A machine learning based depression screening framework using temporal domain features of the electroencephalography signals
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38536782
PubMed Central
PMC10971749
DOI
10.1371/journal.pone.0299127
PII: PONE-D-23-27156
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- deprese * diagnóza MeSH
- elektroencefalografie MeSH
- lidé MeSH
- strojové učení MeSH
- support vector machine * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Depression is a serious mental health disorder affecting millions of individuals worldwide. Timely and precise recognition of depression is vital for appropriate mediation and effective treatment. Electroencephalography (EEG) has surfaced as a promising tool for inspecting the neural correlates of depression and therefore, has the potential to contribute to the diagnosis of depression effectively. This study presents an EEG-based mental depressive disorder detection mechanism using a publicly available EEG dataset called Multi-modal Open Dataset for Mental-disorder Analysis (MODMA). This study uses EEG data acquired from 55 participants using 3 electrodes in the resting-state condition. Twelve temporal domain features are extracted from the EEG data by creating a non-overlapping window of 10 seconds, which is presented to a novel feature selection mechanism. The feature selection algorithm selects the optimum chunk of attributes with the highest discriminative power to classify the mental depressive disorders patients and healthy controls. The selected EEG attributes are classified using three different classification algorithms i.e., Best- First (BF) Tree, k-nearest neighbor (KNN), and AdaBoost. The highest classification accuracy of 96.36% is achieved using BF-Tree using a feature vector length of 12. The proposed mental depressive classification scheme outperforms the existing state-of-the-art depression classification schemes in terms of the number of electrodes used for EEG recording, feature vector length, and the achieved classification accuracy. The proposed framework could be used in psychiatric settings, providing valuable support to psychiatrists.
Department of Computer Engineering University of Engineering and Technology Taxila Taxila Pakistan
Department of Computer Science University of Chakwal Chakwal Pakistan
Department of Electrical Engineering Chonnam National University Gwangju South Korea
Department of Software Engineering Fatima Jinnah Women University Rawalpindi Pakistan
Zobrazit více v PubMed
Shi Q, Liu A, Chen R, Shen J, Zhao Q, Hu B. Depression detection using resting state three-channel EEG signal. arXiv preprint arXiv:200209175. 2020;.
Swetaa A, Gayathri R, Priya VV. Awareness of mental health among teenagers. Drug Invention Today. 2019;11(8).
of Health Metrics I, Evaluation. Global Health Data Exchange (GHDx). 2021;.
O WH. W. H. Organization, “Depression and other common mental disorders,. 2017; p. http://apps.who.int/iris/bitstream/10665/254610/1/WHO-MSD-MER-2017.2-eng.pdf.
Beaujean AA, Parker S, Qiu X. The relationship between cognitive ability and depression: a longitudinal data analysis. Social psychiatry and psychiatric epidemiology. 2013;48:1983–1992. doi: 10.1007/s00127-013-0668-0 PubMed DOI PMC
Lerner D, Adler DA, Rogers WH, Lapitsky L, McLaughlin T, Reed J. Work performance of employees with depression: the impact of work stressors. American Journal of Health Promotion. 2010;24(3):205–213. doi: 10.4278/ajhp.090313-QUAN-103 PubMed DOI PMC
Chodavadia P, Teo I, Poremski D, Fung DSS, Finkelstein EA. Prevalence and economic burden of depression and anxiety symptoms among Singaporean adults: results from a 2022 web panel. BMC psychiatry. 2023;23(1):1–9. doi: 10.1186/s12888-023-04581-7 PubMed DOI PMC
Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. Journal of general internal medicine. 2001;16(9):606–613. doi: 10.1046/j.1525-1497.2001.016009606.x PubMed DOI PMC
Beck AT, Steer RA, Brown GK, et al. Beck depression inventory. Harcourt Brace Jovanovich New York:; 1987.
Hamilton M. The Hamilton rating scale for depression. Assessment of depression. 1986; p. 143–152. doi: 10.1007/978-3-642-70486-4_14 DOI
Davidson J, Turnbull CD, Strickland R, Miller R, Graves K. The Montgomery-Åsberg Depression Scale: reliability and validity. Acta psychiatrica scandinavica. 1986;73(5):544–548. doi: 10.1111/j.1600-0447.1986.tb02723.x PubMed DOI
Yesavage JA. Geriatric depression scale. Psychopharmacol bull. 1988;24(4):709–711. PubMed
Ay B, Yildirim O, Talo M, Baloglu UB, Aydin G, Puthankattil SD, et al.. Automated depression detection using deep representation and sequence learning with EEG signals. Journal of medical systems. 2019;43:1–12. doi: 10.1007/s10916-019-1345-y PubMed DOI
Zang X, Li B, Zhao L, Yan D, Yang L. End-to-end depression recognition based on a one-dimensional convolution neural network model using two-lead ECG signal. Journal of Medical and Biological Engineering. 2022;42(2):225–233. doi: 10.1007/s40846-022-00687-7 PubMed DOI PMC
Byun S, Kim AY, Jang EH, Kim S, Choi KW, Yu HY, et al.. Detection of major depressive disorder from linear and nonlinear heart rate variability features during mental task protocol. Computers in biology and medicine. 2019;112:103381. doi: 10.1016/j.compbiomed.2019.103381 PubMed DOI
Ding X, Yue X, Zheng R, Bi C, Li D, Yao G. Classifying major depression patients and healthy controls using EEG, eye tracking and galvanic skin response data. Journal of affective Disorders. 2019;251:156–161. doi: 10.1016/j.jad.2019.03.058 PubMed DOI
Choi JG, Ko I, Han S. Depression level classification using machine learning classifiers based on actigraphy data. IEEE Access. 2021;9:116622–116646. doi: 10.1109/ACCESS.2021.3105393 DOI
Wang H, Liu Y, Zhen X, Tu X. Depression speech recognition with a three-dimensional convolutional network. Frontiers in human neuroscience. 2021;15:713823. doi: 10.3389/fnhum.2021.713823 PubMed DOI PMC
Bairy GM, Niranjan U, Puthankattil SD. Automated classification of depression EEG signals using wavelet entropies and energies. Journal of Mechanics in Medicine and Biology. 2016;16(03):1650035. doi: 10.1142/S0219519416500354 DOI
Qayyum A, Razzak I, Tanveer M, Mazher M, Alhaqbani B. High-Density Electroencephalography and Speech Signal based Deep Framework for Clinical Depression Diagnosis. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2023;. doi: 10.1109/TCBB.2023.3257175 PubMed DOI
Shen J, Zhang Y, Liang H, Zhao Z, Zhu K, Qian K, et al.. Depression Recognition From EEG Signals Using an Adaptive Channel Fusion Method Via Improved Focal Loss. IEEE Journal of Biomedical and Health Informatics. 2023;. doi: 10.1109/JBHI.2023.3265805 PubMed DOI
Xia M, Zhang Y, Wu Y, Wang X. An End-to-End Deep Learning Model for EEG-based Major Depressive Disorder Classification. IEEE Access. 2023;.
Ebrahimzadeh E, Saharkhiz S, Rajabion L, Oskouei HB, Seraji M, Fayaz F, et al.. Simultaneous electroencephalography-functional magnetic resonance imaging for assessment of human brain function. Frontiers in Systems Neuroscience. 2022;16:934266. doi: 10.3389/fnsys.2022.934266 PubMed DOI PMC
Salazar-Ramirez A, Martin JI, Martinez R, Arruti A, Muguerza J, Sierra B. A hierarchical architecture for recognising intentionality in mental tasks on a brain-computer interface. Plos one. 2019;14(6):e0218181. doi: 10.1371/journal.pone.0218181 PubMed DOI PMC
Sutanto E, Purwanto TW, Fahmi F, Yazid M, Shalannanda W, Aziz M. Implementation of Closing Eyes Detection with Ear Sensor of Muse EEG Headband using Support Vector Machine Learning. International Journal of Intelligent Engineering & Systems. 2023;16(1).
García-Ponsoda S, García-Carrasco J, Teruel MA, Maté A, Trujillo J. Feature engineering of EEG applied to mental disorders: a systematic mapping study. Applied Intelligence. 2023; p. 1–41.
Päeske L, Uudeberg T, Hinrikus H, Lass J, Bachmann M. Correlation between electroencephalographic markers in the healthy brain. Scientific Reports. 2023;13(1):6307. doi: 10.1038/s41598-023-33364-z PubMed DOI PMC
de Aguiar Neto FS, Rosa JLG. Depression biomarkers using non-invasive EEG: A review. Neuroscience & Biobehavioral Reviews. 2019;105:83–93. doi: 10.1016/j.neubiorev.2019.07.021 PubMed DOI
Akbari H, Sadiq MT, Payan M, Esmaili SS, Baghri H, Bagheri H. Depression Detection Based on Geometrical Features Extracted from SODP Shape of EEG Signals and Binary PSO. Traitement du Signal. 2021;38(1). doi: 10.18280/ts.380102 DOI
Zhu J, Wang Z, Gong T, Zeng S, Li X, Hu B, et al.. An Improved Classification Model for Depression Detection Using EEG and Eye Tracking Data. IEEE Transactions on NanoBioscience. 2020;19(3):527–537. doi: 10.1109/TNB.2020.2990690 PubMed DOI
Cai H, Han J, Chen Y, Sha X, Wang Z, Hu B, et al.. A pervasive approach to EEG-based depression detection. Complexity. 2018;2018:1–13. doi: 10.1155/2018/5238028 DOI
Avots E, Jermakovs K, Bachmann M, Päeske L, Ozcinar C, Anbarjafari G. Ensemble approach for detection of depression using EEG features. Entropy. 2022;24(2):211. doi: 10.3390/e24020211 PubMed DOI PMC
Jiang C, Li Y, Tang Y, Guan C. Enhancing EEG-based classification of depression patients using spatial information. IEEE transactions on neural systems and rehabilitation engineering. 2021;29:566–575. doi: 10.1109/TNSRE.2021.3059429 PubMed DOI
Bashir N, Narejo S, Naz B, Ismail F, Anjum MR, Butt A, et al.. A machine learning framework for Major depressive disorder (MDD) detection using non-invasive EEG signals. Wireless Personal Communications. 2023; p. 1–23.
Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H, Subha DP. Automated EEG-based screening of depression using deep convolutional neural network. Computer methods and programs in biomedicine. 2018;161:103–113. doi: 10.1016/j.cmpb.2018.04.012 PubMed DOI
Wu CT, Dillon DG, Hsu HC, Huang S, Barrick E, Liu YH. Depression detection using relative EEG power induced by emotionally positive images and a conformal kernel support vector machine. Applied Sciences. 2018;8(8):1244. doi: 10.3390/app8081244 DOI
Yang J, Zhang Z, Fu Z, Li B, Xiong P, Liu X. Cross-subject classification of depression by using multiparadigm EEG feature fusion. Computer Methods and Programs in Biomedicine. 2023; p. 107360. doi: 10.1016/j.cmpb.2023.107360 PubMed DOI
Liu W, Jia K, Wang Z, Ma Z. A Depression Prediction Algorithm Based on Spatiotemporal Feature of EEG Signal. Brain Sciences. 2022;12(5):630. doi: 10.3390/brainsci12050630 PubMed DOI PMC
Wang Z, Ma Z, Liu W, An Z, Huang F. A Depression Diagnosis Method Based on the Hybrid Neural Network and Attention Mechanism. Brain Sciences. 2022;12(7):834. doi: 10.3390/brainsci12070834 PubMed DOI PMC
Cai H, Gao Y, Sun S, Li N, Tian F, Xiao H, et al. Modma dataset: a multi-modal open dataset for mental-disorder analysis. arXiv preprint arXiv:200209283. 2020;.
Attallah O. An effective mental stress state detection and evaluation system using minimum number of frontal brain electrodes. Diagnostics. 2020;10(5):292. doi: 10.3390/diagnostics10050292 PubMed DOI PMC
Kamińska D, Smółka K, Zwoliński G. Detection of mental stress through EEG signal in virtual reality environment. Electronics (Switzerland) 10, 22 (Nov 2021); 2021.
Ehrhardt NM, Fietz J, Kopf-Beck J, Kappelmann N, Brem AK. Separating EEG correlates of stress: Cognitive effort, time pressure, and social-evaluative threat. European journal of neuroscience. 2022;55(9-10):2464–2473. doi: 10.1111/ejn.15211 PubMed DOI
Singh MI, Singh M. Emotion recognition: An evaluation of ERP features acquired from frontal EEG electrodes. Applied Sciences. 2021;11(9):4131. doi: 10.3390/app11094131 DOI
Topic A, Russo M, Stella M, Saric M. Emotion recognition using a reduced set of EEG channels based on holographic feature maps. Sensors. 2022;22(9):3248. doi: 10.3390/s22093248 PubMed DOI PMC
Lansdell HC. Frontal Lobe Function and Dysfunction; 1993.
Nusslock R, Shackman AJ, McMenamin BW, Greischar LL, Davidson RJ, Kovacs M. Comorbid anxiety moderates the relationship between depression history and prefrontal EEG asymmetry. Psychophysiology. 2018;55(1):e12953. doi: 10.1111/psyp.12953 PubMed DOI PMC
Xu Y, Zhong H, Ying S, Liu W, Chen G, Luo X, et al.. Depressive Disorder Recognition Based on Frontal EEG Signals and Deep Learning. Sensors. 2023;23(20):8639. doi: 10.3390/s23208639 PubMed DOI PMC
Zhu J, Jiang C, Chen J, Lin X, Yu R, Li X, et al.. EEG based depression recognition using improved graph convolutional neural network. Computers in Biology and Medicine. 2022;148:105815. doi: 10.1016/j.compbiomed.2022.105815 PubMed DOI
Li L, Wang P, Li S, Zhao Q, Yin Z, Guan W, et al.. Construction of a resting EEG-based depression recognition model for college students and possible mechanisms of action of different types of exercise. BMC psychiatry. 2023;23(1):849. doi: 10.1186/s12888-023-05352-0 PubMed DOI PMC
Wang Z, Hu C, Liu W, Zhou X, Zhao X. EEG-based high-performance depression state recognition. Frontiers in Neuroscience;17:1301214. doi: 10.3389/fnins.2023.1301214 PubMed DOI PMC
Peng H, Xia C, Wang Z, Zhu J, Zhang X, Sun S, et al.. Multivariate pattern analysis of EEG-based functional connectivity: A study on the identification of depression. IEEE Access. 2019;7:92630–92641. doi: 10.1109/ACCESS.2019.2927121 DOI
Zhang J, Xu B, Yin H. Depression screening using hybrid neural network. Multimedia Tools and Applications. 2023; p. 1–16. doi: 10.1007/s11042-023-14860-w PubMed DOI PMC
Candra H, Yuwono M, Chai R, Handojoseno A, Elamvazuthi I, Nguyen HT, et al. Investigation of window size in classification of EEG-emotion signal with wavelet entropy and support vector machine. In: 2015 37th Annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2015. p. 7250–7253. PubMed
Hag A, Al-Shargie F, Handayani D, Asadi H. Mental Stress Classification Based on Selected Electroencephalography Channels Using Correlation Coefficient of Hjorth Parameters. Brain Sciences. 2023;13(9):1340. doi: 10.3390/brainsci13091340 PubMed DOI PMC
Ksibi A, Zakariah M, Menzli LJ, Saidani O, Almuqren L, Hanafieh RAM. Electroencephalography-Based Depression Detection Using Multiple Machine Learning Techniques. Diagnostics. 2023;13(10):1779. doi: 10.3390/diagnostics13101779 PubMed DOI PMC
Bachmann M, Päeske L, Kalev K, Aarma K, Lehtmets A, Ööpik P, et al.. Methods for classifying depression in single channel EEG using linear and nonlinear signal analysis. Computer methods and programs in biomedicine. 2018;155:11–17. doi: 10.1016/j.cmpb.2017.11.023 PubMed DOI
Gour N, Hassan T, Owais M, Ganapathi II, Khanna P, Seghier ML, et al.. Transformers for autonomous recognition of psychiatric dysfunction via raw and imbalanced EEG signals. Brain Informatics. 2023;10(1):25. doi: 10.1186/s40708-023-00201-y PubMed DOI PMC
Zhang B, Zhou W, Cai H, Su Y, Wang J, Zhang Z, et al.. Ubiquitous depression detection of sleep physiological data by using combination learning and functional networks. IEEE Access. 2020;8:94220–94235. doi: 10.1109/ACCESS.2020.2994985 DOI
Resalat SN, Saba V. A study of various feature extraction methods on a motor imagery based brain computer interface system. Basic and clinical neuroscience. 2016;7(1):13. PubMed PMC
Zhang Y, Wang B, Jing J, Zhang J, Zou J, Nakamura M. A comparison study on multidomain EEG features for sleep stage classification. Computational Intelligence and Neuroscience. 2017;2017. doi: 10.1155/2017/4574079 PubMed DOI PMC
Adam A, Shapiai MI, Mohd Tumari MZ, Mohamad MS, Mubin M. Feature selection and classifier parameters estimation for EEG signals peak detection using particle swarm optimization. The Scientific World Journal. 2014;2014. doi: 10.1155/2014/973063 PubMed DOI PMC
Omerhodzic I, Avdakovic S, Nuhanovic A, Dizdarevic K. Energy Distribution of EEG Signals: EEG Signal Wavelet-Neural Network Classifier. International Journal of Biomedical and Biological Engineering. 2010;4(1):35–40.
Tomarken AJ, Davidson RJ, Henriques JB. Resting frontal brain asymmetry predicts affective responses to films. Journal of personality and social psychology. 1990;59(4):791. doi: 10.1037/0022-3514.59.4.791 PubMed DOI
Sobotka SS, Davidson RJ, Senulis JA. Anterior brain electrical asymmetries in response to reward and punishment. Electroencephalography and clinical Neurophysiology. 1992;83(4):236–247. doi: 10.1016/0013-4694(92)90117-Z PubMed DOI
Tomarken AJ, Davidson RJ, Wheeler RE, Doss RC. Individual differences in anterior brain asymmetry and fundamental dimensions of emotion. Journal of personality and social psychology. 1992;62(4):676. doi: 10.1037/0022-3514.62.4.676 PubMed DOI
Bruder GE, Stewart JW, McGrath PJ. Right brain, left brain in depressive disorders: clinical and theoretical implications of behavioral, electrophysiological and neuroimaging findings. Neuroscience & Biobehavioral Reviews. 2017;78:178–191. doi: 10.1016/j.neubiorev.2017.04.021 PubMed DOI
Bablani A, Edla DR, Dodia S. Classification of EEG data using k-nearest neighbor approach for concealed information test. Procedia computer science. 2018;143:242–249. doi: 10.1016/j.procs.2018.10.392 DOI
Li M, Xu H, Liu X, Lu S. Emotion recognition from multichannel EEG signals using K-nearest neighbor classification. Technology and health care. 2018;26(S1):509–519. doi: 10.3233/THC-174836 PubMed DOI PMC
Ding Y, Chen X, Fu Q, Zhong S. A depression recognition method for college students using deep integrated support vector algorithm. IEEE access. 2020;8:75616–75629. doi: 10.1109/ACCESS.2020.2987523 DOI
Kardam VS, Taran S, Pandey A. Motor imagery tasks based electroencephalogram signals classification using data-driven features. Neuroscience Informatics. 2023; p. 100128. doi: 10.1016/j.neuri.2023.100128 DOI
Aslan Z. Migraine detection from EEG signals using tunable Q-factor wavelet transform and ensemble learning techniques. Physical and Engineering Sciences in Medicine. 2021;44(4):1201–1212. doi: 10.1007/s13246-021-01055-6 PubMed DOI
Dou Y, Meng W. Comparative analysis of weka-based classification algorithms on medical diagnosis datasets. Technology and Health Care. 2023;(Preprint):1–12. doi: 10.3233/THC-236034 PubMed DOI PMC
Association AP, et al. American Psychiatric Association: Diagnosti c and Statistical Manual of Mental Disorders, Arlington; 2013.
Spitzer RL, Kroenke K, Williams JB, Group PHQPCS, Group PHQPCS, et al.. Validation and utility of a self-report version of PRIME-MD: the PHQ primary care study. Jama. 1999;282(18):1737–1744. doi: 10.1001/jama.282.18.1737 PubMed DOI
Witten IH, Frank E, Mark A. Hall, and Christopher J Pal. Data Mining: Practical machine learning tools and techniques. 2016;.
Mamta. EEG feature extraction using time domain analysis for classifying insomnia. In: 2020 IEEE India council international subsections conference (INDISCON). IEEE; 2020. p. 221–224.
Tasci G, Loh HW. Automated accurate detection of depression using twin Pascal’s triangles lattice pattern with EEG Signals. Knowledge-Based Systems. 2023;260:110190. doi: 10.1016/j.knosys.2022.110190 DOI