Autologous T-Cell-Free Antigen Presentation System Unveils hCMV-Specific NK Cell Response
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
22-75-00135
Russian Science Foundation
PubMed
38534374
PubMed Central
PMC10969127
DOI
10.3390/cells13060530
PII: cells13060530
Knihovny.cz E-zdroje
- Klíčová slova
- ERK1/2, HLA-E, IFNγ, NKG2C, RNAseq, cytokines, hCMV, memory NK cells,
- MeSH
- buňky NK MeSH
- cytokiny metabolismus MeSH
- cytomegalovirové infekce * MeSH
- Cytomegalovirus MeSH
- lidé MeSH
- prezentace antigenu * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokiny MeSH
NK cells play a decisive role in controlling hCMV infection by combining innate and adaptive-like immune reactions. The hCMV-derived VMAPRTLFL (LFL) peptide is a potent activator of NKG2C+ NK cells. Proposed here is an autologous system of LFL stimulation without T lymphocytes and exogenous cytokines that allows us to evaluate NK-cell hCMV-specific responses in more native settings. In this model, we evaluated LFL-induced IFNγ production, focusing on signaling pathways and the degranulation and proliferation of NK cells orchestrated by microenvironment cytokine production and analyzed the transcriptome of expanded NK cells. NK cells of individuals having high anti-hCMV-IgG levels, in contrast to NK cells of hCMV-seronegative and low-positive donors, displayed increased IFNγ production and degranulation and activation levels and enhanced proliferation upon LFL stimulation. Cytokine profiles of these LFL-stimulated cultures demonstrated a proinflammatory shift. LFL-induced NK-cell IFNγ production was dependent on the PI3K and Ras/Raf/Mek signaling pathways, independently of cytokines. In hCMV-seropositive individuals, this model allowed obtaining NK-cell antigen-specific populations proliferating in response to LFL. The transcriptomic profile of these expanded NK cells showed increased adaptive gene expression and metabolic activation. The results complement the existing knowledge about hCMV-specific NK-cell response. This model may be further exploited for the identification and characterization of antigen-specific NK cells.
Abu Dhabi Stem Cells Center Abu Dhabi United Arab Emirates
Central European Institute of Technology Masaryk University 60200 Brno Czech Republic
Ecole Polytechnique Federale de Lausanne 1015 Lausanne Switzerland
Zobrazit více v PubMed
Sivori S., Vacca P., Del Zotto G., Munari E., Mingari M.C., Moretta L. Human NK Cells: Surface Receptors, Inhibitory Checkpoints, and Translational Applications. Cell. Mol. Immunol. 2019;16:430–441. doi: 10.1038/s41423-019-0206-4. PubMed DOI PMC
Paust S., Von Andrian U.H. Natural Killer Cell Memory. Nat. Immunol. 2011;12:500–508. doi: 10.1038/ni.2032. PubMed DOI
Zuhair M., Smit G.S.A., Wallis G., Jabbar F., Smith C., Devleesschauwer B., Griffiths P. Estimation of the Worldwide Seroprevalence of Cytomegalovirus: A Systematic Review and Meta-Analysis. Rev. Med. Virol. 2019;29:e2034. doi: 10.1002/rmv.2034. PubMed DOI
Jackson S.E., Mason G.M., Wills M.R. Human Cytomegalovirus Immunity and Immune Evasion. Virus Res. 2011;157:151–160. doi: 10.1016/j.virusres.2010.10.031. PubMed DOI
Tomasec P., Braud V.M., Rickards C., Powell M.B., McSharry B.P., Gadola S., Cerundolo V., Borysiewicz L.K., McMichae A.J., Wilkinson G.W.G. Surface Expression of HLA-E, an Inhibitor of Natural Killer Cells, Enhanced by Human Cytomegalovirus GpUL40. Science. 2000;287:1031–1033. doi: 10.1126/science.287.5455.1031. PubMed DOI
Barnes P.D., Grundy J.E. Down-Regulation of the Class I HLA Heterodimer and Beta 2-Microglobulin on the Surface of Cells Infected with Cytomegalovirus. Pt 9J. Gen. Virol. 1992;73:2395–2403. doi: 10.1099/0022-1317-73-9-2395. PubMed DOI
Halenius A., Gerke C., Hengel H. Classical and Non-Classical MHC I Molecule Manipulation by Human Cytomegalovirus: So Many Targets—But How Many Arrows in the Quiver? Cell. Mol. Immunol. 2014;12:139–153. doi: 10.1038/cmi.2014.105. PubMed DOI PMC
Warren A.P., Ducroq D.H., Lehner P.J., Borysiewicz L.K. Human Cytomegalovirus-Infected Cells Have Unstable Assembly of Major Histocompatibility Complex Class I Complexes and Are Resistant to Lysis by Cytotoxic T Lymphocytes. J. Virol. 1994;68:2822–2829. doi: 10.1128/jvi.68.5.2822-2829.1994. PubMed DOI PMC
Tomazin R., Boname J., Hedge N.R., Lewinsohn D.M., Altschuler Y., Jones T.R., Cresswell P., Nelson J.A., Riddell S.R., Johnson D.C. Cytomegalovirus US2 Destroys Two Components of the MHC Class II Pathway, Preventing Recognition by CD4+ T Cells. Nat. Med. 1999;5:1039–1043. doi: 10.1038/12478. PubMed DOI
Wang E.C.Y., McSharry B., Retiere C., Tomasec P., Williams S., Borysiewicz L.K., Braud V.M., Wilkinson G.W.G. From the Cover: UL40-Mediated NK Evasion during Productive Infection with Human Cytomegalovirus. Proc. Natl. Acad. Sci. USA. 2002;99:7570. doi: 10.1073/pnas.112680099. PubMed DOI PMC
Ulbrecht M., Martinozzi S., Grzeschik M., Hengel H., Ellwart J.W., Pla M., Weiss E.H. Cutting Edge: The Human Cytomegalovirus UL40 Gene Product Contains a Ligand for HLA-E and Prevents NK Cell-Mediated Lysis. J. Immunol. 2000;164:5019–5022. doi: 10.4049/jimmunol.164.10.5019. PubMed DOI
Heatley S.L., Pietra G., Lin J., Widjaja J.M.L., Harpur C.M., Lester S., Rossjohn J., Szer J., Schwarer A., Bradstock K., et al. Polymorphism in Human Cytomegalovirus UL40 Impacts on Recognition of Human Leukocyte Antigen-E (HLA-E) by Natural Killer Cells. J. Biol. Chem. 2013;288:8679–8690. doi: 10.1074/jbc.M112.409672. PubMed DOI PMC
Hammer Q., Rückert T., Borst E.M., Dunst J., Haubner A., Durek P., Heinrich F., Gasparoni G., Babic M., Tomic A., et al. Peptide-Specific Recognition of Human Cytomegalovirus Strains Controls Adaptive Natural Killer Cells Article. Nat. Immunol. 2018;19:453–463. doi: 10.1038/s41590-018-0082-6. PubMed DOI
Sijmons S., Thys K., Ngwese M.M., Van Damme E., Dvorak J., Van Loock M., Li G., Tachezy R., Busson L., Aerssens J., et al. High-Throughput Analysis of Human Cytomegalovirus Genome Diversity Highlights the Widespread Occurrence of Gene-Disrupting Mutations and Pervasive Recombination. J. Virol. 2015;89:7673. doi: 10.1128/JVI.00578-15. PubMed DOI PMC
Dargan D.J., Douglas E., Cunningham C., Jamieson F., Stanton R.J., Baluchova K., McSharry B.P., Tomasec P., Emery V.C., Percivalle E., et al. Sequential Mutations Associated with Adaptation of Human Cytomegalovirus to Growth in Cell Culture. J. Gen. Virol. 2010;91:1535. doi: 10.1099/vir.0.018994-0. PubMed DOI PMC
Cunningham C., Gatherer D., Hilfrich B., Baluchova K., Dargan D.J., Thomson M., Griffiths P.D., Wilkinson G.W.G., Schulz T.F., Davison A.J. Sequences of Complete Human Cytomegalovirus Genomes from Infected Cell Cultures and Clinical Specimens. J. Gen. Virol. 2010;91:605. doi: 10.1099/vir.0.015891-0. PubMed DOI PMC
Tomasec P., Wang E.C.Y., Davison A.J., Vojtesek B., Armstrong M., Griffin C., McSharry B.P., Morris R.J., Llewellyn-Lacey S., Rickards C., et al. Downregulation of Natural Killer Cell-Activating Ligand CD155 by Human Cytomegalovirus UL141. Nat. Immunol. 2005;6:181–188. doi: 10.1038/ni1156. PubMed DOI PMC
Davison A.J., Akter P., Cunningham C., Dolan A., Addison C., Dargan D.J., Hassan-Walker A.F., Emery V.C., Griffiths P.D., Wilkinson G.W.G. Homology between the Human Cytomegalovirus RL11 Gene Family and Human Adenovirus E3 Genes. J. Gen. Virol. 2003;84:657–663. doi: 10.1099/vir.0.18856-0. PubMed DOI
Valés-Gómez M., Reyburn H.T., Erskine R.A., López-Botet M., Strominger J.L. Kinetics and Peptide Dependency of the Binding of the Inhibitory NK Receptor CD94/NKG2-A and the Activating Receptor CD94/NKG2-C to HLA-E. EMBO J. 1999;18:4250. doi: 10.1093/emboj/18.15.4250. PubMed DOI PMC
Kaiser B.K., Barahmand-pour F., Paulsene W., Medley S., Geraghty D.E., Strong R.K. Interactions between NKG2x Immunoreceptors and HLA-E Ligands Display Overlapping Affinities and Thermodynamics. J. Immunol. 2005;174:2878–2884. doi: 10.4049/jimmunol.174.5.2878. PubMed DOI
Huisman B.D., Guan N., Rückert T., Garner L., Singh N.K., McMichael A.J., Gillespie G.M., Romagnani C., Birnbaum M.E. High-Throughput Characterization of HLA-E-Presented CD94/NKG2x Ligands Reveals Peptides Which Modulate NK Cell Activation. Nat. Commun. 2023;14:4809. doi: 10.1038/s41467-023-40220-1. PubMed DOI PMC
Lodoen M.B., Lanier L.L. Viral Modulation of NK Cell Immunity. Nat. Rev. Microbiol. 2005;3:59–69. doi: 10.1038/nrmicro1066. PubMed DOI
Gumá M., Budt M., Sáez A., Brckalo T., Hengel H., Angulo A., López-Botet M. Expansion of CD94/NKG2C+ NK Cells in Response to Human Cytomegalovirus-Infected Fibroblasts. Blood. 2006;107:3624–3631. doi: 10.1182/blood-2005-09-3682. PubMed DOI
Wu Z., Sinzger C., Frascaroli G., Reichel J., Bayer C., Wang L., Schirmbeck R., Mertens T. Human Cytomegalovirus-Induced NKG2Chi CD57hi Natural Killer Cells Are Effectors Dependent on Humoral Antiviral Immunity. J. Virol. 2013;87:7717. doi: 10.1128/JVI.01096-13. PubMed DOI PMC
Kovalenko E.I., Streltsova M.A., Kanevskiy L.M., Erokhina S.A., Telford W.G. Identification of Human Memory-Like NK Cells. Curr. Protoc. Cytom. 2017;79:9–50. doi: 10.1002/cpcy.13. PubMed DOI PMC
Kobyzeva P.A., Streltsova M.A., Erokhina S.A., Kanevskiy L.M., Telford W.G., Sapozhnikov A.M., Kovalenko E.I. CD56dim CD57- NKG2C+ NK Cells Retaining Proliferative Potential Are Possible Precursors of CD57+ NKG2C+ Memory-like NK Cells. J. Leukoc. Biol. 2020;108:1379–1395. doi: 10.1002/JLB.1MA0720-654RR. PubMed DOI PMC
Béziat V., Liu L.L., Malmberg J.A., Ivarsson M.A., Sohlberg E., Björklund A.T., Retière C., Sverremark-Ekström E., Traherne J., Ljungman P., et al. NK Cell Responses to Cytomegalovirus Infection Lead to Stable Imprints in the Human KIR Repertoire and Involve Activating KIRs. Blood. 2013;121:2678. doi: 10.1182/blood-2012-10-459545. PubMed DOI PMC
Gotthardt D., Trifinopoulos J., Sexl V., Putz E.M. JAK/STAT Cytokine Signaling at the Crossroad of NK Cell Development and Maturation. Front. Immunol. 2019;10:2590. doi: 10.3389/fimmu.2019.02590. PubMed DOI PMC
Freeman B.E., Raué H.-P., Hill A.B., Slifka M.K. Cytokine-Mediated Activation of NK Cells during Viral Infection. J. Virol. 2015;89:7922. doi: 10.1128/JVI.00199-15. PubMed DOI PMC
Sim M.J.W., Rajagopalan S., Altmann D.M., Boyton R.J., Sun P.D., Long E.O. Human NK Cell Receptor KIR2DS4 Detects a Conserved Bacterial Epitope Presented by HLA-C. Proc. Natl. Acad. Sci. USA. 2019;116:12964–12973. doi: 10.1073/pnas.1903781116. PubMed DOI PMC
Lanier L.L., Corliss B., Wu J., Phillips J.H. Association of DAP12 with Activating CD94/NKG2C NK Cell Receptors. Immunity. 1998;8:693–701. doi: 10.1016/S1074-7613(00)80574-9. PubMed DOI
Chen Y., Lu D., Churov A., Fu R. Research Progress on NK Cell Receptors and Their Signaling Pathways. Mediat. Inflamm. 2020;2020:6437057. doi: 10.1155/2020/6437057. PubMed DOI PMC
de Rham C., Ferrari-Lacraz S., Jendly S., Schneiter G., Dayer J.M., Villard J. The Proinflammatory Cytokines IL-2, IL-15 and IL-21 Modulate the Repertoire of Mature Human Natural Killer Cell Receptors. Arthritis Res. Ther. 2007;9:R125. doi: 10.1186/ar2336. PubMed DOI PMC
Terrén I., Orrantia A., Mosteiro A., Vitallé J., Zenarruzabeitia O., Borrego F. Metabolic Changes of Interleukin-12/15/18-Stimulated Human NK Cells. Sci. Rep. 2021;11:6472. doi: 10.1038/s41598-021-85960-6. PubMed DOI PMC
Lauwerys B.R., Renauld J.C., Houssiau F.A. Synergistic Proliferation and Activation of Natural Killer Cells by Interleukin 12 and Interleukin 18. Cytokine. 1999;11:822–830. doi: 10.1006/cyto.1999.0501. PubMed DOI
Cheon S., Song S.B., Jung M., Park Y., Bang J.W., Kim T.S., Park H., Kim C.H., Yang Y.-h., Bang S.I., et al. Sphingosine Kinase Inhibitor Suppresses IL-18-Induced Interferon-Gamma Production through Inhibition of P38 MAPK Activation in Human NK Cells. Biochem. Biophys. Res. Commun. 2008;374:74–78. doi: 10.1016/j.bbrc.2008.06.091. PubMed DOI
Dybkaer K., Iqbal J., Zhou G., Geng H., Xiao L., Schmitz A., d’Amore F., Chan W.C. Genome Wide Transcriptional Analysis of Resting and IL2 Activated Human Natural Killer Cells: Gene Expression Signatures Indicative of Novel Molecular Signaling Pathways. BMC Genom. 2007;8:230. doi: 10.1186/1471-2164-8-230. PubMed DOI PMC
Caligiuri M.A. Human Natural Killer Cells. Blood. 2008;112:461. doi: 10.1182/blood-2007-09-077438. PubMed DOI PMC
Rölle A., Pollmann J., Ewen E.M., Le V.T.K., Halenius A., Hengel H., Cerwenka A. IL-12–Producing Monocytes and HLA-E Control HCMV-Driven NK Cell Expansion. J. Clin. Investig. 2014;124:5305. doi: 10.1172/JCI77440. PubMed DOI PMC
Rückert T., Lareau C.A., Mashreghi M.F., Ludwig L.S., Romagnani C. Clonal Expansion and Epigenetic Inheritance of Long-Lasting NK Cell Memory. Nat. Immunol. 2022;23:1551–1563. doi: 10.1038/s41590-022-01327-7. PubMed DOI PMC
Rölle A., Meyer M., Calderazzo S., Jäger D., Momburg F. Distinct HLA-E Peptide Complexes Modify Antibody-Driven Effector Functions of Adaptive NK Cells. Cell Rep. 2018;24:1967–1976. doi: 10.1016/j.celrep.2018.07.069. PubMed DOI
Streltsova M., Erokhina S., Kanevskiy L., Grechikhina M., Kobyzeva P., Lee D., Telford W., Sapozhnikov A., Kovalenko E. Recurrent Stimulation of Natural Killer Cell Clones with K562 Expressing Membrane-Bound Interleukin-21 Affects Their Phenotype, Interferon-γ Production, and Lifespan. Int. J. Mol. Sci. 2019;20:443. doi: 10.3390/ijms20020443. PubMed DOI PMC
Bray N.L., Pimentel H., Melsted P., Pachter L. Near-Optimal Probabilistic RNA-Seq Quantification. Nat. Biotechnol. 2016;34:525–527. doi: 10.1038/nbt.3519. PubMed DOI
Love M.I., Huber W., Anders S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Wu T., Hu E., Xu S., Chen M., Guo P., Dai Z., Feng T., Zhou L., Tang W., Zhan L., et al. ClusterProfiler 4.0: A Universal Enrichment Tool for Interpreting Omics Data. Innovation. 2021;2:100141. doi: 10.1016/j.xinn.2021.100141. PubMed DOI PMC
Sottile R., Panjwani M.K., Lau C.M., Daniyan A.F., Tanaka K., Barker J.N., Brentjens R.J., Sun J.C., Le Luduec J.B., Hsu K.C. Human Cytomegalovirus Expands a CD8+ T Cell Population with Loss of BCL11B Expression and Gain of NK Cell Identity. Sci. Immunol. 2021;6:eabe6968. doi: 10.1126/sciimmunol.abe6968. PubMed DOI PMC
Lopez-Vergès S., Milush J.M., Schwartz B.S., Pando M.J., Jarjoura J., York V.A., Houchins J.P., Miller S., Kang S.-M., Norris P.J., et al. Expansion of a Unique CD57+NKG2Chi Natural Killer Cell Subset during Acute Human Cytomegalovirus Infection. Proc. Natl. Acad. Sci. USA. 2011;108:14725–14732. doi: 10.1073/pnas.1110900108. PubMed DOI PMC
Hanafi L.A., Gauchat D., Godin-Ethier J., Possamaï D., Duvignaud J.B., Leclerc D., Grandvaux N., Lapointe R. Fludarabine Downregulates Indoleamine 2,3-Dioxygenase in Tumors via a Proteasome-Mediated Degradation Mechanism. PLoS ONE. 2014;9:e99211. doi: 10.1371/journal.pone.0099211. PubMed DOI PMC
Honda M., Kanno T., Fujita Y., Gotoh A., Nakano T., Nishizaki T. Mesothelioma Cell Proliferation through Autocrine Activation of PDGF-Ββ Receptor. Cell. Physiol. Biochem. 2012;29:667–674. doi: 10.1159/000176386. PubMed DOI
Erokhina S.A., Streltsova M.A., Kanevskiy L.M., Telford W.G., Sapozhnikov A.M., Kovalenko E.I. HLA-DR+ NK Cells Are Mostly Characterized by Less Mature Phenotype and High Functional Activity. Immunol. Cell Biol. 2018;96:212–228. doi: 10.1111/imcb.1032. PubMed DOI PMC
Gumá M., Angulo A., Vilches C., Gómez-Lozano N., Malats N., López-Botet M. Imprint of Human Cytomegalovirus Infection on the NK Cell Receptor Repertoire. Blood. 2004;104:3664–3671. doi: 10.1182/blood-2004-05-2058. PubMed DOI
Lauterbach N., Wieten L., Popeijus H.E., Voorter C.E.M., Tilanus M.G.J. HLA-E Regulates NKG2C+ Natural Killer Cell Function through Presentation of a Restricted Peptide Repertoire. Hum. Immunol. 2015;76:578–586. doi: 10.1016/j.humimm.2015.09.003. PubMed DOI
Sun J.C., Madera S., Bezman N.A., Beilke J.N., Kaplan M.H., Lanier L.L. Proinflammatory Cytokine Signaling Required for the Generation of Natural Killer Cell Memory. J. Exp. Med. 2012;209:947–954. doi: 10.1084/jem.20111760. PubMed DOI PMC
Romee R., Schneider S.E., Leong J.W., Chase J.M., Keppel C.R., Sullivan R.P., Cooper M.A., Fehniger T.A. Cytokine Activation Induces Human Memory-like NK Cells. Blood. 2012;120:4751–4760. doi: 10.1182/blood-2012-04-419283. PubMed DOI PMC
Cooper M.A., Elliott J.M., Keyel P.A., Yang L., Carrero J.A., Yokoyama W.M. Cytokine-Induced Memory-like Natural Killer Cells. Proc. Natl. Acad. Sci. USA. 2009;106:1915–1919. doi: 10.1073/pnas.0813192106. PubMed DOI PMC
Goncalves A., Makalo P., Joof H., Burr S., Ramadhani A., Massae P., Malisa A., Mtuy T., Derrick T., Last A.R., et al. Differential Frequency of NKG2C/KLRC2 Deletion in Distinct African Populations and Susceptibility to Trachoma: A New Method for Imputation of KLRC2 Genotypes from SNP Genotyping Data. Hum. Genet. 2016;135:939–951. doi: 10.1007/s00439-016-1694-2. PubMed DOI PMC
Miyashita R., Tsuchiya N., Hikami K., Kuroki K., Fukazawa T., Bijl M., Kallenberg C.G.M., Hashimoto H., Yabe T., Tokunaga K. Molecular Genetic Analyses of Human NKG2C (KLRC2) Gene Deletion. Int. Immunol. 2004;16:163–168. doi: 10.1093/intimm/dxh013. PubMed DOI
Comeau E.M., Holder K.A., Fudge N.J., Grant M.D. Cytomegalovirus-Driven Adaption of Natural Killer Cells in NKG2Cnull Human Immunodeficiency Virus-Infected Individuals. Viruses. 2019;11:239. doi: 10.3390/v11030239. PubMed DOI PMC
Luetke-Eversloh M., Hammer Q., Durek P., Nordström K., Gasparoni G., Pink M., Hamann A., Walter J., Chang H.D., Dong J., et al. Human Cytomegalovirus Drives Epigenetic Imprinting of the IFNG Locus in NKG2Chi Natural Killer Cells. PLoS Pathog. 2014;10:e1004441. doi: 10.1371/journal.ppat.1004441. PubMed DOI PMC
Vivier E., Nunès J.A., Vély F. Natural Killer Cell Signaling Pathways. Science. 2004;306:1517–1519. doi: 10.1126/science.1103478. PubMed DOI
Jiang K., Zhong B., Gilvary D.L., Corliss B.C., Hong-Geller E., Wei S., Djeu J.Y. Pivotal Role of Phosphoinositide-3 Kinase in Regulation of Cytotoxicity in Natural Killer Cells. Nat. Immunol. 2000;1:419–425. doi: 10.1038/80859. PubMed DOI
Crews C.M., Erikson R.L. Purification of a Murine Protein-Tyrosine/Threonine Kinase That Phosphorylates and Activates the Erk-1 Gene Product: Relationship to the Fission Yeast Byr1 Gene Product. Proc. Natl. Acad. Sci. USA. 1992;89:8205–8209. doi: 10.1073/pnas.89.17.8205. PubMed DOI PMC
Lurie R.H., Platanias L.C. Mechanisms of Type-I- and Type-II-Interferon-Mediated Signalling. Nat. Rev. Immunol. 2005;5:375–386. doi: 10.1038/nri1604. PubMed DOI
Vivier E., Ugolini S., Nunès J.A. ADAPted Secretion of Cytokines in NK Cells. Nat. Immunol. 2013;14:1108–1110. doi: 10.1038/ni.2737. PubMed DOI
Strobl B., Stoiber D., Sexl V., Mueller M. Tyrosine Kinase 2 (TYK2) in Cytokine Signalling and Host Immunity. Front. Biosci. (Landmark Ed.) 2011;16:3224–3232. doi: 10.2741/3908. PubMed DOI
Alter G., Malenfant J.M., Delabre R.M., Burgett N.C., Yu X.G., Lichterfeld M., Zaunders J., Altfeld M. Increased Natural Killer Cell Activity in Viremic HIV-1 Infection. J. Immunol. 2004;173:5305–5311. doi: 10.4049/jimmunol.173.8.5305. PubMed DOI
Penack O., Gentilini C., Fischer L., Asemissen A.M., Scheibenbogen C., Thiel E., Uharek L. CD56dimCD16neg Cells Are Responsible for Natural Cytotoxicity against Tumor Targets. Leukemia. 2005;19:835–840. doi: 10.1038/sj.leu.2403704. PubMed DOI
Wijaya R.S., Read S.A., Truong N.R., Han S., Chen D., Shahidipour H., Fewings N.L., Schibeci S., Azardaryany M.K., Parnell G.P., et al. HBV Vaccination and HBV Infection Induces HBV-Specific Natural Killer Cell Memory. Gut. 2021;70:357–369. doi: 10.1136/gutjnl-2019-319252. PubMed DOI
Saraiva M., Vieira P., O’Garra A. Biology and Therapeutic Potential of Interleukin-10. J. Exp. Med. 2020;217:e20190418. doi: 10.1084/jem.20190418. PubMed DOI PMC
Schlums H., Cichocki F., Tesi B., Theorell J., Beziat V., Holmes T.D., Han H., Chiang S.C.C., Foley B., Mattsson K., et al. Cytomegalovirus Infection Drives Adaptive Epigenetic Diversification of NK Cells with Altered Signaling and Effector Function. Immunity. 2015;42:443–456. doi: 10.1016/j.immuni.2015.02.008. PubMed DOI PMC
Lyons A.B. Analysing Cell Division in Vivo and in Vitro Using Flow Cytometric Measurement of CFSE Dye Dilution. J. Immunol. Methods. 2000;243:147–154. doi: 10.1016/S0022-1759(00)00231-3. PubMed DOI
Pantaleo G., Harari A. Functional Signatures in Antiviral T-Cell Immunity for Monitoring Virus-Associated Diseases. Nat. Rev. Immunol. 2006;6:417–423. doi: 10.1038/nri1840. PubMed DOI
White M.J., Nielsen C.M., Mcgregor R.H.C., Riley E.M., Goodier M.R. Differential Activation of CD57-Defined Natural Killer Cell Subsets during Recall Responses to Vaccine Antigens. Immunology. 2014;142:140–150. doi: 10.1111/imm.12239. PubMed DOI PMC
Liu B., Yang G.X., Sun Y., Tomiyama T., Zhang W., Leung P.S.C., He X.S., Dhaliwal S., Invernizzi P., Gershwin M.E., et al. Decreased CD57 Expression of Natural Killer Cells Enhanced Cytotoxicity in Patients with Primary Sclerosing Cholangitis. Front. Immunol. 2022;13:912961. doi: 10.3389/fimmu.2022.912961. PubMed DOI PMC
Libri V., Schulte D., van Stijn A., Ragimbeau J., Rogge L., Pellegrini S. Jakmip1 Is Expressed upon T Cell Differentiation and Has an Inhibitory Function in Cytotoxic T Lymphocytes. J. Immunol. 2008;181:5847–5856. doi: 10.4049/jimmunol.181.9.5847. PubMed DOI
Liu L.L., Landskron J., Ask E.H., Enqvist M., Sohlberg E., Traherne J.A., Hammer Q., Goodridge J.P., Larsson S., Jayaraman J., et al. Critical Role of CD2 Co-Stimulation in Adaptive Natural Killer Cell Responses Revealed in NKG2C-Deficient Humans. Cell Rep. 2016;15:1088–1099. doi: 10.1016/j.celrep.2016.04.005. PubMed DOI PMC
Forrest C., Chase T.J.G., Cuff A.O., Maroulis D., Motallebzadeh R., Gander A., Davidson B., Griffiths P., Male V., Reeves M. Control of Human Cytomegalovirus Replication by Liver Resident Natural Killer Cells. Nat. Commun. 2023;14:1409. doi: 10.1038/s41467-023-37181-w. PubMed DOI PMC
Wang E.C.Y., Pjechova M., Nightingale K., Vlahava V.M., Patel M., Ruckova E., Forbes S.K., Nobre L., Antrobus R., Roberts D., et al. Suppression of Costimulation by Human Cytomegalovirus Promotes Evasion of Cellular Immune Defenses. Proc. Natl. Acad. Sci. USA. 2018;115:4998–5003. doi: 10.1073/pnas.1720950115. PubMed DOI PMC
Rölle A., Halenius A., Ewen E.M., Cerwenka A., Hengel H., Momburg F. CD2–CD58 Interactions Are Pivotal for the Activation and Function of Adaptive Natural Killer Cells in Human Cytomegalovirus Infection. Eur. J. Immunol. 2016;46:2420–2425. doi: 10.1002/eji.201646492. PubMed DOI
Ahopelto K., Böckelman C., Hagström J., Koskensalo S., Haglund C. Transketolase-like Protein 1 Expression Predicts Poor Prognosis in Colorectal Cancer. Cancer Biol. Ther. 2016;17:163–168. doi: 10.1080/15384047.2015.1121347. PubMed DOI PMC
Pal M., Schwab L., Yermakova A., Mace E.M., Claus R., Krahl A.C., Woiterski J., Hartwig U.F., Orange J.S., Handgretinger R., et al. Tumor-Priming Converts NK Cells to Memory-like NK Cells. Oncoimmunology. 2017;6:e1317411. doi: 10.1080/2162402X.2017.1317411. PubMed DOI PMC
Shemesh A., Su Y., Calabrese D.R., Chen D., Arakawa-Hoyt J., Roybal K.T., Heath J.R., Greenland J.R., Lanier L.L. Diminished Cell Proliferation Promotes Natural Killer Cell Adaptive-like Phenotype by Limiting FcεRIγ Expression. J. Exp. Med. 2022;219:e20220551. doi: 10.1084/jem.20220551. PubMed DOI PMC
Tarragó D., González I., González-Escribano M.F. HLA-E Restricted Cytomegalovirus UL40 Peptide Polymorphism May Represent a Risk Factor Following Congenital Infection. BMC Genom. 2022;23:455. doi: 10.1186/s12864-022-08689-0. PubMed DOI PMC
Martín-Villa J.M., Vaquero-Yuste C., Molina-Alejandre M., Juarez I., Suárez-Trujillo F., López-Nares A., Palacio-Gruber J., Barrera-Gutiérrez L., Fernández-Cruz E., Rodríguez-Sainz C., et al. HLA-G: Too Much or Too Little? Role in Cancer and Autoimmune Disease. Front. Immunol. 2022;13:796054. doi: 10.3389/fimmu.2022.796054. PubMed DOI PMC
Le Discorde M., Moreau P., Sabatier P., Legeais J.M., Carosella E.D. Expression of HLA-G in Human Cornea, an Immune-Privileged Tissue. Hum. Immunol. 2003;64:1039–1044. doi: 10.1016/j.humimm.2003.08.346. PubMed DOI
LeBouder F., Khoufache K., Menier C., Mandouri Y., Keffous M., Lejal N., Krawice-Radanne I., Carosella E.D., Rouas-Freiss N., Riteau B. Immunosuppressive HLA-G Molecule Is Upregulated in Alveolar Epithelial Cells after Influenza A Virus Infection. Hum. Immunol. 2009;70:1016–1019. doi: 10.1016/j.humimm.2009.07.026. PubMed DOI
Amiot L., Vu N., Rauch M., L’Helgoualc’H A., Chalmel F., Gascan H., Turlin B., Guyader D., Samson M. Expression of HLA-G by Mast Cells Is Associated with Hepatitis C Virus-Induced Liver Fibrosis. J. Hepatol. 2014;60:245–252. doi: 10.1016/j.jhep.2013.09.006. PubMed DOI
Lafon M., Prehaud C., Megret F., Lafage M., Mouillot G., Roa M., Moreau P., Rouas-Freiss N., Carosella E.D. Modulation of HLA-G Expression in Human Neural Cells after Neurotropic Viral Infections. J. Virol. 2005;79:15226. doi: 10.1128/JVI.79.24.15226-15237.2005. PubMed DOI PMC
Zhao M., Zhang R., Xu X., Liu Y., Zhang H., Zhai X., Hu X. IL-10 Reduces Levels of Apoptosis in Toxoplasma Gondii-Infected Trophoblasts. PLoS ONE. 2013;8:e56455. doi: 10.1371/journal.pone.0056455. PubMed DOI PMC