Controlling Crystal Morphology of Anisotropic Zeolites with Elemental Composition
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38525100
PubMed Central
PMC10958493
DOI
10.1021/acs.cgd.3c01312
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The morphology of zeolite crystals strongly affects their textural, catalytic, and mechanical attributes. However, controlling zeolite crystal morphology without using modifiers or structure-directing agents remains a challenging task because of our limited understanding of the relationships between zeolite crystal shape, crystallization mechanism, and composition of the starting synthesis mixture. In this study, we aimed at developing a general method for controlling the morphology of zeolites by assessing the impact of the Si/T molar ratio of the synthesis gel on the growth rate of zeolite crystals in various crystallographic directions and on the final crystal morphology of the UTL germanosilicate with a 2D system of intersecting 14- and 12-ring pores. Our results showed that flat UTL crystals progressively thicken with the Si/Ge molar ratio, demonstrating that Ge concentration controls the relative rate of crystal growth in the perpendicular direction to the pore system. The morphology of other zeolites and zeotypes with an anisotropic structure, including AFI (12R), IFR (12R), MWW (10-10R), and IWW (12-10-8R), can also be predicted based on their Si/T ratio, suggesting a systematic pattern across zeolite structures and in a wide range of zeolite framework elements. Combined, these findings introduce a facile and cost-efficient method for directly controlling crystal morphology of zeolites with anisotropic structures with a high potential for scale-up while providing further insights into the role of elemental composition in zeolite crystal growth.
EaStChem School of Chemistry University of St Andrews North Haugh Fife St Andrews KY16 9ST U K
Faculty of Chemistry Jagiellonian University Gronostajowa 2 30 387 Krakow Poland
Faculty of Sciences Charles University Hlavova 8 128 43 Prague 2 Czech Republic
Zobrazit více v PubMed
Čejka J.; Morris E.R.; Nachtigall P.. Zeolites in Catalysis: Properties and Applications; The Royal Society of Chemistry, 2017.
Vogt E.T.C.; Whiting G.T.; Chowdhury A. D.; Weckhuysen B.M., Chapter Two - Zeolites and Zeotypes for Oil and Gas Conversion, in: Jentoft F.C. (Ed.) Adv. Catal.; Academic Press, 2015; 143–314.
Moliner M.; Martínez C.; Corma A. Multipore Zeolites: Synthesis and Catalytic Applications. Angew. Chem., Int. Ed. 2015, 54, 3560–3579. 10.1002/anie.201406344. PubMed DOI
Li Y.; Li L.; Yu J. Applications of Zeolites in Sustainable Chemistry. Chem. 2017, 3, 928–949. 10.1016/j.chempr.2017.10.009. DOI
Blauwhoff P.M.M.; Gosselink J.W.; Kieffer E.P.; Sie S.T.; Stork W.H.J., Zeolites as Catalysts in Industrial Processes, in: Weitkamp J.; Puppe L. (Eds.) Catalysis and Zeolites: Fundamentals and Applications; Springer Berlin Heidelberg: Berlin, Heidelberg, 1999; 437–538.
Pina M. P.; Mallada R.; Arruebo M.; Urbiztondo M.; Navascues N.; de la Iglesia O.; Santamaria J. Zeolite films and membranes, Emerging applications. Microporous Mesoporous Mater. 2011, 144, 19–27. 10.1016/j.micromeso.2010.12.003. DOI
Park K. H.; Park H. J.; Kim J.; Ryoo R.; Jeon J. K.; Park J.; Park Y. K. Application of Hierarchical MFI Zeolite for the Catalytic Pyrolysis of Japanese Larch. J. Nanosci. Nanotechnol. 2010, 10, 355–359. 10.1166/jnn.2010.1537. PubMed DOI
Martinez C.; Corma A. Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coord. Chem. Rev. 2011, 255, 1558–1580. 10.1016/j.ccr.2011.03.014. DOI
Čejka J.; Centi G.; Perez-Pariente J.; Roth W. J. Zeolite-based materials for novel catalytic applications: Opportunities, perspectives and open problems. Catal. Today 2012, 179, 2–15. 10.1016/j.cattod.2011.10.006. DOI
Fechete I.; Wang Y.; Védrine J. C. The past, present and future of heterogeneous catalysis. Catal. Today 2012, 189, 2–27. 10.1016/j.cattod.2012.04.003. DOI
Maesen T., The Zeolite Scene – An Overview, in: Čejka J.; van Bekkum H.; Corma A.; Schüth F. (Eds.) Stud. Surf. Sci. Catal.; Elsevier, 2007; 1–12.
McCusker L.B.; Baerlocher C., Zeolite Structures, in: Čejka J.; van Bekkum H.; Corma A.; Schüth F. (Eds.) Stud. Surf. Sci. Catal.; Elsevier, 2007; 13–37.
Shamzhy M.; Opanasenko M.; Concepción P.; Martínez A. New trends in tailoring active sites in zeolite-based catalysts. Chem. Soc. Rev. 2019, 48, 1095–1149. 10.1039/C8CS00887F. PubMed DOI
Kubu° M.; Žilková N.; Čejka J. Post-synthesis modification of TUN zeolite: Textural, acidic and catalytic properties. Catal. Today 2011, 168, 63–70. 10.1016/j.cattod.2010.11.090. DOI
Kubu° M.; Opanasenko M.; Shamzy M. Modification of textural and acidic properties of -SVR zeolite by desilication. Catal. Today 2014, 227, 26–32. 10.1016/j.cattod.2013.11.063. DOI
Gil B.; Mokrzycki Ł.; Sulikowski B.; Olejniczak Z.; Walas S. Desilication of ZSM-5 and ZSM-12 zeolites: Impact on textural, acidic and catalytic properties. Catal. Today 2010, 152, 24–32. 10.1016/j.cattod.2010.01.059. DOI
del Campo P.; Beato P.; Rey F.; Navarro M. T.; Olsbye U.; Lillerud K. P.; Svelle S. Influence of post-synthetic modifications on the composition, acidity and textural properties of ZSM-22 zeolite. Catal. Today 2018, 299, 120–134. 10.1016/j.cattod.2017.04.042. DOI
Lupulescu A. I.; Kumar M.; Rimer J. D. A Facile Strategy To Design Zeolite L Crystals with Tunable Morphology and Surface Architecture. J. Am. Chem. Soc. 2013, 135, 6608–6617. 10.1021/ja4015277. PubMed DOI
Na K.; Jo C.; Kim J.; Cho K.; Jung J.; Seo Y.; Messinger R. J.; Chmelka B. F.; Ryoo R. Directing Zeolite Structures into Hierarchically Nanoporous Architectures. Science 2011, 333, 328–332. 10.1126/science.1204452. PubMed DOI
Kim W.; Kim J.-C.; Kim J.; Seo Y.; Ryoo R. External Surface Catalytic Sites of Surfactant-Tailored Nanomorphic Zeolites for Benzene Isopropylation to Cumene. ACS Catal. 2013, 3, 192–195. 10.1021/cs300678n. DOI
Bonilla G.; Díaz I.; Tsapatsis M.; Jeong H.-K.; Lee Y.; Vlachos D. G. Zeolite (MFI) Crystal Morphology Control Using Organic Structure-Directing Agents. Chem. Mater. 2004, 16, 5697–5705. 10.1021/cm048854w. DOI
Lee Y.-J.; Lee J. S.; Yoon K. B. Synthesis of long zeolite-L crystals with flat facets. Microporous Mesoporous Mater. 2005, 80, 237–246. 10.1016/j.micromeso.2004.12.003. DOI
Li S.; Li J.; Dong M.; Fan S.; Zhao T.; Wang J.; Fan W. Strategies to control zeolite particle morphology. Chem. Soc. Rev. 2019, 48, 885–907. 10.1039/C8CS00774H. PubMed DOI
Meng X.; Xiao F.-S. Green Routes for Synthesis of Zeolites. Chem. Rev. 2014, 114, 1521–1543. 10.1021/cr4001513. PubMed DOI
Gomez A. G.; Silveira G. D.; Doan H.; Cheng C.-H. A facile method to tune zeolite L crystals with low aspect ratio. Chem. Commun. 2011, 47, 5876–5878. 10.1039/c1cc10894h. PubMed DOI
Larlus O.; Valtchev V. P. Crystal Morphology Control of LTL-Type Zeolite Crystals. Chem. Mater. 2004, 16, 3381–3389. 10.1021/cm0498741. DOI
Reiprich B.; Weissenberger T.; Schwieger W.; Inayat A. Layer-like FAU-type zeolites: A comparative view on different preparation routes. Frontiers of Chemical Science and Engineering 2020, 14, 127–142. 10.1007/s11705-019-1883-3. DOI
Hill A. R.; Cubillas P.; Gebbie-Rayet J. T.; Trueman M.; de Bruyn N.; Harthi Z. A.; Pooley R. J. S.; Attfield M. P.; Blatov V. A.; Proserpio D. M.; Gale J. D.; Akporiaye D.; Arstad B.; Anderson M. W. CrystalGrower: a generic computer program for Monte Carlo modelling of crystal growth. Chemical Science 2021, 12, 1126–1146. 10.1039/D0SC05017B. PubMed DOI PMC
Brent R.; Cubillas P.; Stevens S. M.; Jelfs K. E.; Umemura A.; Gebbie J. T.; Slater B.; Terasaki O.; Holden M. A.; Anderson M. W. Unstitching the Nanoscopic Mystery of Zeolite Crystal Formation. J. Am. Chem. Soc. 2010, 132, 13858–13868. 10.1021/ja105593v. PubMed DOI
Anderson M. W.; Gebbie-Rayet J. T.; Hill A. R.; Farida N.; Attfield M. P.; Cubillas P.; Blatov V. A.; Proserpio D. M.; Akporiaye D.; Arstad B.; Gale J. D. Predicting crystal growth via a unified kinetic three-dimensional partition model. Nature 2017, 544, 456–459. 10.1038/nature21684. PubMed DOI
Brent R.; Anderson M. W. Fundamental Crystal Growth Mechanism in Zeolite L Revealed by Atomic Force Microscopy. Angew. Chem., Int. Ed. 2008, 47, 5327–5330. 10.1002/anie.200800977. PubMed DOI
Paillaud J.-L.; Harbuzaru B.; Patarin J.; Bats N. Extra-Large-Pore Zeolites with Two-Dimensional Channels Formed by 14 and 12 Rings. Science 2004, 304, 990.10.1126/science.1098242. PubMed DOI
Corma A.; Díaz-Cabañas M. J.; Rey F.; Nicolopoulus S.; Boulahya K. ITQ-15: The first ultralarge pore zeolite with a bi-directional pore system formed by intersecting 14- and 12-ring channels, and its catalytic implications. Chem. Commun. 2004, 1356–1357. 10.1039/B406572G. PubMed DOI
Marler B.; Gies H. Hydrous layer silicates as precursors for zeolites obtained through topotactic condensation: a review. European Journal of Mineralogy 2012, 24, 405–428. 10.1127/0935-1221/2012/0024-2187. DOI
Kasian N.; Tuel A.; Verheyen E.; Kirschhock C. E. A.; Taulelle F.; Martens J. A. NMR Evidence for Specific Germanium Siting in IM-12 Zeolite. Chem. Mater. 2014, 26, 5556–5565. 10.1021/cm502525w. DOI
Odoh S. O.; Deem M. W.; Gagliardi L. Preferential Location of Germanium in the UTL and IPC-2a Zeolites. J. Phys. Chem. C 2014, 118, 26939–26946. 10.1021/jp510495w. DOI
Sastre G.; Pulido A.; Corma A. An attempt to predict and rationalize relative stabilities and preferential germanium location in Si/Ge zeolites. Microporous Mesoporous Mater. 2005, 82, 159–163. 10.1016/j.micromeso.2005.01.021. DOI
Shvets O. V.; Kasian N.; Zukal A.; Pinkas J.; Čejka J. The Role of Template Structure and Synergism between Inorganic and Organic Structure Directing Agents in the Synthesis of UTL Zeolite. Chem. Mater. 2010, 22, 3482–3495. 10.1021/cm1006108. DOI
Shvets O. V.; Zukal A.; Kasian N.; Žilková N.; Čejka J. The Role of Crystallization Parameters for the Synthesis of Germanosilicate with UTL Topology, Chemistry – A. European Journal 2008, 14, 10134–10140. 10.1002/chem.200800416. PubMed DOI
Zhang J.; Yue Q.; Mazur M.; Opanasenko M.; Shamzhy M. V.; Čejka J. Selective Recovery and Recycling of Germanium for the Design of Sustainable Zeolite Catalysts. ACS Sustainable Chem. Eng. 2020, 8, 8235–8246. 10.1021/acssuschemeng.0c01336. DOI
Villaescusa L. A.; Barrett P. A.; Kalwei M.; Koller H.; Camblor M. A. Synthesis and Physicochemical Characterization of an Aluminosilicate Zeolite with IFR Topology, Prepared by the Fluoride Route. Chem. Mater. 2001, 13, 2332–2341. 10.1021/cm001180e. DOI
Košová G.; Čejka J. Incorporation of Aluminum and Iron Into the ZSM-12 Zeolite: Synthesis and Characterization of Acid Sites. Collect. Czech. Chem. Commun. 2002, 67, 1760–1778. 10.1135/cccc20021760. DOI
Schunk S. A.; Demuth D. G.; Schulz-Dobrick B.; Unger K. K.; Schüth F. Element distribution and growth mechanism of large SAPO-5 crystals. Microporous Materials 1996, 6, 273–285. 10.1016/0927-6513(96)00011-9. DOI
Zhai M.; Ding H.; Zeng S.; Jiang J.; Xu S.; Li X.; Zhu K.; Zhou X. Aluminous ZSM-48 Zeolite Synthesis Using a Hydroisomerization Intermediate Mimicking Allyltrimethylammonium Chloride as a Structure-Directing Agent. Ind. Eng. Chem. Res. 2020, 59, 11139–11148. 10.1021/acs.iecr.0c00750. DOI
Ogorzały K.; Jajko G.; Wolski K.; Zapotoczny S.; Kubu° M.; Roth W. J.; Gil B.; Makowski W. Catalytic activity enhancement in pillared zeolites produced from exfoliated MWW monolayers in solution. Catal. Today 2022, 390–391, 272–280. 10.1016/j.cattod.2021.10.004. DOI
Kikhtyanin O.; Chlubná P.; Jindrová T.; Kubička D. Peculiar behavior of MWW materials in aldol condensation of furfural and acetone. Dalton Transactions 2014, 43, 10628–10641. 10.1039/c4dt00184b. PubMed DOI
Xing E.; Shi Y.; Xie W.; Zhang F.; Mu X.; Shu X. Temperature-controlled phase-transfer hydrothermal synthesis of MWW zeolites and their alkylation performances. RSC Adv. 2016, 6, 29707–29717. 10.1039/C5RA25503A. DOI
Qin F.; Wang Y.; Lu Y.; Osuga R.; Gies H.; Kondo J. N.; Yokoi T. Synthesis of novel aluminoborosilicate isomorphous to zeolite TUN and its acidic and catalytic properties. Microporous Mesoporous Mater. 2021, 323, 11123710.1016/j.micromeso.2021.111237. DOI
Yang Y.; Ding J.; Xu C.; Zhu W.; Wu P. An insight into crystal morphology-dependent catalytic properties of MOR-type titanosilicate in liquid-phase selective oxidation. J. Catal. 2015, 325, 101–110. 10.1016/j.jcat.2015.03.001. DOI
Roth W. J.; Dorset D. L. Expanded view of zeolite structures and their variability based on layered nature of 3-D frameworks. Microporous Mesoporous Mater. 2011, 142, 32–36. 10.1016/j.micromeso.2010.11.007. DOI
Roth W. J.; Čejka J.; Millini R.; Montanari E.; Gil B.; Kubu M. Swelling and Interlayer Chemistry of Layered MWW Zeolites MCM-22 and MCM-56 with High Al Content. Chem. Mater. 2015, 27, 4620–4629. 10.1021/acs.chemmater.5b01030. DOI
Corma A.; Rey F.; Valencia S.; Jorda J. L.; Rius J. A zeolite with interconnected 8-, 10- and 12-ring pores and its unique catalytic selectivity. Nat. Mater. 2003, 2, 493–497. 10.1038/nmat921. PubMed DOI
Yuan R.; Claes N.; Verheyen E.; Tuel A.; Bals S.; Breynaert E.; Martens J. A.; Kirschhock C. E. A. Synthesis of an IWW-type germanosilicate zeolite using 5-azonia-spiro[4,4]nonane as a structure directing agent. New J. Chem. 2016, 40, 4319–4324. 10.1039/C5NJ03094C. DOI