Natalizumab promotes anti-inflammatory and repair effects in multiple sclerosis
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38527011
PubMed Central
PMC10962820
DOI
10.1371/journal.pone.0300914
PII: PONE-D-23-42506
Knihovny.cz E-zdroje
- MeSH
- antiflogistika terapeutické užití MeSH
- biologické markery metabolismus MeSH
- imunologické faktory terapeutické užití MeSH
- lidé MeSH
- natalizumab terapeutické užití MeSH
- proteom MeSH
- relabující-remitující roztroušená skleróza * farmakoterapie mozkomíšní mok MeSH
- roztroušená skleróza * farmakoterapie mozkomíšní mok MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiflogistika MeSH
- biologické markery MeSH
- imunologické faktory MeSH
- natalizumab MeSH
- proteom MeSH
BACKGROUND: Multiple sclerosis is an inflammatory and degenerative disease of the central nervous system leading to demyelination and axonal loss. Relapsing-remitting multiple sclerosis (RRMS) is commonly treated by anti-inflammatory drugs, where one of the most effective drugs to date is the monoclonal antibody natalizumab. METHODS: The cerebrospinal fluid (CSF) proteome was analyzed in 56 patients with RRMS before and after natalizumab treatment, using label-free mass spectrometry and a subset of the changed proteins were verified by parallel reaction monitoring in a new cohort of 20 patients, confirming the majority of observed changes. RESULTS: A total of 287 differentially abundant proteins were detected including (i) the decrease of proteins with roles in immunity, such as immunoglobulin heavy constant mu, chitinase-3-like protein 1 and chitotriosidase, (ii) an increase of proteins involved in metabolism, such as lactate dehydrogenase A and B and malate-dehydrogenase cytoplasmic, and (iii) an increase of proteins associated with the central nervous system, including lactadherin and amyloid precursor protein. Comparison with the CSF-PR database provided evidence that natalizumab counters protein changes commonly observed in RRMS. Furthermore, vitamin-D binding protein and apolipoprotein 1 and 2 were unchanged during treatment with natalizumab, implying that these may be involved in disease activity unaffected by natalizumab. CONCLUSIONS: Our study revealed that some of the previously suggested biomarkers for MS were affected by the natalizumab treatment while others were not. Proteins not previously suggested as biomarkers were also found affected by the treatment. In sum, the results provide new information on how the natalizumab treatment impacts the CSF proteome of MS patients, and points towards processes affected by the treatment. These findings ought to be explored further to disclose potential novel disease mechanisms and predict treatment responses.
Computational Biology Unit Department of Informatics University of Bergen Bergen Norway
Department of Clinical Medicine University of Bergen Bergen Norway
Neuro SysMed Department of Neurology Haukeland University Hospital Bergen Norway
Proteomics Unit Department of Biomedicine University of Bergen Bergen Norway
Zobrazit více v PubMed
Hauser SL, Cree BAC. Treatment of Multiple Sclerosis: A Review. Am J Med. 2020;133(12):1380–90 e2. doi: 10.1016/j.amjmed.2020.05.049 ; PubMed Central PMCID: PMC7704606. PubMed DOI PMC
Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O. Multiple sclerosis. Lancet. 2018;391(10130):1622–36. doi: 10.1016/S0140-6736(18)30481-1 . PubMed DOI
Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sorensen PS, Thompson AJ, et al.. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83(3):278–86. doi: 10.1212/WNL.0000000000000560 ; PubMed Central PMCID: PMC4117366. PubMed DOI PMC
Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, et al.. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2006;354(9):899–910. doi: 10.1056/NEJMoa044397 . PubMed DOI
Yousry TA, Major EO, Ryschkewitsch C, Fahle G, Fischer S, Hou J, et al.. Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy. N Engl J Med. 2006;354(9):924–33. doi: 10.1056/NEJMoa054693 ; PubMed Central PMCID: PMC1934511. PubMed DOI PMC
Torkildsen O, Myhr KM, Bo L. Disease-modifying treatments for multiple sclerosis—a review of approved medications. Eur J Neurol. 2016;23 Suppl 1:18–27. doi: 10.1111/ene.12883 ; PubMed Central PMCID: PMC4670697. PubMed DOI PMC
Aasebo E, Opsahl JA, Bjorlykke Y, Myhr KM, Kroksveen AC, Berven FS. Effects of blood contamination and the rostro-caudal gradient on the human cerebrospinal fluid proteome. PLoS One. 2014;9(3):e90429. doi: 10.1371/journal.pone.0090429 ; PubMed Central PMCID: PMC3943968. PubMed DOI PMC
Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 2016;11(12):2301–19. doi: 10.1038/nprot.2016.136 . PubMed DOI
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics. 2014;13(9):2513–26. doi: 10.1074/mcp.M113.031591 ; PubMed Central PMCID: PMC4159666. PubMed DOI PMC
Guldbrandsen A, Farag Y, Kroksveen AC, Oveland E, Lereim RR, Opsahl JA, et al.. CSF-PR 2.0: An Interactive Literature Guide to Quantitative Cerebrospinal Fluid Mass Spectrometry Data from Neurodegenerative Disorders. Mol Cell Proteomics. 2017;16(2):300–9. doi: 10.1074/mcp.O116.064477 ; PubMed Central PMCID: PMC5294216. PubMed DOI PMC
Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. J Proteome Res. 2019;18(2):623–32. doi: 10.1021/acs.jproteome.8b00702 ; PubMed Central PMCID: PMC6800166. PubMed DOI PMC
Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005;21(16):3448–9. doi: 10.1093/bioinformatics/bti551 . PubMed DOI
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al.. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. doi: 10.1101/gr.1239303 ; PubMed Central PMCID: PMC403769. PubMed DOI PMC
MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, et al.. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 2010;26(7):966–8. Epub 2010/02/12. doi: 10.1093/bioinformatics/btq054 [pii] ; PubMed Central PMCID: PMC2844992. PubMed DOI PMC
Pino LK, Searle BC, Bollinger JG, Nunn B, MacLean B, MacCoss MJ. The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrom Rev. 2020;39(3):229–44. doi: 10.1002/mas.21540 ; PubMed Central PMCID: PMC5799042. PubMed DOI PMC
Team RC. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2020.
Stoop MP, Singh V, Stingl C, Martin R, Khademi M, Olsson T, et al.. Effects of natalizumab treatment on the cerebrospinal fluid proteome of multiple sclerosis patients. J Proteome Res. 2013;12(3):1101–7. doi: 10.1021/pr3012107 . PubMed DOI
Ginestet C. ggplot2: Elegant Graphics for Data Analysis. J R Stat Soc a Stat. 2011;174:245–. WOS:000285969600026.
Lakritz JR, Thibault DM, Robinson JA, Campbell JH, Miller AD, Williams KC, et al.. alpha4-Integrin Antibody Treatment Blocks Monocyte/Macrophage Traffic to, Vascular Cell Adhesion Molecule-1 Expression in, and Pathology of the Dorsal Root Ganglia in an SIV Macaque Model of HIV-Peripheral Neuropathy. Am J Pathol. 2016;186(7):1754–61. doi: 10.1016/j.ajpath.2016.03.007 ; PubMed Central PMCID: PMC4929389. PubMed DOI PMC
Hiramatsu K, Serada S, Enomoto T, Takahashi Y, Nakagawa S, Nojima S, et al.. LSR Antibody Therapy Inhibits Ovarian Epithelial Tumor Growth by Inhibiting Lipid Uptake. Cancer Res. 2018;78(2):516–27. doi: 10.1158/0008-5472.CAN-17-0910 . PubMed DOI
Akerlof E, Jornvall H, Slotte H, Pousette A. Identification of apolipoprotein A1 and immunoglobulin as components of a serum complex that mediates activation of human sperm motility. Biochemistry. 1991;30(37):8986–90. doi: 10.1021/bi00101a011 . PubMed DOI
Silvestre JS, Thery C, Hamard G, Boddaert J, Aguilar B, Delcayre A, et al.. Lactadherin promotes VEGF-dependent neovascularization. Nat Med. 2005;11(5):499–506. doi: 10.1038/nm1233 . PubMed DOI
Uchiyama A, Yamada K, Ogino S, Yokoyama Y, Takeuchi Y, Udey MC, et al.. MFG-E8 regulates angiogenesis in cutaneous wound healing. Am J Pathol. 2014;184(7):1981–90. doi: 10.1016/j.ajpath.2014.03.017 ; PubMed Central PMCID: PMC4076467. PubMed DOI PMC
Musrati RA, Kollarova M, Mernik N, Mikulasova D. Malate dehydrogenase: distribution, function and properties. Gen Physiol Biophys. 1998;17(3):193–210. . PubMed
Nguyen G, Delarue F, Burckle C, Bouzhir L, Giller T, Sraer JD. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest. 2002;109(11):1417–27. doi: 10.1172/JCI14276 ; PubMed Central PMCID: PMC150992. PubMed DOI PMC
Hirose T, Cabrera-Socorro A, Chitayat D, Lemonnier T, Feraud O, Cifuentes-Diaz C, et al.. ATP6AP2 variant impairs CNS development and neuronal survival to cause fulminant neurodegeneration. J Clin Invest. 2019;129(5):2145–62. doi: 10.1172/JCI79990 ; PubMed Central PMCID: PMC6486358. PubMed DOI PMC
Mi S, Miller RH, Lee X, Scott ML, Shulag-Morskaya S, Shao Z, et al.. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci. 2005;8(6):745–51. doi: 10.1038/nn1460 . PubMed DOI
Mi S, Hu B, Hahm K, Luo Y, Kam Hui ES, Yuan Q, et al.. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat Med. 2007;13(10):1228–33. doi: 10.1038/nm1664 . PubMed DOI
Sun JJ, Ren QG, Xu L, Zhang ZJ. LINGO-1 antibody ameliorates myelin impairment and spatial memory deficits in experimental autoimmune encephalomyelitis mice. Sci Rep. 2015;5:14235. doi: 10.1038/srep14235 ; PubMed Central PMCID: PMC4585639. PubMed DOI PMC
Cadavid D, Mellion M, Hupperts R, Edwards KR, Calabresi PA, Drulovic J, et al.. Safety and efficacy of opicinumab in patients with relapsing multiple sclerosis (SYNERGY): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2019;18(9):845–56. doi: 10.1016/S1474-4422(19)30137-1 . PubMed DOI
Cadavid D, Balcer L, Galetta S, Aktas O, Ziemssen T, Vanopdenbosch L, et al.. Safety and efficacy of opicinumab in acute optic neuritis (RENEW): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2017;16(3):189–99. doi: 10.1016/S1474-4422(16)30377-5 . PubMed DOI
Bielow C, Mastrobuoni G, Kempa S. Proteomics Quality Control: Quality Control Software for MaxQuant Results. J Proteome Res. 2016;15(3):777–87. doi: 10.1021/acs.jproteome.5b00780 . PubMed DOI
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al.. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13(9):731–40. doi: 10.1038/nmeth.3901 . PubMed DOI
Mancuso R, Franciotta D, Rovaris M, Caputo D, Sala A, Hernis A, et al.. Effects of natalizumab on oligoclonal bands in the cerebrospinal fluid of multiple sclerosis patients: a longitudinal study. Mult Scler. 2014;20(14):1900–3. doi: 10.1177/1352458514538111 . PubMed DOI
Warnke C, Stettner M, Lehmensiek V, Dehmel T, Mausberg AK, von Geldern G, et al.. Natalizumab exerts a suppressive effect on surrogates of B cell function in blood and CSF. Mult Scler. 2015;21(8):1036–44. doi: 10.1177/1352458514556296 . PubMed DOI
Largey F, Jelcic I, Sospedra M, Heesen C, Martin R, Jelcic I. Effects of natalizumab therapy on intrathecal antiviral antibody responses in MS. Neurol Neuroimmunol Neuroinflamm. 2019;6(6). doi: 10.1212/NXI.0000000000000621 ; PubMed Central PMCID: PMC6807967. PubMed DOI PMC
Breij EC, Brink BP, Veerhuis R, van den Berg C, Vloet R, Yan R, et al.. Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann Neurol. 2008;63(1):16–25. doi: 10.1002/ana.21311 . PubMed DOI
Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al.. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162–73. doi: 10.1016/S1474-4422(17)30470-2 . PubMed DOI
Mailand MT, Frederiksen JL. Intrathecal IgM as a Prognostic Marker in Multiple Sclerosis. Mol Diagn Ther. 2020;24(3):263–77. doi: 10.1007/s40291-020-00455-w . PubMed DOI
von Glehn F, Farias AS, de Oliveira AC, Damasceno A, Longhini AL, Oliveira EC, et al.. Disappearance of cerebrospinal fluid oligoclonal bands after natalizumab treatment of multiple sclerosis patients. Mult Scler. 2012;18(7):1038–41. doi: 10.1177/1352458511428465 . PubMed DOI
Paul A, Comabella M, Gandhi R. Biomarkers in Multiple Sclerosis. Cold Spring Harb Perspect Med. 2019;9(3). doi: 10.1101/cshperspect.a029058 ; PubMed Central PMCID: PMC6396336. PubMed DOI PMC
Rinker JR 2nd, Trinkaus K, Cross AH. Elevated CSF free kappa light chains correlate with disability prognosis in multiple sclerosis. Neurology. 2006;67(7):1288–90. doi: 10.1212/01.wnl.0000238107.31364.21 . PubMed DOI
Pinteac R, Montalban X, Comabella M. Chitinases and chitinase-like proteins as biomarkers in neurologic disorders. Neurol Neuroimmunol Neuroinflamm. 2021;8(1). doi: 10.1212/NXI.0000000000000921 ; PubMed Central PMCID: PMC7803328. PubMed DOI PMC
Comabella M, Fernandez M, Martin R, Rivera-Vallve S, Borras E, Chiva C, et al.. Cerebrospinal fluid chitinase 3-like 1 levels are associated with conversion to multiple sclerosis. Brain. 2010;133(Pt 4):1082–93. doi: 10.1093/brain/awq035 . PubMed DOI
Oldoni E, Smets I, Mallants K, Vandebergh M, Van Horebeek L, Poesen K, et al.. CHIT1 at Diagnosis Reflects Long-Term Multiple Sclerosis Disease Activity. Ann Neurol. 2020;87(4):633–45. doi: 10.1002/ana.25691 ; PubMed Central PMCID: PMC7187166. PubMed DOI PMC
Lewin A, Hamilton S, Witkover A, Langford P, Nicholas R, Chataway J, et al.. Free serum haemoglobin is associated with brain atrophy in secondary progressive multiple sclerosis. Wellcome Open Res. 2016;1:10. doi: 10.12688/wellcomeopenres.9967.2 ; PubMed Central PMCID: PMC5159626. PubMed DOI PMC
Elishkevitz KP, Nussinovitch U, Nussinovitch M. Lactic dehydrogenase isoenzymes in adolescents with multiple sclerosis. Pediatr Neurol. 2009;41(4):259–62. doi: 10.1016/j.pediatrneurol.2009.04.018 . PubMed DOI
Bero AW, Yan P, Roh JH, Cirrito JR, Stewart FR, Raichle ME, et al.. Neuronal activity regulates the regional vulnerability to amyloid-beta deposition. Nat Neurosci. 2011;14(6):750–6. doi: 10.1038/nn.2801 ; PubMed Central PMCID: PMC3102784. PubMed DOI PMC
Albanese M, Zagaglia S, Landi D, Boffa L, Nicoletti CG, Marciani MG, et al.. Cerebrospinal fluid lactate is associated with multiple sclerosis disease progression. J Neuroinflammation. 2016;13:36. doi: 10.1186/s12974-016-0502-1 ; PubMed Central PMCID: PMC4750170. PubMed DOI PMC
Esmael A, Talaat M, Egila H, Eltoukhy K. Mitochondrial dysfunction and serum lactate as a biomarker for the progression and disability in MS and its correlation with the radiological findings. Neurol Res. 2021;43(7):582–90. doi: 10.1080/01616412.2021.1893567 . PubMed DOI
Pietroboni AM, Schiano di Cola F, Scarioni M, Fenoglio C, Spano B, Arighi A, et al.. CSF beta-amyloid as a putative biomarker of disease progression in multiple sclerosis. Mult Scler. 2017;23(8):1085–91. doi: 10.1177/1352458516674566 . PubMed DOI
Pietroboni AM, Caprioli M, Carandini T, Scarioni M, Ghezzi L, Arighi A, et al.. CSF beta-amyloid predicts prognosis in patients with multiple sclerosis. Mult Scler. 2019;25(9):1223–31. doi: 10.1177/1352458518791709 . PubMed DOI
Pietroboni AM, Carandini T, Colombi A, Mercurio M, Ghezzi L, Giulietti G, et al.. Amyloid PET as a marker of normal-appearing white matter early damage in multiple sclerosis: correlation with CSF beta-amyloid levels and brain volumes. Eur J Nucl Med Mol Imaging. 2019;46(2):280–7. doi: 10.1007/s00259-018-4182-1 . PubMed DOI
Gehrmann J, Banati RB, Cuzner ML, Kreutzberg GW, Newcombe J. Amyloid precursor protein (APP) expression in multiple sclerosis lesions. Glia. 1995;15(2):141–51. doi: 10.1002/glia.440150206 . PubMed DOI
Ottervald J, Franzen B, Nilsson K, Andersson LI, Khademi M, Eriksson B, et al.. Multiple sclerosis: Identification and clinical evaluation of novel CSF biomarkers. J Proteomics. 2010;73(6):1117–32. doi: 10.1016/j.jprot.2010.01.004 . PubMed DOI
McComb M, Krikheli M, Uher T, Browne RW, Srpova B, Oechtering J, et al.. Neuroprotective associations of apolipoproteins A-I and A-II with neurofilament levels in early multiple sclerosis. J Clin Lipidol. 2020;14(5):675–84 e2. doi: 10.1016/j.jacl.2020.07.001 . PubMed DOI
Lublin FD, Haring DA, Ganjgahi H, Ocampo A, Hatami F, Cuklina J, et al.. How patients with multiple sclerosis acquire disability. Brain. 2022;145(9):3147–61. doi: 10.1093/brain/awac016 ; PubMed Central PMCID: PMC9536294. PubMed DOI PMC
Absinta M, Sati P, Masuzzo F, Nair G, Sethi V, Kolb H, et al.. Association of Chronic Active Multiple Sclerosis Lesions With Disability In Vivo. JAMA Neurol. 2019;76(12):1474–83. doi: 10.1001/jamaneurol.2019.2399 ; PubMed Central PMCID: PMC6692692. PubMed DOI PMC
Harris VK, Tuddenham JF, Sadiq SA. Biomarkers of multiple sclerosis: current findings. Degener Neurol Neuromuscul Dis. 2017;7:19–29. doi: 10.2147/DNND.S98936 ; PubMed Central PMCID: PMC6053099. PubMed DOI PMC
Harris VK, Sadiq SA. Biomarkers of therapeutic response in multiple sclerosis: current status. Mol Diagn Ther. 2014;18(6):605–17. doi: 10.1007/s40291-014-0117-0 ; PubMed Central PMCID: PMC4245485. PubMed DOI PMC