Variations in wood anatomy in Afrotropical trees with a particular emphasis on radial and axial parenchyma

. 2024 Jun 07 ; 134 (1) : 151-162.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38525918

Grantová podpora
24-11954S The Czech Science Foundation

BACKGROUND AND AIMS: Understanding anatomical variations across plant phylogenies and environmental gradients is vital for comprehending plant evolution and adaptation. Previous studies on tropical woody plants have paid limited attention to quantitative differences in major xylem tissues, which serve specific roles in mechanical support (fibres), carbohydrate storage and radial conduction (radial parenchyma, rays), wood capacitance (axial parenchyma) and water transport (vessels). To address this gap, we investigate xylem fractions in 173 tropical tree species spanning 134 genera and 53 families along a 2200-m elevational gradient on Mount Cameroon, West Africa. METHODS: We determined how elevation, stem height and wood density affect interspecific differences in vessel, fibre, and specific axial (AP) and radial (RP) parenchyma fractions. We focus on quantifying distinct subcategories of homogeneous or heterogeneous rays and apotracheal, paratracheal and banded axial parenchyma. KEY RESULTS: Elevation-related cooling correlated with reduced AP fractions and vessel diameters, while fibre fractions increased. Lower elevations exhibited elevated AP fractions due to abundant paratracheal and wide-banded parenchyma in tall trees from coastal and lowland forests. Vasicentric and aliform AP were predominantly associated with greater tree height and wider vessels, which might help cope with high evaporative demands via elastic wood capacitance. In contrast, montane trees featured a higher fibre proportion, scarce axial parenchyma, smaller vessel diameters and higher vessel densities. The lack of AP in montane trees was often compensated for by extended uniseriate ray sections with upright or squared ray cells or the presence of living fibres. CONCLUSIONS: Elevation gradient influenced specific xylem fractions, with lower elevations showing elevated AP due to abundant paratracheal and wide-banded parenchyma, securing greater vessel-to-parenchyma connectivity and lower embolism risk. Montane trees featured a higher fibre proportion and smaller vessel diameters, which may aid survival under greater environmental seasonality and fire risk.

Zobrazit více v PubMed

Aritsara  ANA, Razakandraibe  VM, Ramananantoandro  T, Gleason  SM, Cao  K.  2021. Increasing axial parenchyma fraction in the Malagasy Magnoliids facilitated the co-optimisation of hydraulic efficiency and safety. The New Phytologist  229: 1467–1480. PubMed

Bittencourt  PRL, Pereira  L, Oliveira  RS.  2016. On xylem hydraulic efficiencies, wood space-use and the safety–efficiency tradeoff. New Phytologist  211: 1152–1155. PubMed

Borchert  R, Pockman  WT.  2005. Water storage capacitance and xylem tension in isolated branches of temperate and tropical trees. Tree Physiology  25: 457–466. PubMed

Brodersen  CR, McElrone  AJ, Choat  B, Matthews  MA, Shackel  KA.  2010. The dynamics of embolism repair in xylem: in vivo visualizations using high-resolution computed tomography. Plant Physiology  154: 1088–1095. PubMed PMC

Carlquist  S.  2012. How wood evolves: a new synthesis. Botany  90: 901–940.

Carlquist  S.  2013. Comparative wood anatomy: systematic, ecological, and evolutionary aspects of Dicotyledon wood.  Berlin: Springer Science & Business Media.

Carlquist  S.  2014. Fibre dimorphism: cell type diversification as an evolutionary strategy in angiosperm woods: fibre dimorphism in angiosperm wood. Botanical Journal of the Linnean Society  174: 44–67.

Carlquist  S.  2018. Living Cells in Wood 3. Overview; functional anatomy of the parenchyma network. The Botanical Review  84: 242–294.

Carvalho  EC, Souza  BC, Silva  MS, et al.. 2022. Xylem anatomical traits determine the variation in wood density and water storage of plants in tropical semiarid climate. Flora  298: 152185.

Chattaway  M.  1951. Morphological and functional variations in the rays of pored timbers. Australian Journal of Biological Sciences  4: 12. PubMed

Chen  Z, Zhu  S, Zhang  Y, et al.. 2020. Tradeoff between storage capacity and embolism resistance in the xylem of temperate broadleaf tree species. Tree Physiology  40: 1029–1042. PubMed

Desdevises  Y, Legendre  P, Azouzi  L, Morand  S.  2003. Quantifying phylogenetically structured environmental variation. Evolution  57: 2647–2652. PubMed

Doležal  J, Klimeš  A, Dvorský  M, Říha  P, Klimešová  J, Schweingruber  F.  2019. Disentangling evolutionary, environmental and morphological drivers of plant anatomical adaptations to drought and cold in Himalayan graminoids. Oikos  128: 1576–1587.

Doležal  J, Kučerová  A, Jandová  V, et al.. 2021. Anatomical adaptations in aquatic and wetland dicot plants: Disentangling the environmental, morphological and evolutionary signals. Environmental and Experimental Botany  187: 104495–104412.

Doležal  J, Dančák  M, Kučera  J, et al.. 2022. Fire, climate and biotic interactions shape diversity patterns along an Afrotropical elevation gradient. Journal of Biogeography  49: 1248–1259.

Doležal  J, Korznikov  K, Altman  J, et al.. 2023. Ecological niches of epiphyllous bryophytes along Afrotropical elevation gradient. Oikos  2023: e09772.

Dória  LC, Sonsin-Oliveira  J, Rossi  S, Marcati  CR.  2022. Functional trade-offs in volume allocation to xylem cell types in 75 species from the Brazilian savanna Cerrado. Annals of Botany  130: 445–456. PubMed PMC

Fajardo  A, Piper  FI, García-Cervigón  AI.  2022. The intraspecific relationship between wood density, vessel diameter and other traits across environmental gradients. Functional Ecology  36: 1585–1598.

Farooq  TH, Yasmeen  S, Shakoor  A, et al.. 2023. Xylem anatomical responses of Larix gmelinii and Pinus sylvestris influenced by the climate of Daxing’an mountains in Northeastern China. Frontiers in Plant Science  14: 1095888. PubMed PMC

Fisher  JB, Goldstein  G, Jones  TJ, Cordell  S.  2007. Wood vessel diameter is related to elevation and genotype in the Hawaiian tree Metrosideros polymorpha (Myrtaceae). American Journal of Botany  94: 709–715. PubMed

García-Cervigón  AI, Fajardo  A, Caetano-Sánchez  C, Camarero  JJ, Olano  JM.  2020. Xylem anatomy needs to change, so that conductivity can stay the same: xylem adjustments across elevation and latitude in Nothofagus pumilio. Annals of Botany  125: 1101–1112. PubMed PMC

Gleason  SM, Westoby  M, Jansen  S, et al.. 2016. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. The New Phytologist  209: 123–136. PubMed

Godfrey  JM, Riggio  J, Orozco  J, Guzmán-Delgado  P, Chin  ARO, Zwieniecki  MA.  2020. Ray fractions and carbohydrate dynamics of tree species along a 2750 m elevation gradient indicate climate response, not spatial storage limitation. New Phytologist  225: 2314–2330. PubMed

Hacke  UG, Jacobsen  AL, Pratt  RB.  2022. Vessel diameter and vulnerability to drought-induced embolism: within-tissue and across-species patterns and the issue of survivorship bias. IAWA Journal  44: 304–319.

Herrera-Ramírez  D, Sierra  CA, Römermann  C, et al.. 2021. Starch and lipid storage strategies in tropical trees relate to growth and mortality. The New Phytologist  230: 139–154. PubMed

IAWA Committee. 1989. IAWA list of microscopic features for hardwood identification. IAWA Bulletin  10: 219–332.

Janssen  TAJ, Hölttä  T, Fleischer  K, Naudts  K, Dolman  H.  2020. Wood allocation trade-offs between fiber wall, fiber lumen, and axial parenchyma drive drought resistance in neotropical trees. Plant, Cell & Environment  43: 965–980. PubMed PMC

Jupa  R, Plavcová  L, Gloser  V, Jansen  S.  2016. Linking xylem water storage with anatomical parameters in five temperate tree species. Tree Physiology  36: 756–769. PubMed

Kawai  K, Minagi  K, Nakamura  T, Saiki  S-T, Yazaki  K, Ishida  A.  2022. Parenchyma underlies the interspecific variation of xylem hydraulics and carbon storage across 15 woody species on a subtropical island in Japan. Tree Physiology  42: 337–350. PubMed

Kedrov  GB.  2012. Functioning wood. Wulfenia  19: 57–95.

Kiorapostolou  N, Da Sois  L, Petruzzellis  F, et al.. 2019. Vulnerability to xylem embolism correlates to wood parenchyma fraction in angiosperms but not in gymnosperms. Tree Physiology  39: 1675–1684. PubMed

Kotowska  MM, Wright  IJ, Westoby  M.  2020. Parenchyma abundance in wood of evergreen trees varies independently of nutrients. Frontiers in Plant Science  11: 86. PubMed PMC

Kribs  DA.  1935. Salient lines of structural specialization in the wood rays of Dicotyledons. Botanical Gazette  96: 547–557.

Lens  F, Sperry  JS, Christman  MA, Choat  B, Rabaey  D, Jansen  S.  2011. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. The New Phytologist  190: 709–723. PubMed

Martínez-Cabrera  HI, Jones  CS, Espino  S, Schenk  HJ.  2009. Wood anatomy and wood density in shrubs: Responses to varying aridity along transcontinental transects. American Journal of Botany  96: 1388–1398. PubMed

Morris  H, Brodersen  C, Schwarze  FWMR, Jansen  S.  2016a. The parenchyma of secondary xylem and its critical role in tree defense against fungal decay in relation to the codit model. Frontiers in Plant Science  7: 1665. PubMed PMC

Morris  H, Plavcová  L, Cvecko  P, et al.. 2016b. A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. The New Phytologist  209: 1553–1565. PubMed PMC

Morris  H, Gillingham  MAF, Plavcová  L, et al.. 2018. Vessel diameter is related to amount and spatial arrangement of axial parenchyma in woody angiosperms. Plant, Cell & Environment  41: 245–260. PubMed

Nardini  A, Lo Gullo  MA, Salleo  S.  2011. Refilling embolized xylem conduits: is it a matter of phloem unloading? Plant Science  180: 604–611. PubMed

Olson  ME, Rosell  JA, Martínez-Pérez  C, et al.. 2020. Xylem vessel diameter-shoot length scaling: ecological significance of porosity types and other traits. Ecological Monographs  90: e01410.

Olson  ME, Anfodillo  T, Gleason  SM, McCulloh  KA.  2021. Tip-to-base xylem conduit widening as an adaptation: causes, consequences, and empirical priorities. The New Phytologist  229: 1877–1893. PubMed

Pfautsch  S, Hölttä  T, Mencuccini  M.  2015. Hydraulic functioning of tree stems—fusing ray anatomy, radial transfer and capacitance. Tree Physiology  35: 706–722. PubMed

Pinheiro  J, Bates  D, DebRoy  S, et al.. 2017. Package ‘nlme’. Linear and nonlinear mixed effects models, version 3.1-137. https://CRAN.R-project.org/packages/nlme (20 March 2024, date last accessed).

Plavcová  L, Hoch  G, Morris  H, Ghiasi  S, Jansen  S.  2016. The amount of parenchyma and living fibers affects storage of nonstructural carbohydrates in young stems and roots of temperate trees. American Journal of Botany  103: 603–612. PubMed

Plavcová  L, Gallenmüller  F, Morris  H, Khatamirad  M, Jansen  S, Speck  T.  2019. Mechanical properties and structure–function trade-offs in secondary xylem of young roots and stems. Journal of Experimental Botany  70: 3679–3691. PubMed

Plavcová  L, Olson  ME, Jandová  V, Doležal  J.  2023. Parenchyma is not the sole site of storage: storage in living fibres. IAWA Journal  44: 465–476.

Pratt  RB, Jacobsen  AL.  2017. Conflicting demands on angiosperm xylem: Tradeoffs among storage, transport and biomechanics: Tradeoffs in xylem function. Plant, Cell & Environment  40: 897–913. PubMed

Pratt  RB, Jacobsen  AL, Ewers  FW, Davis  SD.  2007. Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. The New Phytologist  174: 787–798. PubMed

Pratt  RB, Tobin  MF, Jacobsen  AL, et al.. 2021. Starch storage capacity of sapwood is related to dehydration avoidance during drought. American Journal of Botany  108: 91–101. PubMed

Řeháková  K, Čapková  K, Altman  J, Dančák  M, Majeský  L, Doležal  J.  2022. Contrasting patterns of soil chemistry and vegetation cover determine diversity changes of soil phototrophs along an Afrotropical elevation gradient. Ecosystems  25: 1020–1036.

Ronquist  F, Huelsenbeck  JP.  2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics  19: 1572–1574. PubMed

Schweingruber  FH, Kučerová  A, Adamec  L, Doležal  J.  2020. Anatomic atlas of aquatic and wetland plant stems. anatomic atlas of aquatic and wetland plant stems.  Cham: Springer Nature Switzerland AG, 1–487.

Słupianek  A, Dolzblasz  A, Sokołowska  K.  2021. Xylem parenchyma—role and relevance in wood functioning in trees. Plants (Basel, Switzerland)  10: 1247. PubMed PMC

Spicer  R.  2014. Symplasmic networks in secondary vascular tissues: parenchyma distribution and activity supporting long-distance transport. Journal of Experimental Botany  65: 1829–1848. PubMed

ter Braak  CJF, Smilauer  P.  2012. Canoco reference manual and user’s guide: software for ordination, version 5.0. Microcomputer Power. Biometris.

The GIMP Development Team.  2019. GIMP.  https://www.gimp.org (20 March 2024, date last accessed).

Tyree  MT, Yang  S.  1990. Water-storage capacity of Thuja, Tsuga and Acer stems measured by dehydration isotherms: the contribution of capillary water and cavitation. Planta  182: 420–426. PubMed

Zhang  G, Mao  Z, Fortunel  C, et al.. 2022. Parenchyma fractions drive the storage capacity of nonstructural carbohydrates across a broad range of tree species. American Journal of Botany  109: 535–549. PubMed

Zheng  J, Martínez-Cabrera  HI.  2013. Wood anatomical correlates with theoretical conductivity and wood density across China: evolutionary evidence of the functional differentiation of axial and radial parenchyma. Annals of Botany  112: 927–935. PubMed PMC

Ziemińska  K, Westoby  M, Wright  IJ.  2015. Broad anatomical variation within a narrow wood density range—a study of twig wood across 69 Australian angiosperms. PLoS One  10: e0124892. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...