/jlr.RA120001021. PubMed DOI PMC
Gadaleta R.M., van Erpecum K.J., Oldenburg B., Willemsen E.C., Renooij W., Murzilli S., Klomp L.W., Siersema P.D., Schipper M.E., Danese S., et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut. 2011;60:463–472. doi: 10.1136/gut.2010.212159. PubMed DOI
Sato Y., Atarashi K., Plichta D.R., Arai Y., Sasajima S., Kearney S.M., Suda W., Takeshita K., Sasaki T., Okamoto S., et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature. 2021;599:458–464. doi: 10.1038/s41586-021-03832-5. PubMed DOI
Microbially conjugated bile salts found in human bile activate the bile salt receptors TGR5 and FXR