Synchronous timing of return to breeding sites in a long-distance migratory seabird with ocean-scale variation in migration schedules
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
866.13.005
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
866.13.005
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
866.13.005
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
866.13.005
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
2019147470 1152018
Fram Center
2019147470 1152018
Fram Center
Yamal EcoSystem 362259
Fram Center
Yamal EcoSystem 362259
Fram Center
28-1235
Kone Foundation
28-1235
Kone Foundation
28-1235
Kone Foundation
669609
ERC
CEP Register
Interactions-1036
French Polar Institute-IPEV
Interactions-1036
French Polar Institute-IPEV
Interactions-1036
French Polar Institute-IPEV
ILETOP ANR-16-CE34-0005
Agence Nationale de la Recherche
PubMed
38520007
PubMed Central
PMC10960466
DOI
10.1186/s40462-024-00459-9
PII: 10.1186/s40462-024-00459-9
Knihovny.cz E-resources
- Keywords
- Stercorarius parasiticus, Annual cycle, Arctic Skua, Carry-over effects, Migratory connectivity, Parasitic Jaeger, Phenology,
- Publication type
- Journal Article MeSH
BACKGROUND: Migratory birds generally have tightly scheduled annual cycles, in which delays can have carry-over effects on the timing of later events, ultimately impacting reproductive output. Whether temporal carry-over effects are more pronounced among migrations over larger distances, with tighter schedules, is a largely unexplored question. METHODS: We tracked individual Arctic Skuas Stercorarius parasiticus, a long-distance migratory seabird, from eight breeding populations between Greenland and Siberia using light-level geolocators. We tested whether migration schedules among breeding populations differ as a function of their use of seven widely divergent wintering areas across the Atlantic Ocean, Mediterranean Sea and Indian Ocean. RESULTS: Breeding at higher latitudes led not only to later reproduction and migration, but also faster spring migration and shorter time between return to the breeding area and clutch initiation. Wintering area was consistent within individuals among years; and more distant areas were associated with more time spent on migration and less time in the wintering areas. Skuas adjusted the period spent in the wintering area, regardless of migration distance, which buffered the variation in timing of autumn migration. Choice of wintering area had only minor effects on timing of return at the breeding area and timing of breeding and these effects were not consistent between breeding populations. CONCLUSION: The lack of a consistent effect of wintering area on timing of return between breeding areas indicates that individuals synchronize their arrival with others in their population despite extensive individual differences in migration strategies.
Applied Zoology Animal Ecology Institute of Biology Freie Universität Berlin Berlin Germany
British Antarctic Survey Cambridge UK
British Trust for Ornithology Scotland Stirling University Innovation Park Stirling FK9 4NF UK
British Trust for Ornithology The Nunnery Thetford Norfolk IP24 2PU UK
Centre for the Advanced Study of Collective Behaviour University of Konstanz Constance Germany
Department of Life and Environmental Sciences University of Iceland Reykjavik Iceland
Environmental Agency Pori Finland
Faculty of Sciences University of South Bohemia České Budějovice Czech Republic
Groupe de Recherche en Ecologie Arctique 16 Rue de Vernot 21440 Francheville France
Max Planck Institute of Animal Behavior Radolfzell Germany
Northeast Iceland Nature Research Centre Husavik Iceland
Norwegian Institute for Nature Research Tromsø Norway
Norwegian Institute for Nature Research Trondheim Norway
Pori Ornithological Society Pori Finland
Section of Ecology Department of Biology University of Turku Turku Finland
SOVON Vogelonderzoek Nederland Nijmegen The Netherlands
Sudurnes Science and Learning Center Suðurnesjabær Iceland
UiT The Arctic University of Norway Tromsø Norway
UMR 6249 Chrono Environnement CNRS Université de Bourgogne Franche Comté 25000 Besançon France
University of Freiburg Freiburg Germany
University of Giessen Giessen Germany
Waardenburg Ecology Culemborg The Netherlands
Wageningen Marine Research Haringkade 1 1976 CP IJmuiden The Netherlands
See more in PubMed
Piersma T. Hink, stap of sprong? Reisbeperkingen van arctische steltlopers door voedselzoeken, vetopbouw en vliegsnelheid. Limosa. 1987;60:185–194.
Harrison XA, Blount JD, Inger R, Norris DR, Bearhop S. Carry-over effects as drivers of fitness differences in animals. J Anim Ecol. 2011;80:4–18. doi: 10.1111/j.1365-2656.2010.01740.x. PubMed DOI
Alerstam T. Bird migration. Cambridge: Cambridge University Press; 1990.
Norris DR, Taylor CM. Predicting the consequences of carry-over effects for migratory populations. Biol Lett. 2006;2:148–151. doi: 10.1098/rsbl.2005.0397. PubMed DOI PMC
Wingfield JC. Organization of vertebrate annual cycles: implications for control mechanisms. Philos Trans R Soc B: Biol Sci. 2008;363:425–441. doi: 10.1098/rstb.2007.2149. PubMed DOI PMC
Marra PP, Cohen EB, Loss SR, Rutter JE, Tonra CM. A call for full annual cycle research in animal ecology. Biol Lett. 2015;2015(11):0552. PubMed PMC
Klaassen RHG, Hake M, Strandberg R, Koks BJ, Trierweiler C, Exo K-M, et al. When and where does mortality occur in migratory birds? Direct evidence from long-term satellite tracking of raptors. J Anim Ecol. 2014;83:176–184. doi: 10.1111/1365-2656.12135. PubMed DOI
Buechley ER, Oppel S, Efrat R, Phipps WL, Carbonell Alanís I, Álvarez E, et al. Differential survival throughout the full annual cycle of a migratory bird presents a life-history trade-off. J Anim Ecol. 2021;90:1228–1238. doi: 10.1111/1365-2656.13449. PubMed DOI
Norris DR, Marra PP. Seasonal interactions, habitat quality, and population dynamics in migratory birds. The Condor. 2007;109:535–547. doi: 10.1093/condor/109.3.535. DOI
Bauer S, Lisovski S, Hahn S. Timing is crucial for consequences of migratory connectivity. Oikos. 2016;125:605–612. doi: 10.1111/oik.02706. DOI
Bogdanova MI, Butler A, Wanless S, Moe B, Anker-nilssen T, Frederiksen M, et al. Multi-colony tracking reveals spatio-temporal variation in carry-over effects between breeding success and winter movements in a pelagic seabird. Mar Ecol Prog Ser. 2017;578:167–181. doi: 10.3354/meps12096. DOI
Gow EA, Burke L, Winkler DW, Knight SM, Bradley DW, Clark RG, et al. A range-wide domino effect and resetting of the annual cycle in a migratory songbird. Proc R Soc B: Biol Sci. 2018;286:20181916. doi: 10.1098/rspb.2018.1916. PubMed DOI PMC
Reneerkens J, Versluijs TSL, Piersma T, Alves JA, Boorman M, Corse C, et al. Low fitness at low latitudes: wintering in the tropics increases migratory delays and mortality rates in an Arctic breeding shorebird. J Anim Ecol. 2019;89:671–932. PubMed PMC
van der Jeugd HP, Eichhorn G, Litvin KE, Stahl J, Larsson K, van der Graaf AJ, et al. Keeping up with early springs: rapid range expansion in an avian herbivore incurs a mismatch between reproductive timing and food supply. Glob Change Biol. 2009;15:1057–1071. doi: 10.1111/j.1365-2486.2008.01804.x. DOI
Conklin JR, Battley PF, Potter MA, Fox JW. Breeding latitude drives individual schedules in a trans-hemispheric migrant bird. Nat Commun. 2010;1:67. doi: 10.1038/ncomms1072. PubMed DOI
Briedis M, Hahn S, Gustafsson L, Henshaw I, Träff J, Král M, et al. Breeding latitude leads to different temporal but not spatial organization of the annual cycle in a long-distance migrant. J Avian Biol. 2016;47:743–748. doi: 10.1111/jav.01002. DOI
Gow EA, Knight SM, Bradley DW, Clark RG, Winkler DW, Bélisle M, et al. Effects of spring migration distance on tree swallow reproductive success within and among flyways. Front Ecol Evol. 2019;7:380. doi: 10.3389/fevo.2019.00380. DOI
Pedersen L, Jackson K, Thorup K, Tøttrup AP. Full-year tracking suggests endogenous control of migration timing in a long-distance migratory songbird. Behav Ecol Sociobiol. 2018;72:139. doi: 10.1007/s00265-018-2553-z. DOI
Alerstam T, Lindström Å. Optimal bird migration: the relative importance of time, energy and safety. In: Gwinner E, editor. Bird migration: the physiology and ecophysiology. Berlin: Springer; 1990. pp. 331–351.
Lisovski S, Ramenofsky M, Wingfield JC. Defining the degree of seasonality and its significance for future research. Integr Comp Biol. 2017;57:934–942. doi: 10.1093/icb/icx040. PubMed DOI
Morbey YE, Hedenström A. Leave earlier or travel faster—optimal mechanisms for managing arrival time in migratory songbirds. Front Ecol Evol. 2020;7:492. doi: 10.3389/fevo.2019.00492. DOI
Sorte FAL, Fink D, Hochachka WM, DeLong JP, Kelling S. Population-level scaling of avian migration speed with body size and migration distance for powered fliers. Ecology. 2013;94:1839–1847. doi: 10.1890/12-1768.1. PubMed DOI
Marra PP, Hobson KA, Holmes RT. Linking winter and summer events in a migratory bird by using stable-carbon isotopes. Science. 1998;282:1884–1886. doi: 10.1126/science.282.5395.1884. PubMed DOI
Tøttrup AP, Klaassen RHG, Kristensen MW, Strandberg R, Vardanis Y, Lindström Å, et al. Drought in Africa caused delayed arrival of European songbirds. Science (New York, NY) 2012;338:1307. doi: 10.1126/science.1227548. PubMed DOI
Dossman BC, Rodewald AD, Studds CE, Marra PP. Migratory birds with delayed spring departure migrate faster but pay the costs. Ecology. 2023;104:e3938. doi: 10.1002/ecy.3938. PubMed DOI
Dingle H. Migration. The biology of life on the move. 2. Oxford: Oxford University Press; 2014.
Senner NR, Hochachka WM, Fox JW, Afanasyev V. An exception to the rule: carry-over effects do not accumulate in a long-distance migratory bird. PLoS ONE. 2014;9:e86588. doi: 10.1371/journal.pone.0086588. PubMed DOI PMC
Dufour P, Wojczulanis-Jakubas K, Lavergne S, Renaud J, Jakubas D, Descamps S. A two-fold increase in migration distance does not have breeding consequences in a long-distance migratory seabird with high flight costs. Mar Ecol Prog Ser. 2021;676:117–126. doi: 10.3354/meps13535. DOI
Pedersen L, Onrubia A, Vardanis Y, Barboutis C, Waasdorp S, van Helvert M, et al. Remarkably similar migration patterns between different red-backed shrike populations suggest that migration rather than breeding area phenology determines the annual cycle. J Avian Biol. 2020;51:jav.02475. doi: 10.1111/jav.02475. DOI
Webster MS, Marra PP, Haig SM, Bensch S, Holmes RT. Links between worlds: unraveling migratory connectivity. Trends Ecol Evol. 2002;17:76–83. doi: 10.1016/S0169-5347(01)02380-1. DOI
Åkesson S, Ilieva M, Karagicheva J, Rakhimberdiev E, Tomotani B, Helm B. Timing avian long-distance migration: from internal clock mechanisms to global flights. Philos Trans R Soc B: Biol Sci. 2017;372:20160252. doi: 10.1098/rstb.2016.0252. PubMed DOI PMC
Furness RW. The Skuas. London: T. & A.D. Poyser; 1987.
Olsen KM, Larsson H. Skuas and jaegers. A guide to the skuas and jaegers of the world. East Sussex: Pica Press; 1997.
Briedis M, Hahn S, Adamík P. Cold spell en route delays spring arrival and decreases apparent survival in a long-distance migratory songbird. BMC Ecol. 2017;17:11. doi: 10.1186/s12898-017-0121-4. PubMed DOI PMC
Davies TE, Carneiro APB, Tarzia M, Wakefield E, Hennicke JC, Frederiksen M, et al. Multispecies tracking reveals a major seabird hotspot in the North Atlantic. Conserv Lett. 2021;14:e12824. doi: 10.1111/conl.12824. DOI
O’Hanlon NJ, van Bemmelen RSA, Snell KRS, Conway GJ, Thaxter CB, Aiton H, et al. Atlantic populations of a declining oceanic seabird have complex migrations and weak migratory connectivity to staging areas. Mar Ecol Prog Ser. 2024;730:113–129. doi: 10.3354/meps14533. DOI
Sittler B, Aebischer A, Gilg O. Post-breeding migration of four Long-tailed Skuas (Stercorarius longicaudus) from North and East Greenland to West Africa. J Ornithol. 2011;152:375–381. doi: 10.1007/s10336-010-0597-6. DOI
Verhoeven MA, Loonstra AHJ, McBride AD, Macias P, Kaspersma W, Hooijmeijer JCEW, et al. Geolocators lead to better measures of timing and renesting in black-tailed godwits and reveal the bias of traditional observational methods. J Avian Biol. 2020;51:jav.02259. doi: 10.1111/jav.02259. DOI
Cohen EB, Hostetler JA, Hallworth MT, Rushing CS, Sillett TS, Marra PP. Quantifying the strength of migratory connectivity. Methods Ecol Evol. 2018;9:513–524. doi: 10.1111/2041-210X.12916. DOI
McFarlane Tranquilla LA, Montevecchi WA, Fifield DA, Hedd A, Gaston AJ, Robertson GJ, et al. Individual winter movement strategies in two species of murre (Uria spp) in the Northwest Atlantic. PLoS ONE. 2014;9:e90583. doi: 10.1371/journal.pone.0090583. PubMed DOI PMC
Gelman A, Hill J, Yajima M. Why we (usually) don’t have to worry about multiple comparisons. J Res Educ Effect. 2012;5:189–211.
Kruschke JK. Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. 2014.
Nakagawa S, Schielzeth H. Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol Rev. 2010;85:935–956. doi: 10.1111/j.1469-185X.2010.00141.x. PubMed DOI
Bürkner P-C. Brms: an R package for Bayesian multilevel models using Stan. J Stat Softw. 2017;80:1–28. doi: 10.18637/jss.v080.i01. DOI
Team SD. Stan Modeling Language Users Guide and Reference Manual. 2021.
Dias MP, Granadeiro JP, Phillips RA, Alonso H, Catry P. Breaking the routine: Individual Cory’s shearwaters shift winter destinations between hemispheres and across ocean basins. Proc Biol Sci/R Soc. 2011;278:1786–1793. PubMed PMC
Phillips RA, Catry P, Silk JRD, Bearhop S, McGill R, Afanasyev V, et al. Movements, winter distribution and activity patterns of Falkland and brown skuas: insights from loggers and isotopes. Mar Ecol Prog Ser. 2007;345:281–291. doi: 10.3354/meps06991. DOI
Delord K, Cherel Y, Barbraud C, Chastel O, Weimerskirch H. High variability in migration and wintering strategies of brown skuas (Catharacta antarctica lonnbergi) in the Indian Ocean. Polar Biol. 2017;41:59–70. doi: 10.1007/s00300-017-2169-1. DOI
Weimerskirch H, Tarroux A, Chastel O, Delord K, Cherel Y, Descamps S. Population-specific wintering distributions of adult south polar skuas over three oceans. Mar Ecol Prog Ser. 2015;538:229–237. doi: 10.3354/meps11465. DOI
van Bemmelen R, Moe B, Hanssen S, Schmidt N, Hansen J, Lang J, et al. Flexibility in otherwise consistent non-breeding movements of a long-distance migratory seabird, the long-tailed skua. Mar Ecol Prog Ser. 2017;578:197–211. doi: 10.3354/meps12010. DOI
Neufeld LR, Muthukumarana S, Fischer JD, Ray JD, Siegrist J, Fraser KC. Breeding latitude is associated with the timing of nesting and migration around the annual calendar among Purple Martin (Progne subis) populations. J Ornithol. 2021;162:1009–1024. doi: 10.1007/s10336-021-01894-w. DOI
Wong JB, Lisovski S, Alisauskas RT, English WB, Harrison A-L, Kallett DK, et al. Variation in migration behaviors used by Arctic Terns (Sterna paradisaea) breeding across a wide latitudinal gradient. Polar Biol. 2022;45:909–922. doi: 10.1007/s00300-022-03043-2. DOI
Furness BL. The feeding behaviour of Arctic Skuas Stercorarius parasiticus wintering off South Africa. Ibis. 1983;125:245–251. doi: 10.1111/j.1474-919X.1983.tb03107.x. DOI
Stenhouse IJ, Egevang C, Phillips RA. Trans-equatorial migration, staging sites and wintering area of Sabine’s Gulls Larus sabini in the Atlantic Ocean. Ibis. 2012;154:42–51. doi: 10.1111/j.1474-919X.2011.01180.x. DOI
Hromádková T, Pavel V, Flousek J, Briedis M. Seasonally specific responses to wind patterns and ocean productivity facilitate the longest animal migration on Earth. Mar Ecol Prog Ser. 2020;638:1–12. doi: 10.3354/meps13274. DOI
Bonnet-Lebrun A-S, Dias MP, Phillips RA, Granadeiro JP, de Brooke ML, Chastel O, et al. Seabird migration strategies: flight budgets, diel activity patterns, and lunar influence. Front Mar Sci. 2021;8:683071. doi: 10.3389/fmars.2021.683071. DOI
Belopol’skii LO. Ecology of sea colony birds of the Barents Sea. Jerusalem: Israel Programme for Scientific Translations; 1961.
Hobson KA, Sirois J, Gloutney ML. Tracing nutrient allocation to reproduction with stable isotopes: a preliminary investigation using colonial waterbirds of Great Slave Lake. Auk. 2000;117:760–774. doi: 10.1093/auk/117.3.760. DOI
Pennycuick CJ. Modelling the flying bird. London: Academic Press; 2008.
Bergmann C. Ober die Verhaltnisse der Warmeokonomie der Thiere zu ihrer Grosse. Gott Stud. 1847;3:595–708.
Briedis M, Krist M, Král M, Voigt CC, Adamík P. Linking events throughout the annual cycle in a migratory bird non-breeding period buffers accumulation of carry-over effects. Behav Ecol Sociobiol. 2018;72:93. doi: 10.1007/s00265-018-2509-3. DOI
Carneiro C, Gunnarsson TG, Alves JA. Annual schedule adjustment by a long-distance migratory bird. Am Nat. 2023;201:353–362. doi: 10.1086/722566. PubMed DOI
Stutchbury BJM, Gow EA, Done T, MacPherson M, Fox JW, Afanasyev V. Effects of post-breeding moult and energetic condition on timing of songbird migration into the tropics. Proc R Soc B: Biol Sci. 2011;278:131–137. doi: 10.1098/rspb.2010.1220. PubMed DOI PMC
van Wijk RE, Schaub M, Bauer S. Dependencies in the timing of activities weaken over the annual cycle in a long-distance migratory bird. Behav Ecol Sociobiol. 2017;71:1–8.
Fayet AL, Freeman R, Shoji A, Kirk HL, Padget O, Perrins CM, et al. Carry-over effects on the annual cycle of a migratory seabird: an experimental study. J Anim Ecol. 2016;85:1516–1527. doi: 10.1111/1365-2656.12580. PubMed DOI PMC
van Bemmelen RSA, Clarke RH, Pyle P, Camphuysen CJ. Timing and duration of primary molt in Northern Hemisphere skuas and jaegers. Auk. 2018;135:1043–1054. doi: 10.1642/AUK-17-232.1. DOI
Åkesson S, Helm B. Endogenous programs and flexibility in bird migration. Front Ecol Evol. 2020;8:78. doi: 10.3389/fevo.2020.00078. DOI
Burnside RJ, Salliss D, Collar NJ, Dolman PM. Birds use individually consistent temperature cues to time their migration departure. Proc Natl Acad Sci. 2021;118:e2026378118. doi: 10.1073/pnas.2026378118. PubMed DOI PMC
Sergio F, Tanferna A, De Stephanis R, Jiménez LL, Blas J, Tavecchia G, et al. Individual improvements and selective mortality shape lifelong migratory performance. Nature. 2014;515:410–413. doi: 10.1038/nature13696. PubMed DOI
Battley PF, Conklin JR, Parody-Merino ÁM, Langlands PA, Southey I, Burns T, et al. Interacting roles of breeding geography and early-life settlement in godwit migration timing. Front Ecol Evol. 2020;8:52. doi: 10.3389/fevo.2020.00052. DOI
Edwards M, Hélaouët P, Goberville E, Lindley A, Tarling GA, Burrows MT, et al. North Atlantic warming over six decades drives decreases in krill abundance with no associated range shift. Commun Biol. 2021;4:644. doi: 10.1038/s42003-021-02159-1. PubMed DOI PMC
Kokko H. Competition for early arrival in migratory birds. J Anim Ecol. 1999;68:940–950. doi: 10.1046/j.1365-2656.1999.00343.x. DOI
Bearhop S, Fiedler W, Furness RW, Votier SC, Waldron S, Newton J, et al. Assortative mating as a mechanism for rapid evolution of a migratory divide. Science. 2005;310:502–504. doi: 10.1126/science.1115661. PubMed DOI
Bregnballe T, Frederiksen M, Gregersen J. Effects of distance to wintering area on arrival date and breeding performance in Great Cormorants. Ardea. 2006;94:619–630.
Grist H, Daunt F, Wanless S, Burthe SJ, Newell MA, Harris MP, et al. Reproductive performance of resident and migrant males, females and pairs in a partially migratory bird. J Anim Ecol. 2017;86:1010–1021. doi: 10.1111/1365-2656.12691. PubMed DOI PMC
Lok T, Veldhoen L, Overdijk O, Tinbergen JM, Piersma T. An age-dependent fitness cost of migration? Old trans-Saharan migrating spoonbills breed later than those staying in Europe, and late breeders have lower recruitment. J Anim Ecol. 2017;86:998–1009. doi: 10.1111/1365-2656.12706. PubMed DOI
Nightingale J, Gill JA, Gunnarsson TG, Rocha AD, Howison RA, Hooijmeijer JCEW, et al. Does early spring arrival lead to early nesting in a migratory shorebird? Insights from remote tracking. Ibis. 2023.
Perkins A, Ratcliffe N, Suddaby D, Ribbands B, Smith C, Ellis P, et al. Combined bottom-up and top-down pressures drive catastrophic population declines of Arctic skuas in Scotland. J Anim Ecol. 2018;87:1497–1748. doi: 10.1111/1365-2656.12890. PubMed DOI
van Bemmelen RSA, Schekkerman H, Hin V, Pot M, Janssen K, Ganter B, et al. Heavy decline of the largest European Arctic Skua Stercorarius parasiticus colony: interacting effects of food shortage and predation. Bird Study. 2021;68:13.
Santos I. Survival and breeding success of the declining Arctic Skua population of the Faroe Islands. University of Copenhagen, Denmark. MSc Thesis. 2018.
Mäntylä E, Mäntylä K, Nuotio J, Nuotio K, Sillanpää M. Longevity record of arctic skua (Stercorarius Parasiticus). Ecol Evol. 2020;ece3.6875. PubMed PMC
Santos IAM dos, Snell KRS, Bemmelen RS van, Moe B, Thorup K. Wintering, rather than breeding, oceanic conditions contribute to declining survival in a long-distance migratory seabird. bioRxiv; 2023. p. 2023.11.10.566398.
Fair JM, Jones J. Guidelines to the use of wild birds in research. Ornithol Counc; 2010.