The Potential for Genotoxicity, Mutagenicity and Endocrine Disruption in Triclosan and Triclocarban Assessed through a Combination of In Vitro Methods
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000860
Ministry of Education, Youith and Sport of the Czech Republic
IN: 75010330
Ministry of Health Czech Republic
PubMed
38535491
PubMed Central
PMC10971739
DOI
10.3390/jox14010002
PII: jox14010002
Knihovny.cz E-zdroje
- Klíčová slova
- Ames test, Comet assay, chromosome aberrations, endocrine disruption, genotoxicity/mutagenicity, preservatives,
- Publikační typ
- časopisecké články MeSH
Triclosan and Triclocarban, preservatives widely used in cosmetics and other consumer products, underwent evaluation using a battery of new-approach methodologies in vitro (NAMs). Specifically, the Microplate Ames Test (MPF™ Test, Xenometrix, Allschwil, Switzerland) was employed to assess mutagenicity, the Comet assay in vitro on the HaCat cell line and the Mammalian Chromosome Aberration Test were utilized to evaluate genotoxicity, and the XenoScreen® YES/YAS assay was applied to investigate endocrine disruption. The chemicals did not exhibit any positive responses for mutagenicity. However, the mammalian chromosome aberration test identified both chemicals as being positive for genotoxicity at 10 µg/mL. In the Comet assay, the percentage of DNA in the tail significantly increased in a concentration-dependent manner (at 5 and 10 µg/mL for Triclosan, at 2.5, 5, and 10 µg/mL for Triclocarban). The positive response depended on the increasing concentration and the duration of exposure. Triclosan, but not Triclocarban in any of the endocrine assays performed, indicated a potential for endocrine activity in the anti-estrogenic and anti-androgenic assays. The positive in vitro results detected were obtained for concentrations relevant to final products. The alarming findings obtained with the use of new-approach methodologies (NAMs) justify the current precautionary regulatory approach, limiting the use of these preservatives.
Zobrazit více v PubMed
Iacopetta D., Catalano A., Ceramella J., Saturnino C., Salvagno L., Ielo I., Drommi D., Scali E., Plutino M.R., Rosace G., et al. The Different Facets of Triclocarban: A Review. Molecules. 2021;26:2811. doi: 10.3390/molecules26092811. PubMed DOI PMC
SCCS (Scientific Committee on Consumer Safety) Request for a Scientific Advice on the Safety of Triclocarban (CAS No. 101-20-2, EC No. 202-924-1) and Triclosan (CAS No. 3380-34-5, EC No. 222-182-2) as Substances with Potential Endocrine Disrupting Properties Used in Cosmetic Products, Preliminary Version of 15–16 March 2022, final version of 24–25 October 2022, SCCS/1643/22. 2022. [(accessed on 13 November 2023)]. Available online: https://health.ec.europa.eu/system/files/2023-08/sccs_o_265.pdf.
Shrestha P., Zhang Y., Chen W.J., Wong T.Y. Triclosan: Antimicrobial mechanisms, antibiotics interactions, clinical applications, and human health. J. Environ. Sci. Health C Toxicol. Carcinog. 2020;38:245–268. doi: 10.1080/26896583.2020.1809286. PubMed DOI
Zhang H., Li J., An Y., Wang D., Zhao J., Zhan M., Xu W., Lu L., Gao Y. Concentrations of bisphenols, benzophenone-type ultraviolet filters, triclosan, and triclocarban in the paired urine and blood samples from young adults: Partitioning between urine and blood. Chemosphere. 2022;288:132563. doi: 10.1016/j.chemosphere.2021.132563. PubMed DOI
Pycke G.F.B., Geer A.L., Dalloul M., Abulafia O., Jenck M.A., Halden U.R. Human fetal exposure to triclosan and triclocarban in an urban population from Brooklyn, New York. Environ. Sci. Technol. 2014;48:8831–8838. doi: 10.1021/es501100w. PubMed DOI PMC
Wei L., Qiao P., Shi Y., Ruan Y., Yin J., Wu Q., Shao B. Triclosan/triclocarban levels in maternal and umbilical blood samples and their association with fetal malformation. Clin. Chim. Acta. 2017;466:133–137. doi: 10.1016/j.cca.2016.12.024. PubMed DOI
Toms L.M.L., Allmyr M., Mueller J.F., Adolfsson-Erici M., McLachlan M., Murby J., Harden F.A. Triclosan in individual human milk samples from Australia. Chemosphere. 2011;85:1682–1686. doi: 10.1016/j.chemosphere.2011.08.009. PubMed DOI
Kim J.H., Kim D., Moon S.M., Yang E.J. Associations of lifestyle factors with phthalate metabolites, bisphenol A, parabens, and triclosan concentrations in breast milk of Korean mothers. Chemosphere. 2020;249:126149. doi: 10.1016/j.chemosphere.2020.126149. PubMed DOI
Asimakopoulos A.G., Thomaidis N.S., Kannan K. Widespread occurrence of bisphenol A diglycidyl ethers, p-hydroxybenzoic acid esters (parabens), benzophenone type-UV filters, triclosan, and triclocarban in human urine from Athens, Greece. Sci. Total Environ. 2014;470–471:1243–1249. doi: 10.1016/j.scitotenv.2013.10.089. PubMed DOI
Xue J., Wu Q., Sakthivel S., Pavithran V.P., Vasukutty R.J., Kannan K. Urinary levels of endocrine-disrupting chemicals, including bisphenols, bisphenol A diglycidyl ethers, benzophenones, parabens, and triclosan in obese and non-obese Indian children. Environ. Res. 2015;137:120–128. doi: 10.1016/j.envres.2014.12.007. PubMed DOI
Iyer P.A., Xue J., Honda M., Robinson M., Kumosami A.T., Abulnaja K., Kannan K. Urinary levels of triclosan and triclocarban in several Asian countries, Greece and the USA: Association with oxidative stress. Environ. Res. 2018;106:91–96. doi: 10.1016/j.envres.2017.09.021. PubMed DOI
Li W., Zhang W., Chang M., Ren J., Xie W., Chen H., Zhang Z., Zhuang X., Shen G., Li H. Metabonomics reveals that triclocarban affects liver metabolism by affecting glucose metabolism, β-oxidation of fatty acids, and the TCA cycle in male mice. Toxicol. Lett. 2018;299:76–85. doi: 10.1016/j.toxlet.2018.09.011. PubMed DOI
Tian X., Huang K., Liu Y., Jiang K., Liu R., Cui J., Wang F., Yu Y., Zhang H., Lin M., et al. Distribution of phthalate metabolites, benzophenone-type ultraviolet filters, parabens, triclosan and triclocarban in paired human hair, nail and urine samples. Environ. Pollut. 2023;333:122083. doi: 10.1016/j.envpol.2023.122083. PubMed DOI
Yin J., Wei L., Shi Y., Zhang J., Wu Q., Shao B. Chinese population exposure to triclosan and triclocarban as measured via human urine and nails. Environ. Geochem. Health. 2016;38:1125–1135. doi: 10.1007/s10653-015-9777-x. PubMed DOI
Armstrong D.L., Lozano N., Rice C.P., Ramirez M., Torrents A. Degradation of triclosan and triclocarban and formation of transformation products in activated sludge using benchtop bioreactors. Environ. Res. 2018;161:17–25. doi: 10.1016/j.envres.2017.10.048. PubMed DOI
Chen J., Meng X.Z., Bergman A., Halden R.U. Nationwide reconnaissance of five parabens, triclosan, triclocarban and its transformation products in sewage sludge from China. J. Hazard. Mater. 2019;365:502–510. doi: 10.1016/j.jhazmat.2018.11.021. PubMed DOI
Meador J.P., Yeh A., Young G., Gallagher E.P. Contaminants of emerging concern in a large temperate estuary. Environ. Pollut. 2016;213:254–267. doi: 10.1016/j.envpol.2016.01.088. PubMed DOI PMC
Gomes M.F., de Paula V.D.C.S., Martins L.R.R., Garcia J.R.E., Yamamoto F.Y., de Freitas A.M. Sublethal effects of triclosan and triclocarban at environmental concentrations in silver catfish (Rhamdia quelen) embryos. Chemosphere. 2021;263:127985. doi: 10.1016/j.chemosphere.2020.127985. PubMed DOI
Lozano N., Rice C.P., Ramirez M., Torrents A. Fate of triclocarban in agricultural soils after biosolid applications. Environ. Sci. Pollut. Res. 2018;25:222–232. doi: 10.1007/s11356-017-0433-0. PubMed DOI
Vimalkumar K., Seethappan S., Pugazhendhi A. Fate of Triclocarban (TCC) in aquatic and terrestrial systems and human exposure. Chemosphere. 2019;230:201–209. doi: 10.1016/j.chemosphere.2019.04.145. PubMed DOI
Yang H., Sanidad K.Z., Wang W., Xie M., Gu M., Cao X., Xiao H., Zhang G. Triclocarban exposure exaggerates colitis and colon tumorigenesis: Roles of gut microbiota involved. Gut Microbes. 2020;12:1690364. doi: 10.1080/19490976.2019.1690364. PubMed DOI PMC
Wu Y., Beland F.A., Fang J.L. Effect of triclosan, triclocarban, 2,2′,4,4′-tetrabromodiphenyl ether, and bisphenol A on the iodide uptake, thyroid peroxidase activity, and expression of genes involved in thyroid hormone synthesis. Toxicol. Vitr. 2016;32:310–319. doi: 10.1016/j.tiv.2016.01.014. PubMed DOI
Rochester J.R., Bolden A.L., Pelch K.E., Kwiatkowski C.F. Potential developmental and reproductive impacts of triclocarban: A scoping review. J. Toxicol. 2017;2017:9679738. doi: 10.1155/2017/9679738. PubMed DOI PMC
Aker A.M., Ferguson K.K., Rosario Z.Y., Mukherjee B., Alshawabkeh A.N., Cordero J.F., Meeker J.D. The associations between prenatal exposure to triclocarban, phenols and parabens with gestational age and birth weight in northern Puerto Rico. Environ. Res. 2019;169:41–51. doi: 10.1016/j.envres.2018.10.030. PubMed DOI PMC
Cao L.Y., Xu Y.H., He S., Ren X.M., Yang Y., Luo S., Xie X.D., Luo L. Antimicrobial triclocarban exhibits higher agonistic activity on estrogen-related receptor γ than triclosan at human exposure levels: A novel estrogenic disruption mechanism. Environ. Sci. Technol. Lett. 2020;7:434–439. doi: 10.1021/acs.estlett.0c00338. DOI
Costa N.O., Forcato S., Cavichioli A.M., Pereira M.R.F., Gerardin D.C.C. In utero and lactational exposure to triclocarban: Age-associated changes in reproductive parameters of male rat offspring. Toxicol. Appl. Pharmacol. 2020;401:115077. doi: 10.1016/j.taap.2020.115077. PubMed DOI
Xie M., Zhang H., Wang W., Sherman H.L., Minter L.M., Cai Z., Zhang G. Triclocarban exposure exaggerates spontaneous colonic inflammation in Il-10−/− mice. Toxicol. Sci. 2020;174:92–99. doi: 10.1093/toxsci/kfz248. PubMed DOI
Sanidad K.Z., Wang G., Panigrahy A., Zhang G. Triclosan and triclocarban as potential risk factors of colitis and colon cancer: Roles of gut microbiota involved. Sci. Total Environ. 2022;842:156776. doi: 10.1016/j.scitotenv.2022.156776. PubMed DOI
Giuliano C.A., Rybak M.J. Efficacy of triclosan as an antimicrobial hand soap and its potential impact on antimicrobial resistance: A focused review. Pharmacotherapy. 2015;35:328–336. doi: 10.1002/phar.1553. PubMed DOI
Hartmann E.M., Hickey R., Hsu T., Betancourt Roman C.M., Chen J., Schwager R., Kline J., Brown G.Z., Halden R.U., Huttenhower C., et al. Antimicrobial chemicals are associated with elevated antibiotic resistance genes in the indoor dust microbiome. Environ. Sci. Technol. 2016;50:9807–9815. doi: 10.1021/acs.est.6b00262. PubMed DOI PMC
Zhang D., Lu S. A holistic review on triclosan and triclocarban exposure: Epidemiological outcomes, antibiotic resistance, and health risk assessment. Sci. Total Environ. 2023;872:162114. doi: 10.1016/j.scitotenv.2023.162114. PubMed DOI
Westfall C., Flores-Mireles A.L., Robinson J.I., Lynch A.J.L., Hultgren S., Henderso J.P., Levin P.A. The widely used antimicrobial Triclosan induces high levels of antibiotic tolerance in vitro and reduces antibiotic efficacy up to 100-fold in vivo. Antimicrob. Agents Chemother. 2019;63:02312–02318. doi: 10.1128/AAC.02312-18. PubMed DOI PMC
European Union Regulation EC No. 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products (Recast) (Text with EEA Relevance) [(accessed on 13 November 2023)];Off. J. Eur. Union. 2009 342:59–209. Available online: https://health.ec.europa.eu/system/files/2016-11/cosmetic_1223_2009_regulation_en_0.pdf.
FDA (U.S. Food and Drug Administration) Safety and Effectiveness of Consumer Antiseptics. Topical Antimicrobial Drug Products for Over-the-Counter Human Use. Final Rule. [(accessed on 13 November 2023)];Fed. Reg. 2016 81:61106–61130. Available online: https://www.federalregister.gov/documents/2016/09/06/2016-21337/safety-and-effectiveness-of-consumer-antiseptics-topical-antimicrobial-drug-products-for. PubMed
Cartus A., Schrenk D. Current methods in risk assessment of genotoxic chemicals. Food Chem. Toxicol. 2016;106:574–582. doi: 10.1016/j.fct.2016.09.012. PubMed DOI
OECD Test No. 471: Bacterial Reverse Mutation Test, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris. 2020. [(accessed on 13 November 2023)]. Available online: https://www.oecd-ilibrary.org/environment/test-no-471-bacterial-reverse-mutation-test_9789264071247-en.
Xenometrix . Ames MPFTM Penta 1 Microplate Format Mutagenicity Assay. Instructions for Use. Xenometrix; Allschwil, Switzerland: 2019. pp. 1–39. Version 2.01.
OECD Test No. 473: In Vitro Mammalian Chromosomal Aberration Test, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris. 2016. [(accessed on 13 November 2023)]. Available online: https://www.oecd-ilibrary.org/environment/test-no-473-in-vitro-mammalian-chromosomal-aberration-test_9789264264649-en.
OECD Test No. 489: In Vivo Mammalian Alkaline Comet Assay, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris. 2016. [(accessed on 13 November 2023)]. Available online: https://www.oecd-ilibrary.org/environment/test-no-489-in-vivo-mammalian-alkaline-comet-assay_9789264264885-en.
Jiravova J., Tomankova K., Harvanova M., Malina L., Malohlava J., Luhova L., Panacek A., Manisova B., Kolarova H. The effect of silver nanoparticles and silver ions on mammalian and plant cells in vitro. Food Chem. Toxicol. 2016;96:50–61. doi: 10.1016/j.fct.2016.07.015. PubMed DOI
Xenometrix AG . XenoScreen YES/YAS Instructions for Use. Xenometrix; Allschwil, Switzerland: 2017. pp. 1–22. Version 3.08.
European Chemical Agency ECHA: Triclosan Dossier. [(accessed on 13 November 2023)]. Available online: https://echa.europa.eu/cs/registration-dossier/-/registered-dossier/12675/7/7/1.
European Chemical Agency ECHA: Triclocarban Dossier. [(accessed on 13 November 2023)]. Available online: https://echa.europa.eu/cs/registration-dossier/-/registered-dossier/12075/7/7/2.
SCCP (Scientific Committee on Consumer Products) Opinion on Triclosan, 21 January 2009, SCCP/1192/08. [(accessed on 13 November 2023)]. Available online: https://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_166.pdf.
Sun D., Zhao T., Wang T., Wu M., Zhang Z. Genotoxicity assessment of triclocarban by comet and micronucleus assays and Ames test. Environ. Sci. Pollut. Res. 2020;27:7430–7438. doi: 10.1007/s11356-019-07351-9. PubMed DOI
Sun D., Zhao T., Li X., Zhang Z. Evaluation of DNA and chromosomal damage in two human HaCaT and L02 cells treated with varying triclosan concentrations. J. Toxicol. Environ. Health A. 2019;82:473–482. doi: 10.1080/15287394.2019.1618758. PubMed DOI
Heidemann A. Chromosome aberration assay in Chinese Hamster V79 cells in vitro with FAT 80′ 023/Q. Cytotest Cell Res. 1990. CCR project 179100.
SCCS (Scientific Committee on Consumer Safety) Opinion on Triclosan, ADDENDUM to the SCCP Opinion on Triclosan (SCCP/1192/08) from January 2009, 22 March 2011, SCCS/1414/11. [(accessed on 13 November 2023)]. Available online: https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_054.pdf.
Sharma S., Dar O.I., Andotra M., Sharma S., Bhagat A., Thakur S., Kesavan A.K., Kaur A. Cellular, molecular and genomic alterations in the hatchlings of Labeo rohita after exposure to Triclosan. Front. Environ. Sci. 2022;10:992435. doi: 10.3389/fenvs.2022.992435. DOI
US Environmental Protection Agency . 5-Chloro-2-(2,4-dichlorophenoxy)phenol (Triclosan): Toxicology Chapter for the Reregistration Eligibility Decision (RED) Document. US Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances; Washington, DC, USA: 2008. [(accessed on 13 November 2023)]. Available online: www.regulations.gov/#!searchResults;rpp=10;po=10;s=EPA-HQ-OPP-2007-0513.
Government of Canada Screening Assessment Urea, N-(4-chlorophenyl)-N’-(3,4-dichlorophenyl)-(Triclocarban). Chemical Abstracts Service Registry Number 101-20-2. Environment and Climate Change Canada. Health Canada, March 2023, Cat. No.: En84-317/2022E-PDF. 2023. [(accessed on 13 November 2023)]. Available online: https://publications.gc.ca/collections/collection_2023/eccc/En84-317-2022-eng.pdf.
Soap and Detergent Association In vitro Mammalian Chromosome Aberration Test. Report no. 2002-01-TCC. 2002. [(accessed on 13 November 2023)]. Available online: https://www.cleaninginstitute.org/sites/default/files/research-pdfs/Triclocarban_in_vitro_mammalian_chromosome_aberration_test.pdf.
Kim S., Chen J., Cheng T., Gindulyte A., He J., He S., Li Q., Shoemaker B.A., Thiessen P.A., Yu B., et al. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res. 2019;47:1102–1109. doi: 10.1093/nar/gky1033. PubMed DOI PMC
Martínez-Paz P., Morales M., Martínez-Guitarte J.L., Morcillo G. Genotoxic effects of environmental endocrine disruptors on the aquatic insect Chironomus riparius evaluated using the comet assay. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2013;758:41–47. doi: 10.1016/j.mrgentox.2013.09.005. PubMed DOI
Silva A.R., Cardoso D.N., Cruz A., Lourenço J., Mendo S., Soares A.M., Loureiro S. Ecotoxicity and genotoxicity of a binary combination of triclosan and carbendazim to Daphnia magna. Ecotoxicol. Environ. Saf. 2015;115:279–290. doi: 10.1016/j.ecoenv.2015.02.022. PubMed DOI
Gao L., Yuan T., Cheng P., Bai Q., Zhou C., Ao J., Wang W., Zhang H. Effects of triclosan and triclocarban on the growth inhibition, cell viability, genotoxicity and multixenobiotic resistance responses of Tetrahymena thermophila. Chemosphere. 2015;139:434–440. doi: 10.1016/j.chemosphere.2015.07.059. PubMed DOI
OECD Publishing; Paris, France: 2014. [(accessed on 13 November 2023)]. OECD Report of the JaCVAM Initiative International Pre-Validation and Validation Studies of the In Vivo Rodent Alkaline Comet Assay for the Detection of Genotoxic Carcinogens, Series on Testing and Assessment, Nos. 195 and 196. Available online: https://www.oecd.org/env/ehs/testing/Come%20assay%20revised%20pre-validation%20report%202013.pdf.
Burlinson B., Tice R.R., Speit G., Agurell E., Brendler-Schwaab S.Y., Collins A.R., Escobar P., Honma M., Kumaravel T.S., Nakajima M., et al. In Vivo Comet Assay Workgroup, part of the Fourth International Workgroup on Genotoxicity Testing. Fourth International Workgroup on Genotoxicity testing: Results of the in vivo Comet assay workgroup. Mutat. Res. 2007;627:31–35. doi: 10.1016/j.mrgentox.2006.08.011. PubMed DOI
Paul T., Shukla S.P., Kumar K., Poojary N., Kumar S. Effect of temperature on triclosan toxicity in Pangasianodon hypophthalmus (Sauvage, 1878): Hematology, biochemistry and genotoxicity evaluation. Sci. Total Environ. 2019;668:104–114. doi: 10.1016/j.scitotenv.2019.02.443. PubMed DOI
Lee J.S., Oh Y., Lee J.S., Kim H.S. Acute toxicity, oxidative stress, and apoptosis due to short-term triclosan exposure and multi- and transgenerational effects on in vivo endpoints, antioxidant defense, and DNA damage response in the freshwater water flea Daphnia magna. Sci. Total Environ. 2023;864:160925. doi: 10.1016/j.scitotenv.2022.160925. PubMed DOI
Wang F., Xu R., Zheng F., Liu H. Effects of triclosan on acute toxicity, genetic toxicity and oxidative stress in goldfish (Carassius auratus) Exp. Anim. 2018;67:219–227. doi: 10.1538/expanim.17-0101. PubMed DOI PMC
Xu X., Lu Y., Zhang D., Wang Y., Zhou X., Xu H., Mei Y. Toxic assessment of Triclosan and Triclocarban on Artemia salina. Bull. Environ. Contam. Toxicol. 2015;95:728–733. doi: 10.1007/s00128-015-1641-2. PubMed DOI
Ma Y., Chen C., Wang J.B., Cheng J.L., Shen S., Chen X., Huo J.S. Triclosan-induced oxidative stress injury and apoptosis by regulating the PI3K/Akt/Caspase-3 signaling pathway in human renal glomerular endothelial cells. Biomed. Environ. Sci. 2022;35:547–551. doi: 10.3967/bes2022.073. PubMed DOI
Zhong R., He H., Jin M., Lu Z., Deng Y., Liu C., Shen N., Li J., Wang H., Ying P., et al. Genome-wide gene-bisphenol A, F and triclosan interaction analyses on urinary oxidative stress markers. Sci. Total Environ. 2022;807:150753. doi: 10.1016/j.scitotenv.2021.150753. PubMed DOI
Adhikari A., Das B.K., Ganguly S., Nag S.K., Sadhukhan D., Raut S.S. Emerging contaminant triclosan incites endocrine disruption, reproductive impairments and oxidative stress in the commercially important carp, Catla (Labeo catla): An insight through molecular, histopathological and bioinformatic approach. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2023;268:109605. doi: 10.1016/j.cbpc.2023.109605. PubMed DOI
Cui Z., He F., Li X., Li Y., Huo C., Wang H., Qi Y., Tian G., Zong W., Liu R. Response pathways of superoxide dismutase and catalase under the regulation of triclocarban-triggered oxidative stress in Eisenia foetida: Comprehensive mechanism analysis based on cytotoxicity and binding model. Sci. Total Environ. 2023;854:158821. doi: 10.1016/j.scitotenv.2022.158821. PubMed DOI
Alfhili M.A., Lee M.H. Triclosan: An Update on Biochemical and Molecular Mechanisms. Oxid. Med. Cell Longev. 2019;2019:1607304. doi: 10.1155/2019/1607304. PubMed DOI PMC
Lee J.S., Oh Y., Park H.E., Lee J.S., Kim H.S. Synergistic toxic mechanisms of microplastics and triclosan via multixenobiotic resistance (MXR) inhibition-mediated autophagy in the freshwater water flea Daphnia magna. Sci. Total Environ. 2023;896:165214. doi: 10.1016/j.scitotenv.2023.165214. PubMed DOI
Pashaei R., Dzingelevičienė R., Putna-Nimane I., Overlinge D., Błaszczyk A., Walker T.R. Acute toxicity of triclosan, caffeine, nanoplastics, microplastics, and their mixtures on Daphnia magna. Mar. Pollut. Bull. 2023;192:115113. doi: 10.1016/j.marpolbul.2023.115113. PubMed DOI
Qu H., Barrett H., Wang B., Han J., Wang F., Gong W., Wu J., Wang W., Yu G. Co-occurrence of antiseptic triclocarban and chiral anti-inflammatory ibuprofen in environment: Association between biological effect in sediment and risk to human health. J. Hazard. Mater. 2021;407:124871. doi: 10.1016/j.jhazmat.2020.124871. PubMed DOI
Zhang H., Sanidad K.Z., Zhang J., Wang G., Zhang R., Hu C., Lin Y., Haggerty T.D., Parsonnet J., Zheng Y., et al. Microbiota-mediated reactivation of triclosan oxidative metabolites in colon tissues. J. Hazard. Mater. 2023;445:130509. doi: 10.1016/j.jhazmat.2022.130509. PubMed DOI PMC
Oliver M., Kudłak B., Wieczerzak M., Reis S., Lima S.A.C., Segundo M.A., Miró M. Ecotoxicological equilibria of triclosan in Microtox, XenoScreen YES/YAS, Caco2, HEPG2 and liposomal systems are affected by the occurrence of other pharmaceutical and personal care emerging contaminants. Sci. Total Environ. 2020;719:137358. doi: 10.1016/j.scitotenv.2020.137358. PubMed DOI
Kenda M., Kuželički N.K., Iida M., Kojima H., Dolenc M.S. Triclocarban, Triclosan, Bromochlorophene, Chlorophene, and Climbazole effects on nuclear receptors: An in silico and in vitro study. Environ. Health Perspect. 2020;128:107005. doi: 10.1289/EHP6596. PubMed DOI PMC
Pujol E., Blanco-Cabra N., Julián E., Leiva R., Torrents E., Vázquez S. Pentafluorosulfanyl-containing triclocarban analogs with potent antimicrobial activity. Molecules. 2018;23:2853. doi: 10.3390/molecules23112853. PubMed DOI PMC
Sreevidya V.S., Lenz K.A., Svoboda K.R., Ma H. Benzalkonium chloride, benzethonium chloride, and chloroxylenol—Three replacement antimicrobials are more toxic than triclosan and triclocarban in two model organisms. Environ. Pollut. 2018;235:814–824. doi: 10.1016/j.envpol.2017.12.108. PubMed DOI