Hemodynamic management of cardiogenic shock in the intensive care unit

. 2024 Jul ; 43 (7) : 1059-1073. [epub] 20240320

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38518863

Grantová podpora
L30 HL170339 NHLBI NIH HHS - United States

Odkazy

PubMed 38518863
PubMed Central PMC11148863
DOI 10.1016/j.healun.2024.03.009
PII: S1053-2498(24)01528-6
Knihovny.cz E-zdroje

Hemodynamic derangements are defining features of cardiogenic shock. Randomized clinical trials have examined the efficacy of various therapeutic interventions, from percutaneous coronary intervention to inotropes and mechanical circulatory support (MCS). However, hemodynamic management in cardiogenic shock has not been well-studied. This State-of-the-Art review will provide a framework for hemodynamic management in cardiogenic shock, including a description of the 4 therapeutic phases from initial 'Rescue' to 'Optimization', 'Stabilization' and 'de-Escalation or Exit therapy' (R-O-S-E), phenotyping and phenotype-guided tailoring of pharmacological and MCS support, to achieve hemodynamic and therapeutic goals. Finally, the premises that form the basis for clinical management and the hypotheses for randomized controlled trials will be discussed, with a view to the future direction of cardiogenic shock.

Zobrazit více v PubMed

Berg DD, Bohula EA, van Diepen S, et al. Epidemiology of shock in contemporary cardiac intensive care units. Circ Cardiovasc Qual Outcomes 2019;12:e005618. PubMed PMC

Jeger RV, Assmann SF, Yehudai L, et al. Causes of death and re-hospitalization in cardiogenic shock. Acute Card Care 2007;9:25–33. PubMed

Sundermeyer J, Kellner C, Beer BN, et al. Clinical presentation, shock severity and mortality in patients with de novo versus acute-on-chronic heart failure-related cardiogenic shock. Eur J Heart Fail 2024;26:432–44. 10.1002/ejhf.3082. Feb. PubMed DOI

Abraham J, Blumer V, Burkhoff D, et al. Heart failure-related cardiogenic shock: pathophysiology, evaluation and management considerations: review of heart failure-related cardiogenic shock. J Card Fail 2021;27:1126–40. PubMed

Lim HS, Howell N. Cardiogenic shock due to end-stage heart failure and acute myocardial infarction: characteristics and outcome of temporary mechanical circulatory support. Shock 2018;50:167–72. PubMed

Velleca A, Shullo MA, Dhital K, et al. The International Society for Heart and Lung Transplantation (ISHLT) guidelines for the care of heart transplant recipients. J Heart Lung Transpl 2023;42:e1–141. PubMed

Vachiéry JL, Tedford RJ, Rosenkranz S, et al. Pulmonary hypertension due to left heart disease. Eur Respir J 2019;53:1801897. PubMed PMC

Barnett CF, O’Brien C, De Marco T. Critical care management of the patient with pulmonary hypertension. Eur Heart J Acute Cardiovasc Care 2022;11:77–83. PubMed

Abraham J, Blumer V, Burkhoff D, et al. Heart failure-related cardiogenic shock: pathophysiology, evaluation and management considerations: review of heart failure-related cardiogenic shock. J Card Fail 2021;27:1126–40. PubMed

Sinha SS, Rosner CM, Tehrani BN, et al. Cardiogenic shock from heart failure versus acute myocardial infarction: clinical characteristics, hospital course, and 1-year outcomes. Circ Heart Fail 2022;15:e009279. PubMed PMC

Hochman JS, Sleeper LA, Webb JG, et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should we emergently revascularize occluded coronaries for cardiogenic shock. N Engl J Med 1999;341:625–34. PubMed

Hochman JS, Sleeper LA, Webb JG, et al. SHOCK Investigators. Early revascularization and long-term survival in cardiogenic shock complicating acute myocardial infarction. JAMA 2006;295:2511–5. PubMed PMC

Thiele H, Akin I, Sandri M, et al. PCI Strategies in patients with acute myocardial infarction and cardiogenic shock. N Engl J Med 2017;377:2419–32. PubMed

Thiele H, Akin I, Sandri M, et al. One-year outcomes after PCI strategies in cardiogenic shock. N Engl J Med 2018;379:1699–710. PubMed

Thayer KL, Zweck E, Ayouty M, et al. Invasive hemodynamic assessment and classification of in-hospital mortality risk among patients with cardiogenic shock. Circ Heart Fail 2020;13:e007099. PubMed PMC

Grinstein J, Houston BA, Nguyen AB, et al. Standardization of the right heart catheterization and the emerging role of advanced hemodynamics in heart failure. J Card Fail 2023;29:1543–55. PubMed

Garan AR, Kanwar M, Thayer KL, et al. Complete hemodynamic profiling with pulmonary artery catheters in cardiogenic shock is associated with lower in-hospital mortality. JACC Heart Fail 2020;8:903–13. PubMed

Kanwar MK, Blumer V, Zhang Y, et al. Pulmonary artery catheter use and risk of in-hospital death in heart failure cardiogenic shock. J Card Fail 2023;29:1234–44. PubMed

Bertaina M, Galluzzo A, Rossello X, et al. Prognostic implications of pulmonary artery catheter monitoring in patients with cardiogenic shock: a systematic review and meta-analysis of observational studies. J Crit Care 2022;69:154024. PubMed

Baran DA, Grines CL, Bailey S, et al. SCAI clinical expert consensus statement on the classification of cardiogenic shock: this document was endorsed by the American College of Cardiology (ACC), the American Heart Association (AHA), the Society of Critical Care Medicine (SCCM), and the Society of Thoracic Surgeons (STS) in April 2019. Catheter Cardiovasc Inter 2019;94:29–37. PubMed

Naidu SS, Baran DA, Jentzer JC, et al. SCAI SHOCK Stage Classification Expert Consensus Update: a review and incorporation of validation studies: this statement was endorsed by the American College of Cardiology (ACC), American College of Emergency Physicians (ACEP), American Heart Association (AHA), European Society of Cardiology (ESC) Association for Acute Cardiovascular Care (ACVC), International Society for Heart and Lung Transplantation (ISHLT), Society of Critical Care Medicine (SCCM), and Society of Thoracic Surgeons (STS) in December 2021. J Am Coll Cardiol 2022;79:933–46. PubMed

Schrage B, Dabboura S, Yan I, et al. Application of the SCAI classification in a cohort of patients with cardiogenic shock. Catheter Cardiovasc Inter 2020;96:E213–9. PubMed

Jentzer JC, van Diepen S, Barsness GW, et al. Cardiogenic shock classification to predict mortality in the cardiac intensive care unit. J Am Coll Cardiol 2019;74:2117–28. PubMed

Kapur NK, Kanwar M, Sinha SS, et al. Criteria for defining stages of cardiogenic shock severity. J Am Coll Cardiol 2022;80:185–98. PubMed

Zweck E, Thayer KL, Helgestad OKL, et al. Phenotyping cardiogenic shock. J Am Heart Assoc 2021;10:e020085. PubMed PMC

Jentzer JC, Soussi S, Rayfield C, et al. Consistency of cardiogenic shock subphenotypes and their association with mortality. JACC: Adv 2023;2:100311.

Jentzer JC, Soussi S, Lawler PR, et al. Validation of cardiogenic shock phenotypes in a mixed cardiac intensive care unit population. Catheter Cardiovasc Inter 2022;99:1006–14. PubMed

Zweck E, Kanwar M, Li S, et al. Clinical course of patients in cardiogenic shock stratified by phenotype. JACC Heart Fail 2023;11:1304–15. PubMed

Ince C Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit Care 2015;19:S8. PubMed PMC

Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med 2021;47:1181–247. PubMed PMC

Kjaergaard J, Moller JE, Schmidt H, et al. Blood-pressure targets in comatose survivors of cardiac arrest. N Engl J Med 2022;387:1456–66. PubMed

Parlow S, Di Santo P, Mathew R, et al. The association between mean arterial pressure and outcomes in patients with cardiogenic shock: insights from the DOREMI trial. Eur Heart J Acute Cardiovasc Care 2021;10:712–20. PubMed

Burstein B, Tabi M, Barsness GW, et al. Association between mean arterial pressure during the first 24 hours and hospital mortality in patients with cardiogenic shock. Crit Care 2020;24:513. PubMed PMC

Ameloot K, Jakkula P, Hästbacka J, et al. Optimum blood pressure in patients with shock after acute myocardial infarction and cardiac arrest. J Am Coll Cardiol 2020;76:812–24. PubMed

Russell JA, Walley KR, Singer J, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med 2008;358:877–87. PubMed

Lorusso R, Shekar K, MacLaren G, et al. ELSO Interim Guidelines for venoarterial extracorporeal membrane oxygenation in adult cardiac patients. ASAIO J 2021;67:827–44. PubMed

Cain SM, Curtis SE. Experimental models of pathologic oxygen supply dependency. Crit Care Med 1991;19:603–12. PubMed

Hanique G, Dugernier T, Laterre PF, et al. Significance of pathologic oxygen supply dependency in critically ill patients: comparison between measured and calculated methods. Intensive Care Med 1994;20:12–8. PubMed PMC

Grafton G, Cascino TM, Perry D, et al. Resting oxygen consumption and heart failure: importance of measurement for determination of cardiac output with the use of the Fick Principle. J Card Fail 2020;26:664–72. PubMed PMC

Vernon DD, Witte MK. Effect of neuromuscular blockade on oxygen consumption and energy expenditure in sedated, mechanically ventilated children. Crit Care Med 2000;28:1569–71. PubMed

Berg DD, Bohula EA, van Diepen S, et al. Epidemiology of shock in contemporary cardiac intensive care units. Circ Cardiovasc Qual Outcomes 2019;12:e005618. PubMed PMC

Berg DD, Kaur G, Bohula EA, et al. Prognostic significance of haemodynamic parameters in patients with cardiogenic shock. Eur Heart J Acute Cardiovasc Care 2023;12:651–60. PubMed PMC

Neumann FJ, Ott I, Gawaz M, et al. Cardiac release of cytokines and inflammatory responses in acute myocardial infarction. Circulation 1995;92:748–55. PubMed

Zweck E, Kanwar M, Li S, et al. Clinical course of patients in cardiogenic shock stratified by phenotype. JACC Heart Fail 2023;11:1304–15. PubMed

Müller S, How OJ, Jakobsen Ø, et al. Oxygen-wasting effect of in-otropy: is there a need for a new evaluation? An experimental large-animal study using dobutamine and levosimendan. Circ Heart Fail 2010;3:277–85. PubMed

Mathew R, Di Santo P, Jung RG, et al. Milrinone as compared with dobutamine in the treatment of cardiogenic shock. N Engl J Med 2021;385:516–25. PubMed

De Backer D, Biston P, Devriendt J, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med 2010;362:779–89. PubMed

Levy B, Clere-Jehl R, Legras A, et al. Epinephrine versus norepinephrine for cardiogenic shock after acute myocardial infarction. J Am Coll Cardiol 2018;72:173–82. PubMed

Léopold V, Gayat E, Pirracchio R, et al. Epinephrine and short-term survival in cardiogenic shock: an individual data meta-analysis of 2583 patients. Intensive Care Med 2018;44:847–56. PubMed

Jentzer JC, Hollenberg SM. Vasopressor and inotrope therapy in cardiac critical care. J Intensive Care Med 2021;36:843–56. PubMed

Stevenson LW, Tillisch JH. Maintenance of cardiac output with normal filling pressures in patients with dilated heart failure. Circulation 1986;74:1303–8. PubMed

Stevenson LW, Brunken RC, Belil D, et al. Afterload reduction with vasodilators and diuretics decreases mitral regurgitation during up-right exercise in advanced heart failure. J Am Coll Cardiol 1990;15:174–80. PubMed

Schwartzenberg S, Redfield MM, From AM, et al. Effects of vasodilation in heart failure with preserved or reduced ejection fraction implications of distinct pathophysiologies on response to therapy. J Am Coll Cardiol 2012;59:442–51. PubMed

Proudfoot AG, Kalakoutas A, Meade S, et al. Contemporary management of cardiogenic shock: a RAND appropriateness panel approach. Circ Heart Fail 2021;14:e008635. PubMed PMC

Lim HS. Cardiac power output index to define hemodynamic response to Impella support in cardiogenic shock. Int J Artif Organs 2022;45:598–603. PubMed

Appelt H, Philipp A, Mueller T, et al. Factors associated with hemolysis during extracorporeal membrane oxygenation (ECMO)-comparison of VA-versus VV ECMO. PLoS One 2020;15:e0227793. PubMed PMC

Beer BN, Kellner C, Goßling A, et al. Complications in patients with cardiogenic shock on veno-arterial extracorporeal membrane oxygenation therapy: distribution and relevance. Results from an international, multicentre cohort study. Eur Heart J Acute Cardiovasc Care 2023:zuad129. 10.1093/ehjacc/zuad129. PubMed DOI

Schrage B, Ibrahim K, Loehn T, et al. Impella support for acute myocardial infarction complicated by cardiogenic shock. Circulation 2019;139:1249–58. PubMed

Schrage B, Becher PM, Bernhardt A, et al. Left ventricular unloading is associated with lower mortality in patients with cardiogenic shock treated with venoarterial extracorporeal membrane oxygenation: results from an International, Multicenter Cohort Study. Circulation 2020;142:2095–106. PubMed PMC

Grandin EW, Nunez JI, Willar B, et al. Mechanical left ventricular unloading in patients undergoing venoarterial extracorporeal membrane oxygenation. J Am Coll Cardiol 2022;79:1239–50. PubMed PMC

Schrage B, Becher PM, Bernhardt A, et al. Left ventricular unloading is associated with lower mortality in patients with cardiogenic shock treated with venoarterial extracorporeal membrane oxygenation: results from an International, Multicenter Cohort Study. Circulation 2020;142:2095–106. PubMed PMC

Sundermeyer J, Dabboura S, Weimann J, et al. Short-term lactate kinetics in patients with cardiogenic shock. JACC Heart Fail 2023;11:481–3. PubMed

Marbach JA, Stone S, Schwartz B, et al. Lactate clearance is associated with improved survival in cardiogenic shock: a systematic review and meta-analysis of prognostic factor studies. J Card Fail 2021;27:1082–9. PubMed

Bruno RR, Wollborn J, Fengler K, et al. Direct assessment of microcirculation in shock: a randomized-controlled multicenter study. Intensive Care Med 2023;49:645–55. PubMed PMC

López-Vilella R, Jover Pastor P, Donoso Trenado V, et al. Mortality after the first hospital admission for acute heart failure, de novo versus acutely decompensated heart failure with reduced ejection fraction. Am J Cardiol 2023;196:59–66. PubMed

McCarthy RE 3rd, Boehmer JP, et al. Long-term outcome of fulminant myocarditis as compared with acute (nonfulminant) myocarditis. N Engl J Med 2000;342:690–5. PubMed

Jentzer JC, Baran DA, Kyle Bohman J, et al. Cardiogenic shock severity and mortality in patients receiving venoarterial extracorporeal membrane oxygenator support. Eur Heart J Acute Cardiovasc Care 2022;11:891–903. PubMed

Topkara VK, Elias P, Jain R, et al. Machine learning-based prediction of myocardial recovery in patients with left ventricular assist device support. Circ Heart Fail 2022;15:e008711. PubMed PMC

Sharma S, Ruiz J, Paghdar S, et al. Revisiting pulmonary hypertension in the era of temporary mechanical circulatory support - literature review and case-based discussion. Transpl Proc 2023;55:2462–9. PubMed

Kloner RA. Stunned and hibernating myocardium: where are we nearly 4 decades later? J Am Heart Assoc 2020;9:e015502. PubMed PMC

Page DL, Caulfield JB, Kastor JA, et al. Myocardial changes associated with cardiogenic shock. N Engl J Med 1971;285:133–7. PubMed

Delewi R, Ijff G, van de Hoef TP, et al. Pathological Q waves in myocardial infarction in patients treated by primary PCI. JACC Cardiovasc Imaging 2013;6:324–31. PubMed

Hamirani YS, Wong A, Kramer CM, et al. Effect of microvascular obstruction and intramyocardial hemorrhage by CMR on LV remodeling and outcomes after myocardial infarction. Syst Rev meta-Anal JACC Cardiovasc Imaging 2014;7:940–52. PubMed PMC

Ito H, Tomooka T, Sakai N, et al. Lack of myocardial perfusion immediately after successful thrombolysis. A predictor of poor recovery of left ventricular function in anterior myocardial infarction. Circulation 1992;85:1699–705. PubMed

Bertoldi LF, Pappalardo F, Lubos E, et al. Bridging INTERMACS 1 patients from VA-ECMO to LVAD via Impella 5.0: de-escalate and ambulate. J Crit Care 2020;57:259–63. PubMed

Barge-Caballero E, Almenar-Bonet L, Gonzalez-Vilchez F, et al. Clinical outcomes of temporary mechanical circulatory support as a direct bridge to heart transplantation: a nationwide Spanish registry. Eur J Heart Fail 2018;20:178–86. PubMed

Saeed D, Potapov E, Loforte A, et al. Transition from temporary to durable circulatory support systems. J Am Coll Cardiol 2020;76:2956–64. PubMed

Taleb I, Kyriakopoulos CP, Fong R, et al. Machine learning multicenter risk model to predict right ventricular failure after mechanical circulatory support: the STOP-RVF score. JAMA Cardiol 2024:e235372. PubMed PMC

Lim HS. How does protocolization improve outcomes in cardiogenic shock due to end-stage heart failure? Int J Cardiol 2022;369:33–6. PubMed PMC

Hashim T, Sanam K, Revilla-Martinez M, et al. Clinical characteristics and outcomes of intravenous inotropic therapy in advanced heart failure. Circ Heart Fail 2015;8:880–6. PubMed

Thiele H, Zeymer U, Neumann FJ, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med 2012;367:1287–96. PubMed

Thiele H, Zeymer U, Thelemann N, et al. IABP-SHOCK II trial (Intraaortic Balloon Pump in Cardiogenic Shock II) investigators; IABP-SHOCK II investigators. Intraaortic balloon pump in cardiogenic shock complicating acute myocardial infarction: long-term 6-year outcome of the randomized IABP-SHOCK II Trial. Circulation 2019;139:395–403. PubMed

Seyfarth M, Sibbing D, Bauer I, et al. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J Am Coll Cardiol 2008;52:1584–8. PubMed

Ouweneel DM, Eriksen E, Sjauw KD, et al. Percutaneous mechanical circulatory support versus intra-aortic balloon pump in cardiogenic shock after acute myocardial infarction. J Am Coll Cardiol 2017;69:278–87. PubMed

Karami M, Eriksen E, Ouweneel DM, et al. Long-term 5-year outcome of the randomized IMPRESS in severe shock trial: percutaneous mechanical circulatory support vs. intra-aortic balloon pump in cardiogenic shock after acute myocardial infarction. Eur Heart J Acute Cardiovasc Care 2021;10:1009–15. PubMed PMC

Banning AS, Sabaté M, Orban M, et al. Venoarterial extracorporeal membrane oxygenation or standard care in patients with cardiogenic shock complicating acute myocardial infarction: the multicentre, randomised EURO SHOCK trial. EuroIntervention 2023;19:482–92. PubMed PMC

Ostadal P, Rokyta R, Karasek J, et al. Extracorporeal membrane oxygenation in the therapy of cardiogenic shock: results of the ECMO-CS randomized clinical trial. Circulation 2023;147:454–64. PubMed

Thiele H, Zeymer U, Akin I, et al. Extracorporeal life support in infarct-related cardiogenic shock. N Engl J Med 2023;389:1286–97. PubMed

Brunner S, Guenther SPW, Lackermair K, et al. Extracorporeal life support in cardiogenic shock complicating acute myocardial infarction. J Am Coll Cardiol 2019;73:2355–7. PubMed

Lackermair K, Brunner S, Orban M, et al. Outcome of patients treated with extracorporeal life support in cardiogenic shock complicating acute myocardial infarction: 1-year result from the ECLS-Shock study. Clin Res Cardiol 2021;110:1412–20. PubMed

Zeymer U, Freund A, Hochadel M, et al. Venoarterial extracorporeal membrane oxygenation in patients with infarct-related cardiogenic shock: an individual patient data meta-analysis of randomised trials. Lancet 2023;402:1338–46. PubMed

Rahman F, Finkelstein N, Alyakin A, et al. Using machine learning for early prediction of cardiogenic shock in patients with acute heart failure. J Soc Cardiovasc Angiogr Inter 2022;1:100308.

McCullough PA. How trialists and pharmaceutical sponsors have failed us by thinking that acute heart failure is a 48-hour illness. Am J Cardiol 2017;120:505–8. PubMed

Mahapatra S, Nishimura RA, Sorajja P, et al. Relationship of pulmonary arterial capacitance and mortality in idiopathic pulmonary arterial hypertension. J Am Coll Cardiol 2006;47:799–803. PubMed

Miller WL, Grill DE, Borlaug BA. Clinical features, hemodynamics, and outcomes of pulmonary hypertension due to chronic heart failure with reduced ejection fraction. Pulm Hypertens Heart Fail JACC Heart Fail 2013;1:290–9. PubMed

Kormos RL, Teuteberg JJ, Pagani FD, et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg 2010;139:1316–24. PubMed

Lopez-Sendon J, Coma-Canella I, Gamallo C. Sensitivity and specificity of hemodynamic criteria in the diagnosis of acute right ventricular infarction. Circulation 1981;64:515–25. PubMed

Drakos SG, Janicki L, Horne BD, et al. Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am J Cardiol 2010;105:1030–5. PubMed

Yim IHW, Khan-Kheil AM, Drury NE, et al. A systematic review and physiology of pulmonary artery pulsatility index in left ventricular assist device therapy. Inter Cardiovasc Thorac Surg 2023;36:ivad068. PubMed PMC

Belkin MN, Alenghat FJ, Besser SA, et al. Improved prognostic performance of cardiac power output with right atrial pressure: a subanalysis of the ESCAPE trial. J Card Fail 2022;28:866–9. PubMed PMC

Baldetti L, Pagnesi M, Gallone G, et al. Prognostic value of right atrial pressure-corrected cardiac power index in cardiogenic shock. ESC Heart Fail 2022;9:3920–30. PubMed PMC

Lim HS. Cardiac power output index to define hemodynamic response to Impella support in cardiogenic shock. Int J Artif Organs 2022;45:598–603. PubMed

Belkin MN, Kalantari S, Kanelidis AJ, et al. Aortic pulsatility index: a novel hemodynamic variable for evaluation of decompensated heart failure. J Card Fail 2021;27:1045–52. PubMed PMC

Belkin MN, Alenghat FJ, Besser SA, et al. Aortic pulsatility index predicts clinical outcomes in heart failure: a sub-analysis of the ESCAPE trial. ESC Heart Fail 2021;8:1522–30. PubMed PMC

Ospina-Tascón GA, Teboul JL, Hernandez G, et al. Diastolic shock index and clinical outcomes in patients with septic shock. Ann Intensive Care 2020;10:41. PubMed PMC

Merdji H, Curtiaud A, Aheto A, et al. Performance of early capillary refill time measurement on outcomes in cardiogenic shock: an observational, prospective multicentric study. Am J Respir Crit Care Med 2022;206:1230–8. PubMed

Coudroy R, Jamet A, Frat JP, et al. Incidence and impact of skin mottling over the knee and its duration on outcome in critically ill patients. Intensive Care Med 2015;41:452–9. PubMed

Ait-Oufella H, Lemoinne S, Boelle PY, et al. Mottling score predicts survival in septic shock. Intensive Care Med 2011;37:801–7. PubMed

Kataja A, Tarvasmaki T, Lassus J, et al. Altered mental status predicts mortality in cardiogenic shock – results from the CardShock study. Eur Heart J Acute Cardiovasc Care 2018;7:38–44. PubMed

Schlichtig R, Cowden WL, Chaitman BR. Tolerance of unusually low mixed venous oxygen saturation. Adaptations in the chronic low cardiac output syndrome. Am J Med 1986;80:813–8. PubMed

Muir AL, Kirby BJ, King AJ, et al. Mixed venous oxygen saturation in relation to cardiac output in myocardial infarction. Br Med J 1970;4:276–8. PubMed PMC

Goldman RH, Klughaupt M, Metcalf T, et al. Measurement of central venous oxygen saturation in patients with myocardial infarction. Circulation 1968;38:941–6. PubMed

Lim HS, Howell N. Cardiogenic shock due to end-stage heart failure and acute myocardial infarction: characteristics and outcome of temporary mechanical circulatory support. Shock 2018;50:167–72. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...