Variations in wood anatomy in Afrotropical trees with a particular emphasis on radial and axial parenchyma
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
24-11954S
The Czech Science Foundation
PubMed
38525918
PubMed Central
PMC11161563
DOI
10.1093/aob/mcae049
PII: 7634493
Knihovny.cz E-zdroje
- Klíčová slova
- Axial parenchyma, capacitance, ray parenchyma, storage, tropics, wood, xylem,
- MeSH
- dřevo * anatomie a histologie fyziologie MeSH
- nadmořská výška MeSH
- stromy * anatomie a histologie fyziologie MeSH
- tropické klima * MeSH
- xylém * anatomie a histologie fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Kamerun MeSH
BACKGROUND AND AIMS: Understanding anatomical variations across plant phylogenies and environmental gradients is vital for comprehending plant evolution and adaptation. Previous studies on tropical woody plants have paid limited attention to quantitative differences in major xylem tissues, which serve specific roles in mechanical support (fibres), carbohydrate storage and radial conduction (radial parenchyma, rays), wood capacitance (axial parenchyma) and water transport (vessels). To address this gap, we investigate xylem fractions in 173 tropical tree species spanning 134 genera and 53 families along a 2200-m elevational gradient on Mount Cameroon, West Africa. METHODS: We determined how elevation, stem height and wood density affect interspecific differences in vessel, fibre, and specific axial (AP) and radial (RP) parenchyma fractions. We focus on quantifying distinct subcategories of homogeneous or heterogeneous rays and apotracheal, paratracheal and banded axial parenchyma. KEY RESULTS: Elevation-related cooling correlated with reduced AP fractions and vessel diameters, while fibre fractions increased. Lower elevations exhibited elevated AP fractions due to abundant paratracheal and wide-banded parenchyma in tall trees from coastal and lowland forests. Vasicentric and aliform AP were predominantly associated with greater tree height and wider vessels, which might help cope with high evaporative demands via elastic wood capacitance. In contrast, montane trees featured a higher fibre proportion, scarce axial parenchyma, smaller vessel diameters and higher vessel densities. The lack of AP in montane trees was often compensated for by extended uniseriate ray sections with upright or squared ray cells or the presence of living fibres. CONCLUSIONS: Elevation gradient influenced specific xylem fractions, with lower elevations showing elevated AP due to abundant paratracheal and wide-banded parenchyma, securing greater vessel-to-parenchyma connectivity and lower embolism risk. Montane trees featured a higher fibre proportion and smaller vessel diameters, which may aid survival under greater environmental seasonality and fire risk.
Botany Department State Museum of Natural History Stuttgart Stuttgart Germany
Institute of Botany The Czech Academy of Sciences Dukelská 135 37901 Třeboň Czech Republic
Zobrazit více v PubMed
Aritsara ANA, Razakandraibe VM, Ramananantoandro T, Gleason SM, Cao K. 2021. Increasing axial parenchyma fraction in the Malagasy Magnoliids facilitated the co-optimisation of hydraulic efficiency and safety. The New Phytologist 229: 1467–1480. PubMed
Bittencourt PRL, Pereira L, Oliveira RS. 2016. On xylem hydraulic efficiencies, wood space-use and the safety–efficiency tradeoff. New Phytologist 211: 1152–1155. PubMed
Borchert R, Pockman WT. 2005. Water storage capacitance and xylem tension in isolated branches of temperate and tropical trees. Tree Physiology 25: 457–466. PubMed
Brodersen CR, McElrone AJ, Choat B, Matthews MA, Shackel KA. 2010. The dynamics of embolism repair in xylem: in vivo visualizations using high-resolution computed tomography. Plant Physiology 154: 1088–1095. PubMed PMC
Carlquist S. 2012. How wood evolves: a new synthesis. Botany 90: 901–940.
Carlquist S. 2013. Comparative wood anatomy: systematic, ecological, and evolutionary aspects of Dicotyledon wood. Berlin: Springer Science & Business Media.
Carlquist S. 2014. Fibre dimorphism: cell type diversification as an evolutionary strategy in angiosperm woods: fibre dimorphism in angiosperm wood. Botanical Journal of the Linnean Society 174: 44–67.
Carlquist S. 2018. Living Cells in Wood 3. Overview; functional anatomy of the parenchyma network. The Botanical Review 84: 242–294.
Carvalho EC, Souza BC, Silva MS, et al.. 2022. Xylem anatomical traits determine the variation in wood density and water storage of plants in tropical semiarid climate. Flora 298: 152185.
Chattaway M. 1951. Morphological and functional variations in the rays of pored timbers. Australian Journal of Biological Sciences 4: 12. PubMed
Chen Z, Zhu S, Zhang Y, et al.. 2020. Tradeoff between storage capacity and embolism resistance in the xylem of temperate broadleaf tree species. Tree Physiology 40: 1029–1042. PubMed
Desdevises Y, Legendre P, Azouzi L, Morand S. 2003. Quantifying phylogenetically structured environmental variation. Evolution 57: 2647–2652. PubMed
Doležal J, Klimeš A, Dvorský M, Říha P, Klimešová J, Schweingruber F. 2019. Disentangling evolutionary, environmental and morphological drivers of plant anatomical adaptations to drought and cold in Himalayan graminoids. Oikos 128: 1576–1587.
Doležal J, Kučerová A, Jandová V, et al.. 2021. Anatomical adaptations in aquatic and wetland dicot plants: Disentangling the environmental, morphological and evolutionary signals. Environmental and Experimental Botany 187: 104495–104412.
Doležal J, Dančák M, Kučera J, et al.. 2022. Fire, climate and biotic interactions shape diversity patterns along an Afrotropical elevation gradient. Journal of Biogeography 49: 1248–1259.
Doležal J, Korznikov K, Altman J, et al.. 2023. Ecological niches of epiphyllous bryophytes along Afrotropical elevation gradient. Oikos 2023: e09772.
Dória LC, Sonsin-Oliveira J, Rossi S, Marcati CR. 2022. Functional trade-offs in volume allocation to xylem cell types in 75 species from the Brazilian savanna Cerrado. Annals of Botany 130: 445–456. PubMed PMC
Fajardo A, Piper FI, García-Cervigón AI. 2022. The intraspecific relationship between wood density, vessel diameter and other traits across environmental gradients. Functional Ecology 36: 1585–1598.
Farooq TH, Yasmeen S, Shakoor A, et al.. 2023. Xylem anatomical responses of Larix gmelinii and Pinus sylvestris influenced by the climate of Daxing’an mountains in Northeastern China. Frontiers in Plant Science 14: 1095888. PubMed PMC
Fisher JB, Goldstein G, Jones TJ, Cordell S. 2007. Wood vessel diameter is related to elevation and genotype in the Hawaiian tree Metrosideros polymorpha (Myrtaceae). American Journal of Botany 94: 709–715. PubMed
García-Cervigón AI, Fajardo A, Caetano-Sánchez C, Camarero JJ, Olano JM. 2020. Xylem anatomy needs to change, so that conductivity can stay the same: xylem adjustments across elevation and latitude in Nothofagus pumilio. Annals of Botany 125: 1101–1112. PubMed PMC
Gleason SM, Westoby M, Jansen S, et al.. 2016. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. The New Phytologist 209: 123–136. PubMed
Godfrey JM, Riggio J, Orozco J, Guzmán-Delgado P, Chin ARO, Zwieniecki MA. 2020. Ray fractions and carbohydrate dynamics of tree species along a 2750 m elevation gradient indicate climate response, not spatial storage limitation. New Phytologist 225: 2314–2330. PubMed
Hacke UG, Jacobsen AL, Pratt RB. 2022. Vessel diameter and vulnerability to drought-induced embolism: within-tissue and across-species patterns and the issue of survivorship bias. IAWA Journal 44: 304–319.
Herrera-Ramírez D, Sierra CA, Römermann C, et al.. 2021. Starch and lipid storage strategies in tropical trees relate to growth and mortality. The New Phytologist 230: 139–154. PubMed
IAWA Committee. 1989. IAWA list of microscopic features for hardwood identification. IAWA Bulletin 10: 219–332.
Janssen TAJ, Hölttä T, Fleischer K, Naudts K, Dolman H. 2020. Wood allocation trade-offs between fiber wall, fiber lumen, and axial parenchyma drive drought resistance in neotropical trees. Plant, Cell & Environment 43: 965–980. PubMed PMC
Jupa R, Plavcová L, Gloser V, Jansen S. 2016. Linking xylem water storage with anatomical parameters in five temperate tree species. Tree Physiology 36: 756–769. PubMed
Kawai K, Minagi K, Nakamura T, Saiki S-T, Yazaki K, Ishida A. 2022. Parenchyma underlies the interspecific variation of xylem hydraulics and carbon storage across 15 woody species on a subtropical island in Japan. Tree Physiology 42: 337–350. PubMed
Kedrov GB. 2012. Functioning wood. Wulfenia 19: 57–95.
Kiorapostolou N, Da Sois L, Petruzzellis F, et al.. 2019. Vulnerability to xylem embolism correlates to wood parenchyma fraction in angiosperms but not in gymnosperms. Tree Physiology 39: 1675–1684. PubMed
Kotowska MM, Wright IJ, Westoby M. 2020. Parenchyma abundance in wood of evergreen trees varies independently of nutrients. Frontiers in Plant Science 11: 86. PubMed PMC
Kribs DA. 1935. Salient lines of structural specialization in the wood rays of Dicotyledons. Botanical Gazette 96: 547–557.
Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S. 2011. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. The New Phytologist 190: 709–723. PubMed
Martínez-Cabrera HI, Jones CS, Espino S, Schenk HJ. 2009. Wood anatomy and wood density in shrubs: Responses to varying aridity along transcontinental transects. American Journal of Botany 96: 1388–1398. PubMed
Morris H, Brodersen C, Schwarze FWMR, Jansen S. 2016a. The parenchyma of secondary xylem and its critical role in tree defense against fungal decay in relation to the codit model. Frontiers in Plant Science 7: 1665. PubMed PMC
Morris H, Plavcová L, Cvecko P, et al.. 2016b. A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. The New Phytologist 209: 1553–1565. PubMed PMC
Morris H, Gillingham MAF, Plavcová L, et al.. 2018. Vessel diameter is related to amount and spatial arrangement of axial parenchyma in woody angiosperms. Plant, Cell & Environment 41: 245–260. PubMed
Nardini A, Lo Gullo MA, Salleo S. 2011. Refilling embolized xylem conduits: is it a matter of phloem unloading? Plant Science 180: 604–611. PubMed
Olson ME, Rosell JA, Martínez-Pérez C, et al.. 2020. Xylem vessel diameter-shoot length scaling: ecological significance of porosity types and other traits. Ecological Monographs 90: e01410.
Olson ME, Anfodillo T, Gleason SM, McCulloh KA. 2021. Tip-to-base xylem conduit widening as an adaptation: causes, consequences, and empirical priorities. The New Phytologist 229: 1877–1893. PubMed
Pfautsch S, Hölttä T, Mencuccini M. 2015. Hydraulic functioning of tree stems—fusing ray anatomy, radial transfer and capacitance. Tree Physiology 35: 706–722. PubMed
Pinheiro J, Bates D, DebRoy S, et al.. 2017. Package ‘nlme’. Linear and nonlinear mixed effects models, version 3.1-137. https://CRAN.R-project.org/packages/nlme (20 March 2024, date last accessed).
Plavcová L, Hoch G, Morris H, Ghiasi S, Jansen S. 2016. The amount of parenchyma and living fibers affects storage of nonstructural carbohydrates in young stems and roots of temperate trees. American Journal of Botany 103: 603–612. PubMed
Plavcová L, Gallenmüller F, Morris H, Khatamirad M, Jansen S, Speck T. 2019. Mechanical properties and structure–function trade-offs in secondary xylem of young roots and stems. Journal of Experimental Botany 70: 3679–3691. PubMed
Plavcová L, Olson ME, Jandová V, Doležal J. 2023. Parenchyma is not the sole site of storage: storage in living fibres. IAWA Journal 44: 465–476.
Pratt RB, Jacobsen AL. 2017. Conflicting demands on angiosperm xylem: Tradeoffs among storage, transport and biomechanics: Tradeoffs in xylem function. Plant, Cell & Environment 40: 897–913. PubMed
Pratt RB, Jacobsen AL, Ewers FW, Davis SD. 2007. Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. The New Phytologist 174: 787–798. PubMed
Pratt RB, Tobin MF, Jacobsen AL, et al.. 2021. Starch storage capacity of sapwood is related to dehydration avoidance during drought. American Journal of Botany 108: 91–101. PubMed
Řeháková K, Čapková K, Altman J, Dančák M, Majeský L, Doležal J. 2022. Contrasting patterns of soil chemistry and vegetation cover determine diversity changes of soil phototrophs along an Afrotropical elevation gradient. Ecosystems 25: 1020–1036.
Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. PubMed
Schweingruber FH, Kučerová A, Adamec L, Doležal J. 2020. Anatomic atlas of aquatic and wetland plant stems. anatomic atlas of aquatic and wetland plant stems. Cham: Springer Nature Switzerland AG, 1–487.
Słupianek A, Dolzblasz A, Sokołowska K. 2021. Xylem parenchyma—role and relevance in wood functioning in trees. Plants (Basel, Switzerland) 10: 1247. PubMed PMC
Spicer R. 2014. Symplasmic networks in secondary vascular tissues: parenchyma distribution and activity supporting long-distance transport. Journal of Experimental Botany 65: 1829–1848. PubMed
ter Braak CJF, Smilauer P. 2012. Canoco reference manual and user’s guide: software for ordination, version 5.0. Microcomputer Power. Biometris.
The GIMP Development Team. 2019. GIMP. https://www.gimp.org (20 March 2024, date last accessed).
Tyree MT, Yang S. 1990. Water-storage capacity of Thuja, Tsuga and Acer stems measured by dehydration isotherms: the contribution of capillary water and cavitation. Planta 182: 420–426. PubMed
Zhang G, Mao Z, Fortunel C, et al.. 2022. Parenchyma fractions drive the storage capacity of nonstructural carbohydrates across a broad range of tree species. American Journal of Botany 109: 535–549. PubMed
Zheng J, Martínez-Cabrera HI. 2013. Wood anatomical correlates with theoretical conductivity and wood density across China: evolutionary evidence of the functional differentiation of axial and radial parenchyma. Annals of Botany 112: 927–935. PubMed PMC
Ziemińska K, Westoby M, Wright IJ. 2015. Broad anatomical variation within a narrow wood density range—a study of twig wood across 69 Australian angiosperms. PLoS One 10: e0124892. PubMed PMC