Controlling Crystal Morphology of Anisotropic Zeolites with Elemental Composition

. 2024 Mar 20 ; 24 (6) : 2406-2414. [epub] 20240308

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38525100

The morphology of zeolite crystals strongly affects their textural, catalytic, and mechanical attributes. However, controlling zeolite crystal morphology without using modifiers or structure-directing agents remains a challenging task because of our limited understanding of the relationships between zeolite crystal shape, crystallization mechanism, and composition of the starting synthesis mixture. In this study, we aimed at developing a general method for controlling the morphology of zeolites by assessing the impact of the Si/T molar ratio of the synthesis gel on the growth rate of zeolite crystals in various crystallographic directions and on the final crystal morphology of the UTL germanosilicate with a 2D system of intersecting 14- and 12-ring pores. Our results showed that flat UTL crystals progressively thicken with the Si/Ge molar ratio, demonstrating that Ge concentration controls the relative rate of crystal growth in the perpendicular direction to the pore system. The morphology of other zeolites and zeotypes with an anisotropic structure, including AFI (12R), IFR (12R), MWW (10-10R), and IWW (12-10-8R), can also be predicted based on their Si/T ratio, suggesting a systematic pattern across zeolite structures and in a wide range of zeolite framework elements. Combined, these findings introduce a facile and cost-efficient method for directly controlling crystal morphology of zeolites with anisotropic structures with a high potential for scale-up while providing further insights into the role of elemental composition in zeolite crystal growth.

Zobrazit více v PubMed

Čejka J.; Morris E.R.; Nachtigall P.. Zeolites in Catalysis: Properties and Applications; The Royal Society of Chemistry, 2017.

Vogt E.T.C.; Whiting G.T.; Chowdhury A. D.; Weckhuysen B.M., Chapter Two - Zeolites and Zeotypes for Oil and Gas Conversion, in: Jentoft F.C. (Ed.) Adv. Catal.; Academic Press, 2015; 143–314.

Moliner M.; Martínez C.; Corma A. Multipore Zeolites: Synthesis and Catalytic Applications. Angew. Chem., Int. Ed. 2015, 54, 3560–3579. 10.1002/anie.201406344. PubMed DOI

Li Y.; Li L.; Yu J. Applications of Zeolites in Sustainable Chemistry. Chem. 2017, 3, 928–949. 10.1016/j.chempr.2017.10.009. DOI

Blauwhoff P.M.M.; Gosselink J.W.; Kieffer E.P.; Sie S.T.; Stork W.H.J., Zeolites as Catalysts in Industrial Processes, in: Weitkamp J.; Puppe L. (Eds.) Catalysis and Zeolites: Fundamentals and Applications; Springer Berlin Heidelberg: Berlin, Heidelberg, 1999; 437–538.

Pina M. P.; Mallada R.; Arruebo M.; Urbiztondo M.; Navascues N.; de la Iglesia O.; Santamaria J. Zeolite films and membranes, Emerging applications. Microporous Mesoporous Mater. 2011, 144, 19–27. 10.1016/j.micromeso.2010.12.003. DOI

Park K. H.; Park H. J.; Kim J.; Ryoo R.; Jeon J. K.; Park J.; Park Y. K. Application of Hierarchical MFI Zeolite for the Catalytic Pyrolysis of Japanese Larch. J. Nanosci. Nanotechnol. 2010, 10, 355–359. 10.1166/jnn.2010.1537. PubMed DOI

Martinez C.; Corma A. Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coord. Chem. Rev. 2011, 255, 1558–1580. 10.1016/j.ccr.2011.03.014. DOI

Čejka J.; Centi G.; Perez-Pariente J.; Roth W. J. Zeolite-based materials for novel catalytic applications: Opportunities, perspectives and open problems. Catal. Today 2012, 179, 2–15. 10.1016/j.cattod.2011.10.006. DOI

Fechete I.; Wang Y.; Védrine J. C. The past, present and future of heterogeneous catalysis. Catal. Today 2012, 189, 2–27. 10.1016/j.cattod.2012.04.003. DOI

Maesen T., The Zeolite Scene – An Overview, in: Čejka J.; van Bekkum H.; Corma A.; Schüth F. (Eds.) Stud. Surf. Sci. Catal.; Elsevier, 2007; 1–12.

McCusker L.B.; Baerlocher C., Zeolite Structures, in: Čejka J.; van Bekkum H.; Corma A.; Schüth F. (Eds.) Stud. Surf. Sci. Catal.; Elsevier, 2007; 13–37.

Shamzhy M.; Opanasenko M.; Concepción P.; Martínez A. New trends in tailoring active sites in zeolite-based catalysts. Chem. Soc. Rev. 2019, 48, 1095–1149. 10.1039/C8CS00887F. PubMed DOI

Kubu° M.; Žilková N.; Čejka J. Post-synthesis modification of TUN zeolite: Textural, acidic and catalytic properties. Catal. Today 2011, 168, 63–70. 10.1016/j.cattod.2010.11.090. DOI

Kubu° M.; Opanasenko M.; Shamzy M. Modification of textural and acidic properties of -SVR zeolite by desilication. Catal. Today 2014, 227, 26–32. 10.1016/j.cattod.2013.11.063. DOI

Gil B.; Mokrzycki Ł.; Sulikowski B.; Olejniczak Z.; Walas S. Desilication of ZSM-5 and ZSM-12 zeolites: Impact on textural, acidic and catalytic properties. Catal. Today 2010, 152, 24–32. 10.1016/j.cattod.2010.01.059. DOI

del Campo P.; Beato P.; Rey F.; Navarro M. T.; Olsbye U.; Lillerud K. P.; Svelle S. Influence of post-synthetic modifications on the composition, acidity and textural properties of ZSM-22 zeolite. Catal. Today 2018, 299, 120–134. 10.1016/j.cattod.2017.04.042. DOI

Lupulescu A. I.; Kumar M.; Rimer J. D. A Facile Strategy To Design Zeolite L Crystals with Tunable Morphology and Surface Architecture. J. Am. Chem. Soc. 2013, 135, 6608–6617. 10.1021/ja4015277. PubMed DOI

Na K.; Jo C.; Kim J.; Cho K.; Jung J.; Seo Y.; Messinger R. J.; Chmelka B. F.; Ryoo R. Directing Zeolite Structures into Hierarchically Nanoporous Architectures. Science 2011, 333, 328–332. 10.1126/science.1204452. PubMed DOI

Kim W.; Kim J.-C.; Kim J.; Seo Y.; Ryoo R. External Surface Catalytic Sites of Surfactant-Tailored Nanomorphic Zeolites for Benzene Isopropylation to Cumene. ACS Catal. 2013, 3, 192–195. 10.1021/cs300678n. DOI

Bonilla G.; Díaz I.; Tsapatsis M.; Jeong H.-K.; Lee Y.; Vlachos D. G. Zeolite (MFI) Crystal Morphology Control Using Organic Structure-Directing Agents. Chem. Mater. 2004, 16, 5697–5705. 10.1021/cm048854w. DOI

Lee Y.-J.; Lee J. S.; Yoon K. B. Synthesis of long zeolite-L crystals with flat facets. Microporous Mesoporous Mater. 2005, 80, 237–246. 10.1016/j.micromeso.2004.12.003. DOI

Li S.; Li J.; Dong M.; Fan S.; Zhao T.; Wang J.; Fan W. Strategies to control zeolite particle morphology. Chem. Soc. Rev. 2019, 48, 885–907. 10.1039/C8CS00774H. PubMed DOI

Meng X.; Xiao F.-S. Green Routes for Synthesis of Zeolites. Chem. Rev. 2014, 114, 1521–1543. 10.1021/cr4001513. PubMed DOI

Gomez A. G.; Silveira G. D.; Doan H.; Cheng C.-H. A facile method to tune zeolite L crystals with low aspect ratio. Chem. Commun. 2011, 47, 5876–5878. 10.1039/c1cc10894h. PubMed DOI

Larlus O.; Valtchev V. P. Crystal Morphology Control of LTL-Type Zeolite Crystals. Chem. Mater. 2004, 16, 3381–3389. 10.1021/cm0498741. DOI

Reiprich B.; Weissenberger T.; Schwieger W.; Inayat A. Layer-like FAU-type zeolites: A comparative view on different preparation routes. Frontiers of Chemical Science and Engineering 2020, 14, 127–142. 10.1007/s11705-019-1883-3. DOI

Hill A. R.; Cubillas P.; Gebbie-Rayet J. T.; Trueman M.; de Bruyn N.; Harthi Z. A.; Pooley R. J. S.; Attfield M. P.; Blatov V. A.; Proserpio D. M.; Gale J. D.; Akporiaye D.; Arstad B.; Anderson M. W. CrystalGrower: a generic computer program for Monte Carlo modelling of crystal growth. Chemical Science 2021, 12, 1126–1146. 10.1039/D0SC05017B. PubMed DOI PMC

Brent R.; Cubillas P.; Stevens S. M.; Jelfs K. E.; Umemura A.; Gebbie J. T.; Slater B.; Terasaki O.; Holden M. A.; Anderson M. W. Unstitching the Nanoscopic Mystery of Zeolite Crystal Formation. J. Am. Chem. Soc. 2010, 132, 13858–13868. 10.1021/ja105593v. PubMed DOI

Anderson M. W.; Gebbie-Rayet J. T.; Hill A. R.; Farida N.; Attfield M. P.; Cubillas P.; Blatov V. A.; Proserpio D. M.; Akporiaye D.; Arstad B.; Gale J. D. Predicting crystal growth via a unified kinetic three-dimensional partition model. Nature 2017, 544, 456–459. 10.1038/nature21684. PubMed DOI

Brent R.; Anderson M. W. Fundamental Crystal Growth Mechanism in Zeolite L Revealed by Atomic Force Microscopy. Angew. Chem., Int. Ed. 2008, 47, 5327–5330. 10.1002/anie.200800977. PubMed DOI

Paillaud J.-L.; Harbuzaru B.; Patarin J.; Bats N. Extra-Large-Pore Zeolites with Two-Dimensional Channels Formed by 14 and 12 Rings. Science 2004, 304, 990.10.1126/science.1098242. PubMed DOI

Corma A.; Díaz-Cabañas M. J.; Rey F.; Nicolopoulus S.; Boulahya K. ITQ-15: The first ultralarge pore zeolite with a bi-directional pore system formed by intersecting 14- and 12-ring channels, and its catalytic implications. Chem. Commun. 2004, 1356–1357. 10.1039/B406572G. PubMed DOI

Marler B.; Gies H. Hydrous layer silicates as precursors for zeolites obtained through topotactic condensation: a review. European Journal of Mineralogy 2012, 24, 405–428. 10.1127/0935-1221/2012/0024-2187. DOI

Kasian N.; Tuel A.; Verheyen E.; Kirschhock C. E. A.; Taulelle F.; Martens J. A. NMR Evidence for Specific Germanium Siting in IM-12 Zeolite. Chem. Mater. 2014, 26, 5556–5565. 10.1021/cm502525w. DOI

Odoh S. O.; Deem M. W.; Gagliardi L. Preferential Location of Germanium in the UTL and IPC-2a Zeolites. J. Phys. Chem. C 2014, 118, 26939–26946. 10.1021/jp510495w. DOI

Sastre G.; Pulido A.; Corma A. An attempt to predict and rationalize relative stabilities and preferential germanium location in Si/Ge zeolites. Microporous Mesoporous Mater. 2005, 82, 159–163. 10.1016/j.micromeso.2005.01.021. DOI

Shvets O. V.; Kasian N.; Zukal A.; Pinkas J.; Čejka J. The Role of Template Structure and Synergism between Inorganic and Organic Structure Directing Agents in the Synthesis of UTL Zeolite. Chem. Mater. 2010, 22, 3482–3495. 10.1021/cm1006108. DOI

Shvets O. V.; Zukal A.; Kasian N.; Žilková N.; Čejka J. The Role of Crystallization Parameters for the Synthesis of Germanosilicate with UTL Topology, Chemistry – A. European Journal 2008, 14, 10134–10140. 10.1002/chem.200800416. PubMed DOI

Zhang J.; Yue Q.; Mazur M.; Opanasenko M.; Shamzhy M. V.; Čejka J. Selective Recovery and Recycling of Germanium for the Design of Sustainable Zeolite Catalysts. ACS Sustainable Chem. Eng. 2020, 8, 8235–8246. 10.1021/acssuschemeng.0c01336. DOI

Villaescusa L. A.; Barrett P. A.; Kalwei M.; Koller H.; Camblor M. A. Synthesis and Physicochemical Characterization of an Aluminosilicate Zeolite with IFR Topology, Prepared by the Fluoride Route. Chem. Mater. 2001, 13, 2332–2341. 10.1021/cm001180e. DOI

Košová G.; Čejka J. Incorporation of Aluminum and Iron Into the ZSM-12 Zeolite: Synthesis and Characterization of Acid Sites. Collect. Czech. Chem. Commun. 2002, 67, 1760–1778. 10.1135/cccc20021760. DOI

Schunk S. A.; Demuth D. G.; Schulz-Dobrick B.; Unger K. K.; Schüth F. Element distribution and growth mechanism of large SAPO-5 crystals. Microporous Materials 1996, 6, 273–285. 10.1016/0927-6513(96)00011-9. DOI

Zhai M.; Ding H.; Zeng S.; Jiang J.; Xu S.; Li X.; Zhu K.; Zhou X. Aluminous ZSM-48 Zeolite Synthesis Using a Hydroisomerization Intermediate Mimicking Allyltrimethylammonium Chloride as a Structure-Directing Agent. Ind. Eng. Chem. Res. 2020, 59, 11139–11148. 10.1021/acs.iecr.0c00750. DOI

Ogorzały K.; Jajko G.; Wolski K.; Zapotoczny S.; Kubu° M.; Roth W. J.; Gil B.; Makowski W. Catalytic activity enhancement in pillared zeolites produced from exfoliated MWW monolayers in solution. Catal. Today 2022, 390–391, 272–280. 10.1016/j.cattod.2021.10.004. DOI

Kikhtyanin O.; Chlubná P.; Jindrová T.; Kubička D. Peculiar behavior of MWW materials in aldol condensation of furfural and acetone. Dalton Transactions 2014, 43, 10628–10641. 10.1039/c4dt00184b. PubMed DOI

Xing E.; Shi Y.; Xie W.; Zhang F.; Mu X.; Shu X. Temperature-controlled phase-transfer hydrothermal synthesis of MWW zeolites and their alkylation performances. RSC Adv. 2016, 6, 29707–29717. 10.1039/C5RA25503A. DOI

Qin F.; Wang Y.; Lu Y.; Osuga R.; Gies H.; Kondo J. N.; Yokoi T. Synthesis of novel aluminoborosilicate isomorphous to zeolite TUN and its acidic and catalytic properties. Microporous Mesoporous Mater. 2021, 323, 11123710.1016/j.micromeso.2021.111237. DOI

Yang Y.; Ding J.; Xu C.; Zhu W.; Wu P. An insight into crystal morphology-dependent catalytic properties of MOR-type titanosilicate in liquid-phase selective oxidation. J. Catal. 2015, 325, 101–110. 10.1016/j.jcat.2015.03.001. DOI

Roth W. J.; Dorset D. L. Expanded view of zeolite structures and their variability based on layered nature of 3-D frameworks. Microporous Mesoporous Mater. 2011, 142, 32–36. 10.1016/j.micromeso.2010.11.007. DOI

Roth W. J.; Čejka J.; Millini R.; Montanari E.; Gil B.; Kubu M. Swelling and Interlayer Chemistry of Layered MWW Zeolites MCM-22 and MCM-56 with High Al Content. Chem. Mater. 2015, 27, 4620–4629. 10.1021/acs.chemmater.5b01030. DOI

Corma A.; Rey F.; Valencia S.; Jorda J. L.; Rius J. A zeolite with interconnected 8-, 10- and 12-ring pores and its unique catalytic selectivity. Nat. Mater. 2003, 2, 493–497. 10.1038/nmat921. PubMed DOI

Yuan R.; Claes N.; Verheyen E.; Tuel A.; Bals S.; Breynaert E.; Martens J. A.; Kirschhock C. E. A. Synthesis of an IWW-type germanosilicate zeolite using 5-azonia-spiro[4,4]nonane as a structure directing agent. New J. Chem. 2016, 40, 4319–4324. 10.1039/C5NJ03094C. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...