New Kids on the Block: Bile Salt Conjugates of Microbial Origin

. 2022 Feb 13 ; 12 (2) : . [epub] 20220213

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35208250

Grantová podpora
Project-ID 403224013 - SFB 1382 Deutsche Forschungsgemeinschaft

Biotransformation of host bile salts by gut microbes results in generation of secondary bile salt species that have biological and physicochemical properties that are distinct from the parent compounds. There is increased awareness that a bile salt-gut microbiome axis modulates various processes in the host, including innate and adaptive immunity, by interaction of microbial bile salt metabolites with host receptors. Omics and targeted approaches have vastly expanded the number and repertoire of secondary bile salt species. A new class of microbial bile salt metabolites was reported in 2020 and comprises bile salts that are conjugated by microbial enzymes. Amino acids other than those employed by host enzymes (glycine and taurine) are used as substrates in the formation of these microbial bile salt conjugates (MBSCs). Leucocholic acid, phenylalanocholic acid and tyrosocholic acid were the first MBSCs identified in mice and humans. The number of distinct MBSCs is now approaching 50, with variation both at the level of bile salt and amino acid employed for conjugation. Evidence is emerging that MBSC generation is a common feature of human gut bacteria, and initial links with disease states have been reported. In this review, we discuss this intriguing new class of secondary bile salts, with yet enigmatic function.

Zobrazit více v PubMed

Hofmann A.F. Biliary secretion and excretion in health and disease: Current concepts. Ann. Hepatol. 2007;6:15–27. doi: 10.1016/S1665-2681(19)31949-0. PubMed DOI

Russell D.W. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 2003;72:137–174. doi: 10.1146/annurev.biochem.72.121801.161712. PubMed DOI

Philipp B. Bacterial degradation of bile salts. Appl. Microbiol. Biotechnol. 2011;89:903–915. doi: 10.1007/s00253-010-2998-0. PubMed DOI

Hofmann A.F., Hagey L.R., Krasowski M.D. Bile salts of vertebrates: Structural variation and possible evolutionary significance. J. Lipid Res. 2010;51:226–246. doi: 10.1194/jlr.R000042. PubMed DOI PMC

Huijghebaert S.M., Hofmann A.F. Pancreatic carboxypeptidase hydrolysis of bile acid-amino conjugates: Selective resistance of glycine and taurine amidates. Gastroenterology. 1986;90:306–315. doi: 10.1016/0016-5085(86)90925-X. PubMed DOI

Ridlon J.M., Harris S.C., Bhowmik S., Kang D.J., Hylemon P.B. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes. 2016;7:22–39. doi: 10.1080/19490976.2015.1127483. PubMed DOI PMC

Hofmann A.F., Roda A. Physicochemical properties of bile acids and their relationship to biological properties: An overview of the problem. J. Lipid Res. 1984;25:1477–1489. doi: 10.1016/S0022-2275(20)34421-7. PubMed DOI

Ridlon J.M., Kang D.J., Hylemon P.B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 2006;47:241–259. doi: 10.1194/jlr.R500013-JLR200. PubMed DOI

Quinn R.A., Melnik A.V., Vrbanac A., Fu T., Patras K.A., Christy M.P., Bodai Z., Belda-Ferre P., Tripathi A., Chung L.K., et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature. 2020;579:123–129. doi: 10.1038/s41586-020-2047-9. PubMed DOI PMC

Lucas L.N., Barrett K., Kerby R.L., Zhang Q., Cattaneo L.E., Stevenson D., Rey F.E., Amador-Noguez D. Dominant Bacterial Phyla from the Human Gut Show Widespread Ability to Transform and Conjugate Bile Acids. mSystems. 2021;6:e0080521. doi: 10.1128/mSystems.00805-21. PubMed DOI

Mallonee D.H., Hylemon P.B. Sequencing and expression of a gene encoding a bile acid transporter from Eubacterium sp. strain VPI 12708. J. Bacteriol. 1996;178:7053–7058. doi: 10.1128/jb.178.24.7053-7058.1996. PubMed DOI PMC

Dawson P.A. Bile Formation and the Enterohepatic Circulation. In: Said H.M., editor. Physiology of the Gastrointestinal Tract. 6th ed. Academic Press; Cambridge, MA, USA: 2018.

Sun A.Q., Balasubramaniyan N., Chen H., Shahid M., Suchy F.J. Identification of functionally relevant residues of the rat ileal apical sodium-dependent bile acid cotransporter. J. Biol. Chem. 2006;281:16410–16418. doi: 10.1074/jbc.M600034200. PubMed DOI

Chen F., Ma L., Dawson P.A., Sinal C.J., Sehayek E., Gonzalez F.J., Breslow J., Ananthanarayanan M., Shneider B.L. Liver receptor homologue-1 mediates species- and cell line-specific bile acid-dependent negative feedback regulation of the apical sodium-dependent bile acid transporter. J. Biol. Chem. 2003;278:19909–19916. doi: 10.1074/jbc.M207903200. PubMed DOI

Lack L., Weiner I.M. Intestinal bile salt transport: Structure-activity relationships and other properties. Am. J. Physiol. 1966;210:1142–1152. doi: 10.1152/ajplegacy.1966.210.5.1142. PubMed DOI

Chopyk D.M., Grakoui A. Contribution of the Intestinal Microbiome and Gut Barrier to Hepatic Disorders. Gastroenterology. 2020;159:849–863. doi: 10.1053/j.gastro.2020.04.077. PubMed DOI PMC

Dawson P.A., Hubbert M.L., Rao A. Getting the mOST from OST: Role of organic solute transporter, OSTalpha-OSTbeta, in bile acid and steroid metabolism. Biochim. Biophys. Acta. 2010;1801:994–1004. doi: 10.1016/j.bbalip.2010.06.002. PubMed DOI PMC

Anwer M.S., O’Maille E.R., Hofmann A.F., DiPietro R.A., Michelotti E. Influence of side-chain charge on hepatic transport of bile acids and bile acid analogues. Am. J. Physiol. 1985;249:G479–G488. doi: 10.1152/ajpgi.1985.249.4.G479. PubMed DOI

Stieger B., Meier Y., Meier P.J. The bile salt export pump. Pflügers Arch.-Eur. J. Physiol. 2007;453:611–620. doi: 10.1007/s00424-006-0152-8. PubMed DOI

Heuman D.M., Pandak W.M., Hylemon P.B., Vlahcevic Z.R. Conjugates of ursodeoxycholate protect against cytotoxicity of more hydrophobic bile salts: In vitro studies in rat hepatocytes and human erythrocytes. Hepatology. 1991;14:920–926. doi: 10.1002/hep.1840140527. PubMed DOI

Kawamata Y., Fujii R., Hosoya M., Harada M., Yoshida H., Miwa M., Fukusumi S., Habata Y., Itoh T., Shintani Y., et al. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 2003;278:9435–9440. doi: 10.1074/jbc.M209706200. PubMed DOI

Maruyama T., Miyamoto Y., Nakamura T., Tamai Y., Okada H., Sugiyama E., Nakamura T., Itadani H., Tanaka K. Identification of membrane-type receptor for bile acids (M-BAR) Biochem. Biophys. Res. Commun. 2002;298:714–719. doi: 10.1016/S0006-291X(02)02550-0. PubMed DOI

Reich M., Klindt C., Deutschmann K., Spomer L., Häussinger D., Keitel V. Role of the G Protein-Coupled Bile Acid Receptor TGR5 in Liver Damage. Dig. Dis. 2017;35:235–240. doi: 10.1159/000450917. PubMed DOI

Chaudhari S.N., Harris D.A., Aliakbarian H., Luo J.N., Henke M.T., Subramaniam R., Vernon A.H., Tavakkoli A., Sheu E.G., Devlin A.S. Bariatric surgery reveals a gut-restricted TGR5 agonist with anti-diabetic effects. Nat. Chem. Biol. 2021;17:20–29. doi: 10.1038/s41589-020-0604-z. PubMed DOI PMC

Sato H., Macchiarulo A., Thomas C., Gioiello A., Une M., Hofmann A.F., Saladin R., Schoonjans K., Pellicciari R., Auwerx J. Novel potent and selective bile acid derivatives as TGR5 agonists: Biological screening, structure-activity relationships, and molecular modeling studies. J. Med. Chem. 2008;51:1831–1841. doi: 10.1021/jm7015864. PubMed DOI

Zhang L., Huang X., Meng Z., Dong B., Shiah S., Moore D.D., Huang W. Significance and Mechanism of CYP7a1 Gene Regulation during the Acute Phase of Liver Regeneration. Mol. Endocrinol. 2009;23:137–145. doi: 10.1210/me.2008-0198. PubMed DOI PMC

Raufman J.-P., Cheng K., Zimniak P. REVIEW: Activation of Muscarinic Receptor Signaling by Bile Acids: Physiological and Medical Implications. Dig. Dis. Sci. 2003;48:1431–1444. doi: 10.1023/A:1024733500950. PubMed DOI

Farhana L., Nangia-Makker P., Arbit E., Shango K., Sarkar S., Mahmud H., Hadden T., Yu Y., Majumdar A.P.N. Bile acid: A potential inducer of colon cancer stem cells. Stem Cell Res. Ther. 2016;7:181. doi: 10.1186/s13287-016-0439-4. PubMed DOI PMC

Nagahashi M., Yuza K., Hirose Y., Nakajima M., Ramanathan R., Hait N.C., Hylemon P.B., Zhou H., Takabe K., Wakai T. The roles of bile acids and sphingosine-1-phosphate signaling in the hepatobiliary diseases. J. Lipid Res. 2016;57:1636–1643. doi: 10.1194/jlr.R069286. PubMed DOI PMC

Keitel V., Stindt J., Häussinger D. Bile Acid-Activated Receptors: GPBAR1 (TGR5) and Other G Protein-Coupled Receptors. Handb. Exp. Pharmacol. 2019;256:19–49. doi: 10.1007/164_2019_230. PubMed DOI

Parks D.J., Blanchard S.G., Bledsoe R.K., Chandra G., Consler T.G., Kliewer S.A., Stimmel J.B., Willson T.M., Zavacki A.M., Moore D.D., et al. Bile acids: Natural ligands for an orphan nuclear receptor. Science. 1999;284:1365–1368. doi: 10.1126/science.284.5418.1365. PubMed DOI

Huang W., Ma K., Zhang J., Qatanani M., Cuvillier J., Liu J., Dong B., Huang X., Moore D.D. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration. Science. 2006;312:233–236. doi: 10.1126/science.1121435. PubMed DOI

Schaap F.G., Trauner M., Jansen P.L. Bile acid receptors as targets for drug development. Nat. Rev. Gastroenterol. Hepatol. 2014;11:55–67. doi: 10.1038/nrgastro.2013.151. PubMed DOI

Panzitt K., Wagner M. FXR in liver physiology: Multiple faces to regulate liver metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 2021;1867:166133. doi: 10.1016/j.bbadis.2021.166133. PubMed DOI

Hang S., Paik D., Yao L., Kim E., Trinath J., Lu J., Ha S., Nelson B.N., Kelly S.P., Wu L., et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature. 2019;576:143–148. doi: 10.1038/s41586-019-1785-z. PubMed DOI PMC

Song C., Hiipakka R.A., Liao S. Selective activation of liver X receptor alpha by 6alpha-hydroxy bile acids and analogs. Steroids. 2000;65:423–427. doi: 10.1016/S0039-128X(00)00127-6. PubMed DOI

De Marino S., Carino A., Masullo D., Finamore C., Marchiano S., Cipriani S., Di Leva F.S., Catalanotti B., Novellino E., Limongelli V., et al. Hyodeoxycholic acid derivatives as liver X receptor alpha and G-protein-coupled bile acid receptor agonists. Sci. Rep. 2017;7:43290. doi: 10.1038/srep43290. PubMed DOI PMC

Sun L., Cai J., Gonzalez F.J. The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 2021;18:335–347. doi: 10.1038/s41575-020-00404-2. PubMed DOI

Hollman D.A., Milona A., van Erpecum K.J., van Mil S.W. Anti-inflammatory and metabolic actions of FXR: Insights into molecular mechanisms. Biochim. Biophys. Acta. 2012;1821:1443–1452. doi: 10.1016/j.bbalip.2012.07.004. PubMed DOI

Perez M.J., Briz O. Bile-acid-induced cell injury and protection. World J. Gastroenterol. 2009;15:1677–1689. doi: 10.3748/wjg.15.1677. PubMed DOI PMC

Lloyd-Price J., Arze C., Ananthakrishnan A.N., Schirmer M., Avila-Pacheco J., Poon T.W., Andrews E., Ajami N.J., Bonham K.S., Brislawn C.J., et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569:655–662. doi: 10.1038/s41586-019-1237-9. PubMed DOI PMC

Koelfat K.V.K., Picot D., Chang X., Desille-Dugast M., van Eijk H.M., van Kuijk S.M.J., Lenicek M., Layec S., Carsin M., Dussaulx L., et al. Chyme Reinfusion Restores the Regulatory Bile Salt-FGF19 Axis in Patients with Intestinal Failure. Hepatology. 2021;74:2670–2683. doi: 10.1002/hep.32017. PubMed DOI PMC

Florén C.H., Nilsson A. Binding of bile salts to fibre-enriched wheat bran. Hum. Nutr Clin. Nutr. 1982;36:381–390. PubMed

Begley M., Gahan C.G., Hill C. The interaction between bacteria and bile. FEMS Microbiol. Rev. 2005;29:625–651. doi: 10.1016/j.femsre.2004.09.003. PubMed DOI

Jones B.V., Begley M., Hill C., Gahan C.G., Marchesi J.R. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl. Acad. Sci. USA. 2008;105:13580–13585. doi: 10.1073/pnas.0804437105. PubMed DOI PMC

Barrasa J.I., Olmo N., Lizarbe M.A., Turnay J. Bile acids in the colon, from healthy to cytotoxic molecules. Toxicol. Vitr. 2013;27:964–977. doi: 10.1016/j.tiv.2012.12.020. PubMed DOI

Batta A.K., Salen G., Arora R., Shefer S., Batta M., Person A. Side chain conjugation prevents bacterial 7-dehydroxylation of bile acids. J. Biol. Chem. 1990;265:10925–10928. doi: 10.1016/S0021-9258(19)38535-7. PubMed DOI

Marion S., Desharnais L., Studer N., Dong Y., Notter M.D., Poudel S., Menin L., Janowczyk A., Hettich R.L., Hapfelmeier S., et al. Biogeography of microbial bile acid transformations along the murine gut. J. Lipid Res. 2020;61:1450–1463. doi: 10.1194/jlr.RA120001021. PubMed DOI PMC

Gadaleta R.M., van Erpecum K.J., Oldenburg B., Willemsen E.C., Renooij W., Murzilli S., Klomp L.W., Siersema P.D., Schipper M.E., Danese S., et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut. 2011;60:463–472. doi: 10.1136/gut.2010.212159. PubMed DOI

Sato Y., Atarashi K., Plichta D.R., Arai Y., Sasajima S., Kearney S.M., Suda W., Takeshita K., Sasaki T., Okamoto S., et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature. 2021;599:458–464. doi: 10.1038/s41586-021-03832-5. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...