A machine learning based depression screening framework using temporal domain features of the electroencephalography signals

. 2024 ; 19 (3) : e0299127. [epub] 20240327

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38536782

Depression is a serious mental health disorder affecting millions of individuals worldwide. Timely and precise recognition of depression is vital for appropriate mediation and effective treatment. Electroencephalography (EEG) has surfaced as a promising tool for inspecting the neural correlates of depression and therefore, has the potential to contribute to the diagnosis of depression effectively. This study presents an EEG-based mental depressive disorder detection mechanism using a publicly available EEG dataset called Multi-modal Open Dataset for Mental-disorder Analysis (MODMA). This study uses EEG data acquired from 55 participants using 3 electrodes in the resting-state condition. Twelve temporal domain features are extracted from the EEG data by creating a non-overlapping window of 10 seconds, which is presented to a novel feature selection mechanism. The feature selection algorithm selects the optimum chunk of attributes with the highest discriminative power to classify the mental depressive disorders patients and healthy controls. The selected EEG attributes are classified using three different classification algorithms i.e., Best- First (BF) Tree, k-nearest neighbor (KNN), and AdaBoost. The highest classification accuracy of 96.36% is achieved using BF-Tree using a feature vector length of 12. The proposed mental depressive classification scheme outperforms the existing state-of-the-art depression classification schemes in terms of the number of electrodes used for EEG recording, feature vector length, and the achieved classification accuracy. The proposed framework could be used in psychiatric settings, providing valuable support to psychiatrists.

Zobrazit více v PubMed

Shi Q, Liu A, Chen R, Shen J, Zhao Q, Hu B. Depression detection using resting state three-channel EEG signal. arXiv preprint arXiv:200209175. 2020;.

Swetaa A, Gayathri R, Priya VV. Awareness of mental health among teenagers. Drug Invention Today. 2019;11(8).

of Health Metrics I, Evaluation. Global Health Data Exchange (GHDx). 2021;.

O WH. W. H. Organization, “Depression and other common mental disorders,. 2017; p. http://apps.who.int/iris/bitstream/10665/254610/1/WHO-MSD-MER-2017.2-eng.pdf.

Beaujean AA, Parker S, Qiu X. The relationship between cognitive ability and depression: a longitudinal data analysis. Social psychiatry and psychiatric epidemiology. 2013;48:1983–1992. doi: 10.1007/s00127-013-0668-0 PubMed DOI PMC

Lerner D, Adler DA, Rogers WH, Lapitsky L, McLaughlin T, Reed J. Work performance of employees with depression: the impact of work stressors. American Journal of Health Promotion. 2010;24(3):205–213. doi: 10.4278/ajhp.090313-QUAN-103 PubMed DOI PMC

Chodavadia P, Teo I, Poremski D, Fung DSS, Finkelstein EA. Prevalence and economic burden of depression and anxiety symptoms among Singaporean adults: results from a 2022 web panel. BMC psychiatry. 2023;23(1):1–9. doi: 10.1186/s12888-023-04581-7 PubMed DOI PMC

Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. Journal of general internal medicine. 2001;16(9):606–613. doi: 10.1046/j.1525-1497.2001.016009606.x PubMed DOI PMC

Beck AT, Steer RA, Brown GK, et al. Beck depression inventory. Harcourt Brace Jovanovich New York:; 1987.

Hamilton M. The Hamilton rating scale for depression. Assessment of depression. 1986; p. 143–152. doi: 10.1007/978-3-642-70486-4_14 DOI

Davidson J, Turnbull CD, Strickland R, Miller R, Graves K. The Montgomery-Åsberg Depression Scale: reliability and validity. Acta psychiatrica scandinavica. 1986;73(5):544–548. doi: 10.1111/j.1600-0447.1986.tb02723.x PubMed DOI

Yesavage JA. Geriatric depression scale. Psychopharmacol bull. 1988;24(4):709–711. PubMed

Ay B, Yildirim O, Talo M, Baloglu UB, Aydin G, Puthankattil SD, et al.. Automated depression detection using deep representation and sequence learning with EEG signals. Journal of medical systems. 2019;43:1–12. doi: 10.1007/s10916-019-1345-y PubMed DOI

Zang X, Li B, Zhao L, Yan D, Yang L. End-to-end depression recognition based on a one-dimensional convolution neural network model using two-lead ECG signal. Journal of Medical and Biological Engineering. 2022;42(2):225–233. doi: 10.1007/s40846-022-00687-7 PubMed DOI PMC

Byun S, Kim AY, Jang EH, Kim S, Choi KW, Yu HY, et al.. Detection of major depressive disorder from linear and nonlinear heart rate variability features during mental task protocol. Computers in biology and medicine. 2019;112:103381. doi: 10.1016/j.compbiomed.2019.103381 PubMed DOI

Ding X, Yue X, Zheng R, Bi C, Li D, Yao G. Classifying major depression patients and healthy controls using EEG, eye tracking and galvanic skin response data. Journal of affective Disorders. 2019;251:156–161. doi: 10.1016/j.jad.2019.03.058 PubMed DOI

Choi JG, Ko I, Han S. Depression level classification using machine learning classifiers based on actigraphy data. IEEE Access. 2021;9:116622–116646. doi: 10.1109/ACCESS.2021.3105393 DOI

Wang H, Liu Y, Zhen X, Tu X. Depression speech recognition with a three-dimensional convolutional network. Frontiers in human neuroscience. 2021;15:713823. doi: 10.3389/fnhum.2021.713823 PubMed DOI PMC

Bairy GM, Niranjan U, Puthankattil SD. Automated classification of depression EEG signals using wavelet entropies and energies. Journal of Mechanics in Medicine and Biology. 2016;16(03):1650035. doi: 10.1142/S0219519416500354 DOI

Qayyum A, Razzak I, Tanveer M, Mazher M, Alhaqbani B. High-Density Electroencephalography and Speech Signal based Deep Framework for Clinical Depression Diagnosis. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2023;. doi: 10.1109/TCBB.2023.3257175 PubMed DOI

Shen J, Zhang Y, Liang H, Zhao Z, Zhu K, Qian K, et al.. Depression Recognition From EEG Signals Using an Adaptive Channel Fusion Method Via Improved Focal Loss. IEEE Journal of Biomedical and Health Informatics. 2023;. doi: 10.1109/JBHI.2023.3265805 PubMed DOI

Xia M, Zhang Y, Wu Y, Wang X. An End-to-End Deep Learning Model for EEG-based Major Depressive Disorder Classification. IEEE Access. 2023;.

Ebrahimzadeh E, Saharkhiz S, Rajabion L, Oskouei HB, Seraji M, Fayaz F, et al.. Simultaneous electroencephalography-functional magnetic resonance imaging for assessment of human brain function. Frontiers in Systems Neuroscience. 2022;16:934266. doi: 10.3389/fnsys.2022.934266 PubMed DOI PMC

Salazar-Ramirez A, Martin JI, Martinez R, Arruti A, Muguerza J, Sierra B. A hierarchical architecture for recognising intentionality in mental tasks on a brain-computer interface. Plos one. 2019;14(6):e0218181. doi: 10.1371/journal.pone.0218181 PubMed DOI PMC

Sutanto E, Purwanto TW, Fahmi F, Yazid M, Shalannanda W, Aziz M. Implementation of Closing Eyes Detection with Ear Sensor of Muse EEG Headband using Support Vector Machine Learning. International Journal of Intelligent Engineering & Systems. 2023;16(1).

García-Ponsoda S, García-Carrasco J, Teruel MA, Maté A, Trujillo J. Feature engineering of EEG applied to mental disorders: a systematic mapping study. Applied Intelligence. 2023; p. 1–41.

Päeske L, Uudeberg T, Hinrikus H, Lass J, Bachmann M. Correlation between electroencephalographic markers in the healthy brain. Scientific Reports. 2023;13(1):6307. doi: 10.1038/s41598-023-33364-z PubMed DOI PMC

de Aguiar Neto FS, Rosa JLG. Depression biomarkers using non-invasive EEG: A review. Neuroscience & Biobehavioral Reviews. 2019;105:83–93. doi: 10.1016/j.neubiorev.2019.07.021 PubMed DOI

Akbari H, Sadiq MT, Payan M, Esmaili SS, Baghri H, Bagheri H. Depression Detection Based on Geometrical Features Extracted from SODP Shape of EEG Signals and Binary PSO. Traitement du Signal. 2021;38(1). doi: 10.18280/ts.380102 DOI

Zhu J, Wang Z, Gong T, Zeng S, Li X, Hu B, et al.. An Improved Classification Model for Depression Detection Using EEG and Eye Tracking Data. IEEE Transactions on NanoBioscience. 2020;19(3):527–537. doi: 10.1109/TNB.2020.2990690 PubMed DOI

Cai H, Han J, Chen Y, Sha X, Wang Z, Hu B, et al.. A pervasive approach to EEG-based depression detection. Complexity. 2018;2018:1–13. doi: 10.1155/2018/5238028 DOI

Avots E, Jermakovs K, Bachmann M, Päeske L, Ozcinar C, Anbarjafari G. Ensemble approach for detection of depression using EEG features. Entropy. 2022;24(2):211. doi: 10.3390/e24020211 PubMed DOI PMC

Jiang C, Li Y, Tang Y, Guan C. Enhancing EEG-based classification of depression patients using spatial information. IEEE transactions on neural systems and rehabilitation engineering. 2021;29:566–575. doi: 10.1109/TNSRE.2021.3059429 PubMed DOI

Bashir N, Narejo S, Naz B, Ismail F, Anjum MR, Butt A, et al.. A machine learning framework for Major depressive disorder (MDD) detection using non-invasive EEG signals. Wireless Personal Communications. 2023; p. 1–23.

Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H, Subha DP. Automated EEG-based screening of depression using deep convolutional neural network. Computer methods and programs in biomedicine. 2018;161:103–113. doi: 10.1016/j.cmpb.2018.04.012 PubMed DOI

Wu CT, Dillon DG, Hsu HC, Huang S, Barrick E, Liu YH. Depression detection using relative EEG power induced by emotionally positive images and a conformal kernel support vector machine. Applied Sciences. 2018;8(8):1244. doi: 10.3390/app8081244 DOI

Yang J, Zhang Z, Fu Z, Li B, Xiong P, Liu X. Cross-subject classification of depression by using multiparadigm EEG feature fusion. Computer Methods and Programs in Biomedicine. 2023; p. 107360. doi: 10.1016/j.cmpb.2023.107360 PubMed DOI

Liu W, Jia K, Wang Z, Ma Z. A Depression Prediction Algorithm Based on Spatiotemporal Feature of EEG Signal. Brain Sciences. 2022;12(5):630. doi: 10.3390/brainsci12050630 PubMed DOI PMC

Wang Z, Ma Z, Liu W, An Z, Huang F. A Depression Diagnosis Method Based on the Hybrid Neural Network and Attention Mechanism. Brain Sciences. 2022;12(7):834. doi: 10.3390/brainsci12070834 PubMed DOI PMC

Cai H, Gao Y, Sun S, Li N, Tian F, Xiao H, et al. Modma dataset: a multi-modal open dataset for mental-disorder analysis. arXiv preprint arXiv:200209283. 2020;.

Attallah O. An effective mental stress state detection and evaluation system using minimum number of frontal brain electrodes. Diagnostics. 2020;10(5):292. doi: 10.3390/diagnostics10050292 PubMed DOI PMC

Kamińska D, Smółka K, Zwoliński G. Detection of mental stress through EEG signal in virtual reality environment. Electronics (Switzerland) 10, 22 (Nov 2021); 2021.

Ehrhardt NM, Fietz J, Kopf-Beck J, Kappelmann N, Brem AK. Separating EEG correlates of stress: Cognitive effort, time pressure, and social-evaluative threat. European journal of neuroscience. 2022;55(9-10):2464–2473. doi: 10.1111/ejn.15211 PubMed DOI

Singh MI, Singh M. Emotion recognition: An evaluation of ERP features acquired from frontal EEG electrodes. Applied Sciences. 2021;11(9):4131. doi: 10.3390/app11094131 DOI

Topic A, Russo M, Stella M, Saric M. Emotion recognition using a reduced set of EEG channels based on holographic feature maps. Sensors. 2022;22(9):3248. doi: 10.3390/s22093248 PubMed DOI PMC

Lansdell HC. Frontal Lobe Function and Dysfunction; 1993.

Nusslock R, Shackman AJ, McMenamin BW, Greischar LL, Davidson RJ, Kovacs M. Comorbid anxiety moderates the relationship between depression history and prefrontal EEG asymmetry. Psychophysiology. 2018;55(1):e12953. doi: 10.1111/psyp.12953 PubMed DOI PMC

Xu Y, Zhong H, Ying S, Liu W, Chen G, Luo X, et al.. Depressive Disorder Recognition Based on Frontal EEG Signals and Deep Learning. Sensors. 2023;23(20):8639. doi: 10.3390/s23208639 PubMed DOI PMC

Zhu J, Jiang C, Chen J, Lin X, Yu R, Li X, et al.. EEG based depression recognition using improved graph convolutional neural network. Computers in Biology and Medicine. 2022;148:105815. doi: 10.1016/j.compbiomed.2022.105815 PubMed DOI

Li L, Wang P, Li S, Zhao Q, Yin Z, Guan W, et al.. Construction of a resting EEG-based depression recognition model for college students and possible mechanisms of action of different types of exercise. BMC psychiatry. 2023;23(1):849. doi: 10.1186/s12888-023-05352-0 PubMed DOI PMC

Wang Z, Hu C, Liu W, Zhou X, Zhao X. EEG-based high-performance depression state recognition. Frontiers in Neuroscience;17:1301214. doi: 10.3389/fnins.2023.1301214 PubMed DOI PMC

Peng H, Xia C, Wang Z, Zhu J, Zhang X, Sun S, et al.. Multivariate pattern analysis of EEG-based functional connectivity: A study on the identification of depression. IEEE Access. 2019;7:92630–92641. doi: 10.1109/ACCESS.2019.2927121 DOI

Zhang J, Xu B, Yin H. Depression screening using hybrid neural network. Multimedia Tools and Applications. 2023; p. 1–16. doi: 10.1007/s11042-023-14860-w PubMed DOI PMC

Candra H, Yuwono M, Chai R, Handojoseno A, Elamvazuthi I, Nguyen HT, et al. Investigation of window size in classification of EEG-emotion signal with wavelet entropy and support vector machine. In: 2015 37th Annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2015. p. 7250–7253. PubMed

Hag A, Al-Shargie F, Handayani D, Asadi H. Mental Stress Classification Based on Selected Electroencephalography Channels Using Correlation Coefficient of Hjorth Parameters. Brain Sciences. 2023;13(9):1340. doi: 10.3390/brainsci13091340 PubMed DOI PMC

Ksibi A, Zakariah M, Menzli LJ, Saidani O, Almuqren L, Hanafieh RAM. Electroencephalography-Based Depression Detection Using Multiple Machine Learning Techniques. Diagnostics. 2023;13(10):1779. doi: 10.3390/diagnostics13101779 PubMed DOI PMC

Bachmann M, Päeske L, Kalev K, Aarma K, Lehtmets A, Ööpik P, et al.. Methods for classifying depression in single channel EEG using linear and nonlinear signal analysis. Computer methods and programs in biomedicine. 2018;155:11–17. doi: 10.1016/j.cmpb.2017.11.023 PubMed DOI

Gour N, Hassan T, Owais M, Ganapathi II, Khanna P, Seghier ML, et al.. Transformers for autonomous recognition of psychiatric dysfunction via raw and imbalanced EEG signals. Brain Informatics. 2023;10(1):25. doi: 10.1186/s40708-023-00201-y PubMed DOI PMC

Zhang B, Zhou W, Cai H, Su Y, Wang J, Zhang Z, et al.. Ubiquitous depression detection of sleep physiological data by using combination learning and functional networks. IEEE Access. 2020;8:94220–94235. doi: 10.1109/ACCESS.2020.2994985 DOI

Resalat SN, Saba V. A study of various feature extraction methods on a motor imagery based brain computer interface system. Basic and clinical neuroscience. 2016;7(1):13. PubMed PMC

Zhang Y, Wang B, Jing J, Zhang J, Zou J, Nakamura M. A comparison study on multidomain EEG features for sleep stage classification. Computational Intelligence and Neuroscience. 2017;2017. doi: 10.1155/2017/4574079 PubMed DOI PMC

Adam A, Shapiai MI, Mohd Tumari MZ, Mohamad MS, Mubin M. Feature selection and classifier parameters estimation for EEG signals peak detection using particle swarm optimization. The Scientific World Journal. 2014;2014. doi: 10.1155/2014/973063 PubMed DOI PMC

Omerhodzic I, Avdakovic S, Nuhanovic A, Dizdarevic K. Energy Distribution of EEG Signals: EEG Signal Wavelet-Neural Network Classifier. International Journal of Biomedical and Biological Engineering. 2010;4(1):35–40.

Tomarken AJ, Davidson RJ, Henriques JB. Resting frontal brain asymmetry predicts affective responses to films. Journal of personality and social psychology. 1990;59(4):791. doi: 10.1037/0022-3514.59.4.791 PubMed DOI

Sobotka SS, Davidson RJ, Senulis JA. Anterior brain electrical asymmetries in response to reward and punishment. Electroencephalography and clinical Neurophysiology. 1992;83(4):236–247. doi: 10.1016/0013-4694(92)90117-Z PubMed DOI

Tomarken AJ, Davidson RJ, Wheeler RE, Doss RC. Individual differences in anterior brain asymmetry and fundamental dimensions of emotion. Journal of personality and social psychology. 1992;62(4):676. doi: 10.1037/0022-3514.62.4.676 PubMed DOI

Bruder GE, Stewart JW, McGrath PJ. Right brain, left brain in depressive disorders: clinical and theoretical implications of behavioral, electrophysiological and neuroimaging findings. Neuroscience & Biobehavioral Reviews. 2017;78:178–191. doi: 10.1016/j.neubiorev.2017.04.021 PubMed DOI

Bablani A, Edla DR, Dodia S. Classification of EEG data using k-nearest neighbor approach for concealed information test. Procedia computer science. 2018;143:242–249. doi: 10.1016/j.procs.2018.10.392 DOI

Li M, Xu H, Liu X, Lu S. Emotion recognition from multichannel EEG signals using K-nearest neighbor classification. Technology and health care. 2018;26(S1):509–519. doi: 10.3233/THC-174836 PubMed DOI PMC

Ding Y, Chen X, Fu Q, Zhong S. A depression recognition method for college students using deep integrated support vector algorithm. IEEE access. 2020;8:75616–75629. doi: 10.1109/ACCESS.2020.2987523 DOI

Kardam VS, Taran S, Pandey A. Motor imagery tasks based electroencephalogram signals classification using data-driven features. Neuroscience Informatics. 2023; p. 100128. doi: 10.1016/j.neuri.2023.100128 DOI

Aslan Z. Migraine detection from EEG signals using tunable Q-factor wavelet transform and ensemble learning techniques. Physical and Engineering Sciences in Medicine. 2021;44(4):1201–1212. doi: 10.1007/s13246-021-01055-6 PubMed DOI

Dou Y, Meng W. Comparative analysis of weka-based classification algorithms on medical diagnosis datasets. Technology and Health Care. 2023;(Preprint):1–12. doi: 10.3233/THC-236034 PubMed DOI PMC

Association AP, et al. American Psychiatric Association: Diagnosti c and Statistical Manual of Mental Disorders, Arlington; 2013.

Spitzer RL, Kroenke K, Williams JB, Group PHQPCS, Group PHQPCS, et al.. Validation and utility of a self-report version of PRIME-MD: the PHQ primary care study. Jama. 1999;282(18):1737–1744. doi: 10.1001/jama.282.18.1737 PubMed DOI

Witten IH, Frank E, Mark A. Hall, and Christopher J Pal. Data Mining: Practical machine learning tools and techniques. 2016;.

Mamta. EEG feature extraction using time domain analysis for classifying insomnia. In: 2020 IEEE India council international subsections conference (INDISCON). IEEE; 2020. p. 221–224.

Tasci G, Loh HW. Automated accurate detection of depression using twin Pascal’s triangles lattice pattern with EEG Signals. Knowledge-Based Systems. 2023;260:110190. doi: 10.1016/j.knosys.2022.110190 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...