Autologous T-Cell-Free Antigen Presentation System Unveils hCMV-Specific NK Cell Response

. 2024 Mar 17 ; 13 (6) : . [epub] 20240317

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38534374

Grantová podpora
22-75-00135 Russian Science Foundation

NK cells play a decisive role in controlling hCMV infection by combining innate and adaptive-like immune reactions. The hCMV-derived VMAPRTLFL (LFL) peptide is a potent activator of NKG2C+ NK cells. Proposed here is an autologous system of LFL stimulation without T lymphocytes and exogenous cytokines that allows us to evaluate NK-cell hCMV-specific responses in more native settings. In this model, we evaluated LFL-induced IFNγ production, focusing on signaling pathways and the degranulation and proliferation of NK cells orchestrated by microenvironment cytokine production and analyzed the transcriptome of expanded NK cells. NK cells of individuals having high anti-hCMV-IgG levels, in contrast to NK cells of hCMV-seronegative and low-positive donors, displayed increased IFNγ production and degranulation and activation levels and enhanced proliferation upon LFL stimulation. Cytokine profiles of these LFL-stimulated cultures demonstrated a proinflammatory shift. LFL-induced NK-cell IFNγ production was dependent on the PI3K and Ras/Raf/Mek signaling pathways, independently of cytokines. In hCMV-seropositive individuals, this model allowed obtaining NK-cell antigen-specific populations proliferating in response to LFL. The transcriptomic profile of these expanded NK cells showed increased adaptive gene expression and metabolic activation. The results complement the existing knowledge about hCMV-specific NK-cell response. This model may be further exploited for the identification and characterization of antigen-specific NK cells.

Zobrazit více v PubMed

Sivori S., Vacca P., Del Zotto G., Munari E., Mingari M.C., Moretta L. Human NK Cells: Surface Receptors, Inhibitory Checkpoints, and Translational Applications. Cell. Mol. Immunol. 2019;16:430–441. doi: 10.1038/s41423-019-0206-4. PubMed DOI PMC

Paust S., Von Andrian U.H. Natural Killer Cell Memory. Nat. Immunol. 2011;12:500–508. doi: 10.1038/ni.2032. PubMed DOI

Zuhair M., Smit G.S.A., Wallis G., Jabbar F., Smith C., Devleesschauwer B., Griffiths P. Estimation of the Worldwide Seroprevalence of Cytomegalovirus: A Systematic Review and Meta-Analysis. Rev. Med. Virol. 2019;29:e2034. doi: 10.1002/rmv.2034. PubMed DOI

Jackson S.E., Mason G.M., Wills M.R. Human Cytomegalovirus Immunity and Immune Evasion. Virus Res. 2011;157:151–160. doi: 10.1016/j.virusres.2010.10.031. PubMed DOI

Tomasec P., Braud V.M., Rickards C., Powell M.B., McSharry B.P., Gadola S., Cerundolo V., Borysiewicz L.K., McMichae A.J., Wilkinson G.W.G. Surface Expression of HLA-E, an Inhibitor of Natural Killer Cells, Enhanced by Human Cytomegalovirus GpUL40. Science. 2000;287:1031–1033. doi: 10.1126/science.287.5455.1031. PubMed DOI

Barnes P.D., Grundy J.E. Down-Regulation of the Class I HLA Heterodimer and Beta 2-Microglobulin on the Surface of Cells Infected with Cytomegalovirus. Pt 9J. Gen. Virol. 1992;73:2395–2403. doi: 10.1099/0022-1317-73-9-2395. PubMed DOI

Halenius A., Gerke C., Hengel H. Classical and Non-Classical MHC I Molecule Manipulation by Human Cytomegalovirus: So Many Targets—But How Many Arrows in the Quiver? Cell. Mol. Immunol. 2014;12:139–153. doi: 10.1038/cmi.2014.105. PubMed DOI PMC

Warren A.P., Ducroq D.H., Lehner P.J., Borysiewicz L.K. Human Cytomegalovirus-Infected Cells Have Unstable Assembly of Major Histocompatibility Complex Class I Complexes and Are Resistant to Lysis by Cytotoxic T Lymphocytes. J. Virol. 1994;68:2822–2829. doi: 10.1128/jvi.68.5.2822-2829.1994. PubMed DOI PMC

Tomazin R., Boname J., Hedge N.R., Lewinsohn D.M., Altschuler Y., Jones T.R., Cresswell P., Nelson J.A., Riddell S.R., Johnson D.C. Cytomegalovirus US2 Destroys Two Components of the MHC Class II Pathway, Preventing Recognition by CD4+ T Cells. Nat. Med. 1999;5:1039–1043. doi: 10.1038/12478. PubMed DOI

Wang E.C.Y., McSharry B., Retiere C., Tomasec P., Williams S., Borysiewicz L.K., Braud V.M., Wilkinson G.W.G. From the Cover: UL40-Mediated NK Evasion during Productive Infection with Human Cytomegalovirus. Proc. Natl. Acad. Sci. USA. 2002;99:7570. doi: 10.1073/pnas.112680099. PubMed DOI PMC

Ulbrecht M., Martinozzi S., Grzeschik M., Hengel H., Ellwart J.W., Pla M., Weiss E.H. Cutting Edge: The Human Cytomegalovirus UL40 Gene Product Contains a Ligand for HLA-E and Prevents NK Cell-Mediated Lysis. J. Immunol. 2000;164:5019–5022. doi: 10.4049/jimmunol.164.10.5019. PubMed DOI

Heatley S.L., Pietra G., Lin J., Widjaja J.M.L., Harpur C.M., Lester S., Rossjohn J., Szer J., Schwarer A., Bradstock K., et al. Polymorphism in Human Cytomegalovirus UL40 Impacts on Recognition of Human Leukocyte Antigen-E (HLA-E) by Natural Killer Cells. J. Biol. Chem. 2013;288:8679–8690. doi: 10.1074/jbc.M112.409672. PubMed DOI PMC

Hammer Q., Rückert T., Borst E.M., Dunst J., Haubner A., Durek P., Heinrich F., Gasparoni G., Babic M., Tomic A., et al. Peptide-Specific Recognition of Human Cytomegalovirus Strains Controls Adaptive Natural Killer Cells Article. Nat. Immunol. 2018;19:453–463. doi: 10.1038/s41590-018-0082-6. PubMed DOI

Sijmons S., Thys K., Ngwese M.M., Van Damme E., Dvorak J., Van Loock M., Li G., Tachezy R., Busson L., Aerssens J., et al. High-Throughput Analysis of Human Cytomegalovirus Genome Diversity Highlights the Widespread Occurrence of Gene-Disrupting Mutations and Pervasive Recombination. J. Virol. 2015;89:7673. doi: 10.1128/JVI.00578-15. PubMed DOI PMC

Dargan D.J., Douglas E., Cunningham C., Jamieson F., Stanton R.J., Baluchova K., McSharry B.P., Tomasec P., Emery V.C., Percivalle E., et al. Sequential Mutations Associated with Adaptation of Human Cytomegalovirus to Growth in Cell Culture. J. Gen. Virol. 2010;91:1535. doi: 10.1099/vir.0.018994-0. PubMed DOI PMC

Cunningham C., Gatherer D., Hilfrich B., Baluchova K., Dargan D.J., Thomson M., Griffiths P.D., Wilkinson G.W.G., Schulz T.F., Davison A.J. Sequences of Complete Human Cytomegalovirus Genomes from Infected Cell Cultures and Clinical Specimens. J. Gen. Virol. 2010;91:605. doi: 10.1099/vir.0.015891-0. PubMed DOI PMC

Tomasec P., Wang E.C.Y., Davison A.J., Vojtesek B., Armstrong M., Griffin C., McSharry B.P., Morris R.J., Llewellyn-Lacey S., Rickards C., et al. Downregulation of Natural Killer Cell-Activating Ligand CD155 by Human Cytomegalovirus UL141. Nat. Immunol. 2005;6:181–188. doi: 10.1038/ni1156. PubMed DOI PMC

Davison A.J., Akter P., Cunningham C., Dolan A., Addison C., Dargan D.J., Hassan-Walker A.F., Emery V.C., Griffiths P.D., Wilkinson G.W.G. Homology between the Human Cytomegalovirus RL11 Gene Family and Human Adenovirus E3 Genes. J. Gen. Virol. 2003;84:657–663. doi: 10.1099/vir.0.18856-0. PubMed DOI

Valés-Gómez M., Reyburn H.T., Erskine R.A., López-Botet M., Strominger J.L. Kinetics and Peptide Dependency of the Binding of the Inhibitory NK Receptor CD94/NKG2-A and the Activating Receptor CD94/NKG2-C to HLA-E. EMBO J. 1999;18:4250. doi: 10.1093/emboj/18.15.4250. PubMed DOI PMC

Kaiser B.K., Barahmand-pour F., Paulsene W., Medley S., Geraghty D.E., Strong R.K. Interactions between NKG2x Immunoreceptors and HLA-E Ligands Display Overlapping Affinities and Thermodynamics. J. Immunol. 2005;174:2878–2884. doi: 10.4049/jimmunol.174.5.2878. PubMed DOI

Huisman B.D., Guan N., Rückert T., Garner L., Singh N.K., McMichael A.J., Gillespie G.M., Romagnani C., Birnbaum M.E. High-Throughput Characterization of HLA-E-Presented CD94/NKG2x Ligands Reveals Peptides Which Modulate NK Cell Activation. Nat. Commun. 2023;14:4809. doi: 10.1038/s41467-023-40220-1. PubMed DOI PMC

Lodoen M.B., Lanier L.L. Viral Modulation of NK Cell Immunity. Nat. Rev. Microbiol. 2005;3:59–69. doi: 10.1038/nrmicro1066. PubMed DOI

Gumá M., Budt M., Sáez A., Brckalo T., Hengel H., Angulo A., López-Botet M. Expansion of CD94/NKG2C+ NK Cells in Response to Human Cytomegalovirus-Infected Fibroblasts. Blood. 2006;107:3624–3631. doi: 10.1182/blood-2005-09-3682. PubMed DOI

Wu Z., Sinzger C., Frascaroli G., Reichel J., Bayer C., Wang L., Schirmbeck R., Mertens T. Human Cytomegalovirus-Induced NKG2Chi CD57hi Natural Killer Cells Are Effectors Dependent on Humoral Antiviral Immunity. J. Virol. 2013;87:7717. doi: 10.1128/JVI.01096-13. PubMed DOI PMC

Kovalenko E.I., Streltsova M.A., Kanevskiy L.M., Erokhina S.A., Telford W.G. Identification of Human Memory-Like NK Cells. Curr. Protoc. Cytom. 2017;79:9–50. doi: 10.1002/cpcy.13. PubMed DOI PMC

Kobyzeva P.A., Streltsova M.A., Erokhina S.A., Kanevskiy L.M., Telford W.G., Sapozhnikov A.M., Kovalenko E.I. CD56dim CD57- NKG2C+ NK Cells Retaining Proliferative Potential Are Possible Precursors of CD57+ NKG2C+ Memory-like NK Cells. J. Leukoc. Biol. 2020;108:1379–1395. doi: 10.1002/JLB.1MA0720-654RR. PubMed DOI PMC

Béziat V., Liu L.L., Malmberg J.A., Ivarsson M.A., Sohlberg E., Björklund A.T., Retière C., Sverremark-Ekström E., Traherne J., Ljungman P., et al. NK Cell Responses to Cytomegalovirus Infection Lead to Stable Imprints in the Human KIR Repertoire and Involve Activating KIRs. Blood. 2013;121:2678. doi: 10.1182/blood-2012-10-459545. PubMed DOI PMC

Gotthardt D., Trifinopoulos J., Sexl V., Putz E.M. JAK/STAT Cytokine Signaling at the Crossroad of NK Cell Development and Maturation. Front. Immunol. 2019;10:2590. doi: 10.3389/fimmu.2019.02590. PubMed DOI PMC

Freeman B.E., Raué H.-P., Hill A.B., Slifka M.K. Cytokine-Mediated Activation of NK Cells during Viral Infection. J. Virol. 2015;89:7922. doi: 10.1128/JVI.00199-15. PubMed DOI PMC

Sim M.J.W., Rajagopalan S., Altmann D.M., Boyton R.J., Sun P.D., Long E.O. Human NK Cell Receptor KIR2DS4 Detects a Conserved Bacterial Epitope Presented by HLA-C. Proc. Natl. Acad. Sci. USA. 2019;116:12964–12973. doi: 10.1073/pnas.1903781116. PubMed DOI PMC

Lanier L.L., Corliss B., Wu J., Phillips J.H. Association of DAP12 with Activating CD94/NKG2C NK Cell Receptors. Immunity. 1998;8:693–701. doi: 10.1016/S1074-7613(00)80574-9. PubMed DOI

Chen Y., Lu D., Churov A., Fu R. Research Progress on NK Cell Receptors and Their Signaling Pathways. Mediat. Inflamm. 2020;2020:6437057. doi: 10.1155/2020/6437057. PubMed DOI PMC

de Rham C., Ferrari-Lacraz S., Jendly S., Schneiter G., Dayer J.M., Villard J. The Proinflammatory Cytokines IL-2, IL-15 and IL-21 Modulate the Repertoire of Mature Human Natural Killer Cell Receptors. Arthritis Res. Ther. 2007;9:R125. doi: 10.1186/ar2336. PubMed DOI PMC

Terrén I., Orrantia A., Mosteiro A., Vitallé J., Zenarruzabeitia O., Borrego F. Metabolic Changes of Interleukin-12/15/18-Stimulated Human NK Cells. Sci. Rep. 2021;11:6472. doi: 10.1038/s41598-021-85960-6. PubMed DOI PMC

Lauwerys B.R., Renauld J.C., Houssiau F.A. Synergistic Proliferation and Activation of Natural Killer Cells by Interleukin 12 and Interleukin 18. Cytokine. 1999;11:822–830. doi: 10.1006/cyto.1999.0501. PubMed DOI

Cheon S., Song S.B., Jung M., Park Y., Bang J.W., Kim T.S., Park H., Kim C.H., Yang Y.-h., Bang S.I., et al. Sphingosine Kinase Inhibitor Suppresses IL-18-Induced Interferon-Gamma Production through Inhibition of P38 MAPK Activation in Human NK Cells. Biochem. Biophys. Res. Commun. 2008;374:74–78. doi: 10.1016/j.bbrc.2008.06.091. PubMed DOI

Dybkaer K., Iqbal J., Zhou G., Geng H., Xiao L., Schmitz A., d’Amore F., Chan W.C. Genome Wide Transcriptional Analysis of Resting and IL2 Activated Human Natural Killer Cells: Gene Expression Signatures Indicative of Novel Molecular Signaling Pathways. BMC Genom. 2007;8:230. doi: 10.1186/1471-2164-8-230. PubMed DOI PMC

Caligiuri M.A. Human Natural Killer Cells. Blood. 2008;112:461. doi: 10.1182/blood-2007-09-077438. PubMed DOI PMC

Rölle A., Pollmann J., Ewen E.M., Le V.T.K., Halenius A., Hengel H., Cerwenka A. IL-12–Producing Monocytes and HLA-E Control HCMV-Driven NK Cell Expansion. J. Clin. Investig. 2014;124:5305. doi: 10.1172/JCI77440. PubMed DOI PMC

Rückert T., Lareau C.A., Mashreghi M.F., Ludwig L.S., Romagnani C. Clonal Expansion and Epigenetic Inheritance of Long-Lasting NK Cell Memory. Nat. Immunol. 2022;23:1551–1563. doi: 10.1038/s41590-022-01327-7. PubMed DOI PMC

Rölle A., Meyer M., Calderazzo S., Jäger D., Momburg F. Distinct HLA-E Peptide Complexes Modify Antibody-Driven Effector Functions of Adaptive NK Cells. Cell Rep. 2018;24:1967–1976. doi: 10.1016/j.celrep.2018.07.069. PubMed DOI

Streltsova M., Erokhina S., Kanevskiy L., Grechikhina M., Kobyzeva P., Lee D., Telford W., Sapozhnikov A., Kovalenko E. Recurrent Stimulation of Natural Killer Cell Clones with K562 Expressing Membrane-Bound Interleukin-21 Affects Their Phenotype, Interferon-γ Production, and Lifespan. Int. J. Mol. Sci. 2019;20:443. doi: 10.3390/ijms20020443. PubMed DOI PMC

Bray N.L., Pimentel H., Melsted P., Pachter L. Near-Optimal Probabilistic RNA-Seq Quantification. Nat. Biotechnol. 2016;34:525–527. doi: 10.1038/nbt.3519. PubMed DOI

Love M.I., Huber W., Anders S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Wu T., Hu E., Xu S., Chen M., Guo P., Dai Z., Feng T., Zhou L., Tang W., Zhan L., et al. ClusterProfiler 4.0: A Universal Enrichment Tool for Interpreting Omics Data. Innovation. 2021;2:100141. doi: 10.1016/j.xinn.2021.100141. PubMed DOI PMC

Sottile R., Panjwani M.K., Lau C.M., Daniyan A.F., Tanaka K., Barker J.N., Brentjens R.J., Sun J.C., Le Luduec J.B., Hsu K.C. Human Cytomegalovirus Expands a CD8+ T Cell Population with Loss of BCL11B Expression and Gain of NK Cell Identity. Sci. Immunol. 2021;6:eabe6968. doi: 10.1126/sciimmunol.abe6968. PubMed DOI PMC

Lopez-Vergès S., Milush J.M., Schwartz B.S., Pando M.J., Jarjoura J., York V.A., Houchins J.P., Miller S., Kang S.-M., Norris P.J., et al. Expansion of a Unique CD57+NKG2Chi Natural Killer Cell Subset during Acute Human Cytomegalovirus Infection. Proc. Natl. Acad. Sci. USA. 2011;108:14725–14732. doi: 10.1073/pnas.1110900108. PubMed DOI PMC

Hanafi L.A., Gauchat D., Godin-Ethier J., Possamaï D., Duvignaud J.B., Leclerc D., Grandvaux N., Lapointe R. Fludarabine Downregulates Indoleamine 2,3-Dioxygenase in Tumors via a Proteasome-Mediated Degradation Mechanism. PLoS ONE. 2014;9:e99211. doi: 10.1371/journal.pone.0099211. PubMed DOI PMC

Honda M., Kanno T., Fujita Y., Gotoh A., Nakano T., Nishizaki T. Mesothelioma Cell Proliferation through Autocrine Activation of PDGF-Ββ Receptor. Cell. Physiol. Biochem. 2012;29:667–674. doi: 10.1159/000176386. PubMed DOI

Erokhina S.A., Streltsova M.A., Kanevskiy L.M., Telford W.G., Sapozhnikov A.M., Kovalenko E.I. HLA-DR+ NK Cells Are Mostly Characterized by Less Mature Phenotype and High Functional Activity. Immunol. Cell Biol. 2018;96:212–228. doi: 10.1111/imcb.1032. PubMed DOI PMC

Gumá M., Angulo A., Vilches C., Gómez-Lozano N., Malats N., López-Botet M. Imprint of Human Cytomegalovirus Infection on the NK Cell Receptor Repertoire. Blood. 2004;104:3664–3671. doi: 10.1182/blood-2004-05-2058. PubMed DOI

Lauterbach N., Wieten L., Popeijus H.E., Voorter C.E.M., Tilanus M.G.J. HLA-E Regulates NKG2C+ Natural Killer Cell Function through Presentation of a Restricted Peptide Repertoire. Hum. Immunol. 2015;76:578–586. doi: 10.1016/j.humimm.2015.09.003. PubMed DOI

Sun J.C., Madera S., Bezman N.A., Beilke J.N., Kaplan M.H., Lanier L.L. Proinflammatory Cytokine Signaling Required for the Generation of Natural Killer Cell Memory. J. Exp. Med. 2012;209:947–954. doi: 10.1084/jem.20111760. PubMed DOI PMC

Romee R., Schneider S.E., Leong J.W., Chase J.M., Keppel C.R., Sullivan R.P., Cooper M.A., Fehniger T.A. Cytokine Activation Induces Human Memory-like NK Cells. Blood. 2012;120:4751–4760. doi: 10.1182/blood-2012-04-419283. PubMed DOI PMC

Cooper M.A., Elliott J.M., Keyel P.A., Yang L., Carrero J.A., Yokoyama W.M. Cytokine-Induced Memory-like Natural Killer Cells. Proc. Natl. Acad. Sci. USA. 2009;106:1915–1919. doi: 10.1073/pnas.0813192106. PubMed DOI PMC

Goncalves A., Makalo P., Joof H., Burr S., Ramadhani A., Massae P., Malisa A., Mtuy T., Derrick T., Last A.R., et al. Differential Frequency of NKG2C/KLRC2 Deletion in Distinct African Populations and Susceptibility to Trachoma: A New Method for Imputation of KLRC2 Genotypes from SNP Genotyping Data. Hum. Genet. 2016;135:939–951. doi: 10.1007/s00439-016-1694-2. PubMed DOI PMC

Miyashita R., Tsuchiya N., Hikami K., Kuroki K., Fukazawa T., Bijl M., Kallenberg C.G.M., Hashimoto H., Yabe T., Tokunaga K. Molecular Genetic Analyses of Human NKG2C (KLRC2) Gene Deletion. Int. Immunol. 2004;16:163–168. doi: 10.1093/intimm/dxh013. PubMed DOI

Comeau E.M., Holder K.A., Fudge N.J., Grant M.D. Cytomegalovirus-Driven Adaption of Natural Killer Cells in NKG2Cnull Human Immunodeficiency Virus-Infected Individuals. Viruses. 2019;11:239. doi: 10.3390/v11030239. PubMed DOI PMC

Luetke-Eversloh M., Hammer Q., Durek P., Nordström K., Gasparoni G., Pink M., Hamann A., Walter J., Chang H.D., Dong J., et al. Human Cytomegalovirus Drives Epigenetic Imprinting of the IFNG Locus in NKG2Chi Natural Killer Cells. PLoS Pathog. 2014;10:e1004441. doi: 10.1371/journal.ppat.1004441. PubMed DOI PMC

Vivier E., Nunès J.A., Vély F. Natural Killer Cell Signaling Pathways. Science. 2004;306:1517–1519. doi: 10.1126/science.1103478. PubMed DOI

Jiang K., Zhong B., Gilvary D.L., Corliss B.C., Hong-Geller E., Wei S., Djeu J.Y. Pivotal Role of Phosphoinositide-3 Kinase in Regulation of Cytotoxicity in Natural Killer Cells. Nat. Immunol. 2000;1:419–425. doi: 10.1038/80859. PubMed DOI

Crews C.M., Erikson R.L. Purification of a Murine Protein-Tyrosine/Threonine Kinase That Phosphorylates and Activates the Erk-1 Gene Product: Relationship to the Fission Yeast Byr1 Gene Product. Proc. Natl. Acad. Sci. USA. 1992;89:8205–8209. doi: 10.1073/pnas.89.17.8205. PubMed DOI PMC

Lurie R.H., Platanias L.C. Mechanisms of Type-I- and Type-II-Interferon-Mediated Signalling. Nat. Rev. Immunol. 2005;5:375–386. doi: 10.1038/nri1604. PubMed DOI

Vivier E., Ugolini S., Nunès J.A. ADAPted Secretion of Cytokines in NK Cells. Nat. Immunol. 2013;14:1108–1110. doi: 10.1038/ni.2737. PubMed DOI

Strobl B., Stoiber D., Sexl V., Mueller M. Tyrosine Kinase 2 (TYK2) in Cytokine Signalling and Host Immunity. Front. Biosci. (Landmark Ed.) 2011;16:3224–3232. doi: 10.2741/3908. PubMed DOI

Alter G., Malenfant J.M., Delabre R.M., Burgett N.C., Yu X.G., Lichterfeld M., Zaunders J., Altfeld M. Increased Natural Killer Cell Activity in Viremic HIV-1 Infection. J. Immunol. 2004;173:5305–5311. doi: 10.4049/jimmunol.173.8.5305. PubMed DOI

Penack O., Gentilini C., Fischer L., Asemissen A.M., Scheibenbogen C., Thiel E., Uharek L. CD56dimCD16neg Cells Are Responsible for Natural Cytotoxicity against Tumor Targets. Leukemia. 2005;19:835–840. doi: 10.1038/sj.leu.2403704. PubMed DOI

Wijaya R.S., Read S.A., Truong N.R., Han S., Chen D., Shahidipour H., Fewings N.L., Schibeci S., Azardaryany M.K., Parnell G.P., et al. HBV Vaccination and HBV Infection Induces HBV-Specific Natural Killer Cell Memory. Gut. 2021;70:357–369. doi: 10.1136/gutjnl-2019-319252. PubMed DOI

Saraiva M., Vieira P., O’Garra A. Biology and Therapeutic Potential of Interleukin-10. J. Exp. Med. 2020;217:e20190418. doi: 10.1084/jem.20190418. PubMed DOI PMC

Schlums H., Cichocki F., Tesi B., Theorell J., Beziat V., Holmes T.D., Han H., Chiang S.C.C., Foley B., Mattsson K., et al. Cytomegalovirus Infection Drives Adaptive Epigenetic Diversification of NK Cells with Altered Signaling and Effector Function. Immunity. 2015;42:443–456. doi: 10.1016/j.immuni.2015.02.008. PubMed DOI PMC

Lyons A.B. Analysing Cell Division in Vivo and in Vitro Using Flow Cytometric Measurement of CFSE Dye Dilution. J. Immunol. Methods. 2000;243:147–154. doi: 10.1016/S0022-1759(00)00231-3. PubMed DOI

Pantaleo G., Harari A. Functional Signatures in Antiviral T-Cell Immunity for Monitoring Virus-Associated Diseases. Nat. Rev. Immunol. 2006;6:417–423. doi: 10.1038/nri1840. PubMed DOI

White M.J., Nielsen C.M., Mcgregor R.H.C., Riley E.M., Goodier M.R. Differential Activation of CD57-Defined Natural Killer Cell Subsets during Recall Responses to Vaccine Antigens. Immunology. 2014;142:140–150. doi: 10.1111/imm.12239. PubMed DOI PMC

Liu B., Yang G.X., Sun Y., Tomiyama T., Zhang W., Leung P.S.C., He X.S., Dhaliwal S., Invernizzi P., Gershwin M.E., et al. Decreased CD57 Expression of Natural Killer Cells Enhanced Cytotoxicity in Patients with Primary Sclerosing Cholangitis. Front. Immunol. 2022;13:912961. doi: 10.3389/fimmu.2022.912961. PubMed DOI PMC

Libri V., Schulte D., van Stijn A., Ragimbeau J., Rogge L., Pellegrini S. Jakmip1 Is Expressed upon T Cell Differentiation and Has an Inhibitory Function in Cytotoxic T Lymphocytes. J. Immunol. 2008;181:5847–5856. doi: 10.4049/jimmunol.181.9.5847. PubMed DOI

Liu L.L., Landskron J., Ask E.H., Enqvist M., Sohlberg E., Traherne J.A., Hammer Q., Goodridge J.P., Larsson S., Jayaraman J., et al. Critical Role of CD2 Co-Stimulation in Adaptive Natural Killer Cell Responses Revealed in NKG2C-Deficient Humans. Cell Rep. 2016;15:1088–1099. doi: 10.1016/j.celrep.2016.04.005. PubMed DOI PMC

Forrest C., Chase T.J.G., Cuff A.O., Maroulis D., Motallebzadeh R., Gander A., Davidson B., Griffiths P., Male V., Reeves M. Control of Human Cytomegalovirus Replication by Liver Resident Natural Killer Cells. Nat. Commun. 2023;14:1409. doi: 10.1038/s41467-023-37181-w. PubMed DOI PMC

Wang E.C.Y., Pjechova M., Nightingale K., Vlahava V.M., Patel M., Ruckova E., Forbes S.K., Nobre L., Antrobus R., Roberts D., et al. Suppression of Costimulation by Human Cytomegalovirus Promotes Evasion of Cellular Immune Defenses. Proc. Natl. Acad. Sci. USA. 2018;115:4998–5003. doi: 10.1073/pnas.1720950115. PubMed DOI PMC

Rölle A., Halenius A., Ewen E.M., Cerwenka A., Hengel H., Momburg F. CD2–CD58 Interactions Are Pivotal for the Activation and Function of Adaptive Natural Killer Cells in Human Cytomegalovirus Infection. Eur. J. Immunol. 2016;46:2420–2425. doi: 10.1002/eji.201646492. PubMed DOI

Ahopelto K., Böckelman C., Hagström J., Koskensalo S., Haglund C. Transketolase-like Protein 1 Expression Predicts Poor Prognosis in Colorectal Cancer. Cancer Biol. Ther. 2016;17:163–168. doi: 10.1080/15384047.2015.1121347. PubMed DOI PMC

Pal M., Schwab L., Yermakova A., Mace E.M., Claus R., Krahl A.C., Woiterski J., Hartwig U.F., Orange J.S., Handgretinger R., et al. Tumor-Priming Converts NK Cells to Memory-like NK Cells. Oncoimmunology. 2017;6:e1317411. doi: 10.1080/2162402X.2017.1317411. PubMed DOI PMC

Shemesh A., Su Y., Calabrese D.R., Chen D., Arakawa-Hoyt J., Roybal K.T., Heath J.R., Greenland J.R., Lanier L.L. Diminished Cell Proliferation Promotes Natural Killer Cell Adaptive-like Phenotype by Limiting FcεRIγ Expression. J. Exp. Med. 2022;219:e20220551. doi: 10.1084/jem.20220551. PubMed DOI PMC

Tarragó D., González I., González-Escribano M.F. HLA-E Restricted Cytomegalovirus UL40 Peptide Polymorphism May Represent a Risk Factor Following Congenital Infection. BMC Genom. 2022;23:455. doi: 10.1186/s12864-022-08689-0. PubMed DOI PMC

Martín-Villa J.M., Vaquero-Yuste C., Molina-Alejandre M., Juarez I., Suárez-Trujillo F., López-Nares A., Palacio-Gruber J., Barrera-Gutiérrez L., Fernández-Cruz E., Rodríguez-Sainz C., et al. HLA-G: Too Much or Too Little? Role in Cancer and Autoimmune Disease. Front. Immunol. 2022;13:796054. doi: 10.3389/fimmu.2022.796054. PubMed DOI PMC

Le Discorde M., Moreau P., Sabatier P., Legeais J.M., Carosella E.D. Expression of HLA-G in Human Cornea, an Immune-Privileged Tissue. Hum. Immunol. 2003;64:1039–1044. doi: 10.1016/j.humimm.2003.08.346. PubMed DOI

LeBouder F., Khoufache K., Menier C., Mandouri Y., Keffous M., Lejal N., Krawice-Radanne I., Carosella E.D., Rouas-Freiss N., Riteau B. Immunosuppressive HLA-G Molecule Is Upregulated in Alveolar Epithelial Cells after Influenza A Virus Infection. Hum. Immunol. 2009;70:1016–1019. doi: 10.1016/j.humimm.2009.07.026. PubMed DOI

Amiot L., Vu N., Rauch M., L’Helgoualc’H A., Chalmel F., Gascan H., Turlin B., Guyader D., Samson M. Expression of HLA-G by Mast Cells Is Associated with Hepatitis C Virus-Induced Liver Fibrosis. J. Hepatol. 2014;60:245–252. doi: 10.1016/j.jhep.2013.09.006. PubMed DOI

Lafon M., Prehaud C., Megret F., Lafage M., Mouillot G., Roa M., Moreau P., Rouas-Freiss N., Carosella E.D. Modulation of HLA-G Expression in Human Neural Cells after Neurotropic Viral Infections. J. Virol. 2005;79:15226. doi: 10.1128/JVI.79.24.15226-15237.2005. PubMed DOI PMC

Zhao M., Zhang R., Xu X., Liu Y., Zhang H., Zhai X., Hu X. IL-10 Reduces Levels of Apoptosis in Toxoplasma Gondii-Infected Trophoblasts. PLoS ONE. 2013;8:e56455. doi: 10.1371/journal.pone.0056455. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...