A Review on Additive Manufacturing Methods for NiTi Shape Memory Alloy Production

. 2024 Mar 08 ; 17 (6) : . [epub] 20240308

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38541402

Grantová podpora
NU23-08-00043 Ministry of Health of the Czech Republic

The NiTi alloy, known as Nitinol, represents one of the most investigated smart alloys, exhibiting a shape memory effect and superelasticity. These, among many other remarkable attributes, enable its utilization in various applications, encompassing the automotive industry, aviation, space exploration, and, notably, medicine. Conventionally, Nitinol is predominantly produced in the form of wire or thin sheets that allow producing many required components. However, the manufacturing of complex shapes poses challenges due to the tenacity of the NiTi alloy, and different processing routes at elevated temperatures have to be applied. Overcoming this obstacle may be facilitated by additive manufacturing methods. This article provides an overview of the employment of additive manufacturing methods, allowing the preparation of the required shapes of Nitinol products while retaining their exceptional properties and potential applications.

Zobrazit více v PubMed

Dilibal S., Sehitoglu H., Hamilton R.F., Maier H.J., Chumlyakov Y. On the Volume Change in Co–Ni–Al during Pseudoelasticity. Mater. Sci. Eng. A. 2011;528:2875–2881. doi: 10.1016/j.msea.2010.12.056. DOI

Hamilton R.F., Dilibal S., Sehitoglu H., Maier H.J. Underlying Mechanism of Dual Hysteresis in NiMnGa Single Crystals. Mater. Sci. Eng. A. 2011;528:1877–1881. doi: 10.1016/j.msea.2010.10.042. DOI

Agrawal A., Dube R.K. Methods of Fabricating Cu-Al-Ni Shape Memory Alloys. J. Alloys Compd. 2018;750:235–247. doi: 10.1016/j.jallcom.2018.03.390. DOI

Shichalin O.O., Sakhnevich V.N., Buravlev I.Y., Lembikov A.O., Buravleva A.A., Azon S.A., Yarusova S.B., Danilova S.N., Fedorets A.N., Belov A.A., et al. Synthesis of Ti-Cu Multiphase Alloy by Spark Plasma Sintering: Mechanical and Corrosion Properties. Metals. 2022;12:1089. doi: 10.3390/met12071089. DOI

Otsuka K., Ren X. Physical Metallurgy of Ti–Ni-Based Shape Memory Alloys. Prog. Mater. Sci. 2005;50:511–678. doi: 10.1016/j.pmatsci.2004.10.001. DOI

Mohd Jani J., Leary M., Subic A., Gibson M.A. A Review of Shape Memory Alloy Research, Applications and Opportunities. Mater. Des. 2014;56:1078–1113. doi: 10.1016/j.matdes.2013.11.084. DOI

Farber E., Zhu J.-N., Popovich A., Popovich V. A Review of NiTi Shape Memory Alloy as a Smart Material Produced by Additive Manufacturing. Mater. Today Proc. 2020;30:761–767. doi: 10.1016/j.matpr.2020.01.563. DOI

Wadood A. Brief Overview on Nitinol as Biomaterial. Adv. Mater. Sci. Eng. 2016;2016:4173138. doi: 10.1155/2016/4173138. DOI

Dehghanghadikolaei A., Ibrahim H., Amerinatanzi A., Hashemi M., Moghaddam N.S., Elahinia M. Improving Corrosion Resistance of Additively Manufactured Nickel–Titanium Biomedical Devices by Micro-Arc Oxidation Process. J. Mater. Sci. 2019;54:7333–7355. doi: 10.1007/s10853-019-03375-1. DOI

Elahinia M., Shayesteh Moghaddam N., Taheri Andani M., Amerinatanzi A., Bimber B.A., Hamilton R.F. Fabrication of NiTi through Additive Manufacturing. Prog. Mater. Sci. 2016;83:630–663. doi: 10.1016/j.pmatsci.2016.08.001. DOI

Jamaluddin R., Tan C.L., Hamidon R., Mansor A.F., Azmi A.I. Electrical Discharge Coating of NiTi Alloy in Deionized Water. Mater. Today Proc. 2021;41:109–115. doi: 10.1016/j.matpr.2020.11.1015. DOI

Levintant-Zayonts N., Starzynski G., Kopec M., Kucharski S. Characterization of NiTi SMA in Its Unusual Behaviour in Wear Tests. Tribol. Int. 2019;137:313–323. doi: 10.1016/j.triboint.2019.05.005. DOI

Oshida Y., Tominaga T. Nickel-Titanium Materials: Biomedical Applications. De Gruyter; Berlin, Germany: 2020.

Papadopoulou A., Laucks J., Tibbits S. Active Matter. The MIT Press; Cambridge, MA, USA: 2017. General Principles for Programming Material.

Elahinia M.H., Hashemi M., Tabesh M., Bhaduri S.B. Manufacturing and Processing of NiTi Implants. Prog. Mater. Sci. 2012;57:911–946. doi: 10.1016/j.pmatsci.2011.11.001. DOI

Frenzel J., Zhang Z., Neuking K., Eggeler G. High Quality Vacuum Induction Melting of Small Quantities of NiTi Shape Memory Alloys in Graphite Crucibles. J. Alloys Compd. 2004;385:214–223. doi: 10.1016/j.jallcom.2004.05.002. DOI

Weinert K., Petzoldt V. Machining of NiTi Based Shape Memory Alloys. Mater. Sci. Eng. A. 2004;378:180–184. doi: 10.1016/j.msea.2003.10.344. DOI

Yeom J.-T., Kim J.H., Hong J.-K., Kim S.W., Park C.-H., Nam T.H., Lee K.-Y. Hot Forging Design of As-Cast NiTi Shape Memory Alloy. Mater. Res. Bull. 2014;58:234–238. doi: 10.1016/j.materresbull.2014.04.049. DOI

Parvizi S., Hashemi S.M., Asgarinia F., Nematollahi M., Elahinia M. Effective Parameters on the Final Properties of NiTi-Based Alloys Manufactured by Powder Metallurgy Methods. Prog. Mater. Sci. 2021;117:1000739. doi: 10.1016/j.pmatsci.2020.100739. DOI

Xiong Z., Li Z., Sun Z., Hao S., Yang Y., Li M., Song C., Qiu P., Cui L. Selective Laser Melting of NiTi Alloy with Superior Tensile Property and Shape Memory Effect. J. Mater. Sci. Technol. 2019;35:2238–2242. doi: 10.1016/j.jmst.2019.05.015. DOI

Kapoor D. Nitinol for Medical Applications: A Brief Introduction to the Properties and Processing of Nickel Titanium Shape Memory Alloys and Their Use in Stents. Johns. Matthey Technol. Rev. 2017;61:66–76. doi: 10.1595/205651317X694524. DOI

Dadbakhsh S., Speirs M., Van Humbeeck J., Kruth J.-P. Laser Additive Manufacturing of Bulk and Porous Shape-Memory NiTi Alloys. MRS Bull. 2016;41:765–774. doi: 10.1557/mrs.2016.209. DOI

Taheri Andani M., Saedi S., Turabi A.S., Karamooz M.R., Haberland C., Karaca H.E., Elahinia M. Mechanical and Shape Memory Properties of Porous Ni 50.1 Ti 49.9 Alloys Manufactured by Selective Laser Melting. J. Mech. Behav. Biomed. Mater. 2017;68:224–231. doi: 10.1016/j.jmbbm.2017.01.047. PubMed DOI

Additive Manufacturing—General Principles—Fundamentals and Vocabulary. ASTM; West Conshohocken, PA, USA: 2021.

Saedi S., Turabi A.S., Andani M.T., Haberland C., Elahinia M., Karaca H. Thermomechanical Characterization of Ni-Rich NiTi Fabricated by Selective Laser Melting. Smart Mater. Struct. 2016;25:035005. doi: 10.1088/0964-1726/25/3/035005. DOI

Ma J.-L., Meng F.-L., Xu D., Zhang X.-B. Co-Embedded N-Doped Carbon Fibers as Highly Efficient and Binder-Free Cathode for Na–O2 Batteries. Energy Storage Mater. 2017;6:1–8. doi: 10.1016/j.ensm.2016.09.002. DOI

Bormann T., Schumacher R., Müller B., Mertmann M., de Wild M. Tailoring Selective Laser Melting Process Parameters for NiTi Implants. J. Mater. Eng. Perform. 2012;21:2519–2524. doi: 10.1007/s11665-012-0318-9. DOI

Saedi S., Saghaian S.E., Jahadakbar A., Shayesteh Moghaddam N., Taheri Andani M., Saghaian S.M., Lu Y.C., Elahinia M., Karaca H.E. Shape Memory Response of Porous NiTi Shape Memory Alloys Fabricated by Selective Laser Melting. J. Mater. Sci. Mater. Med. 2018;29:40. doi: 10.1007/s10856-018-6044-6. PubMed DOI

Khoo Z., An J., Chua C., Shen Y., Kuo C., Liu Y. Effect of Heat Treatment on Repetitively Scanned SLM NiTi Shape Memory Alloy. Materials. 2019;12:77. doi: 10.3390/ma12010077. PubMed DOI PMC

Yang Y., Zhan J.B., Li B., Lin J.X., Gao J.J., Zhang Z.Q., Ren L., Castany P., Gloriant T. Laser Beam Energy Dependence of Martensitic Transformation in SLM Fabricated NiTi Shape Memory Alloy. Materialia. 2019;6:100305. doi: 10.1016/j.mtla.2019.100305. DOI

Saedi S., Shayesteh Moghaddam N., Amerinatanzi A., Elahinia M., Karaca H.E. On the Effects of Selective Laser Melting Process Parameters on Microstructure and Thermomechanical Response of Ni-Rich NiTi. Acta Mater. 2018;144:552–560. doi: 10.1016/j.actamat.2017.10.072. DOI

Saedi S., Turabi A.S., Andani M.T., Moghaddam N.S., Elahinia M., Karaca H.E. Texture, Aging, and Superelasticity of Selective Laser Melting Fabricated Ni-Rich NiTi Alloys. Mater. Sci. Eng. A. 2017;686:1–10. doi: 10.1016/j.msea.2017.01.008. DOI

Mohamed O.A., Masood S.H., Xu W. Nickel-Titanium Shape Memory Alloys Made by Selective Laser Melting: A Review on Process Optimisation. Adv. Manuf. 2022;10:24–58. doi: 10.1007/s40436-021-00376-9. DOI

Ehsan Saghaian S., Nematollahi M., Toker G., Hinojos A., Shayesteh Moghaddam N., Saedi S., Lu C.Y., Javad Mahtabi M., Mills M.J., Elahinia M., et al. Effect of Hatch Spacing and Laser Power on Microstructure, Texture, and Thermomechanical Properties of Laser Powder Bed Fusion (L-PBF) Additively Manufactured NiTi. Opt. Laser Technol. 2022;149:107680. doi: 10.1016/j.optlastec.2021.107680. DOI

Ren Q., Chen C., Lu Z., Wang X., Lu H., Yin S., Liu Y., Li H., Wang J., Ren Z. Effect of a Constant Laser Energy Density on the Evolution of Microstructure and Mechanical Properties of NiTi Shape Memory Alloy Fabricated by Laser Powder Bed Fusion. Opt. Laser Technol. 2022;152:108182. doi: 10.1016/j.optlastec.2022.108182. DOI

Chmielewska A., Wysocki B., Buhagiar J., Michalski B., Adamczyk-Cieślak B., Gloc M., Święszkowski W. In Situ Alloying of NiTi: Influence of Laser Powder Bed Fusion (LBPF) Scanning Strategy on Chemical Composition. Mater. Today Commun. 2022;30:103007. doi: 10.1016/j.mtcomm.2021.103007. DOI

Shen F.L., Li H.Q., Guo H., Guo N.N., Fang X.Y. Effect of Energy Density on the Superelastic Property of Ni-Rich NiTi Alloy Fabricated by Laser Powder Bed Fusion. Mater. Sci. Eng. A. 2022;854:143874. doi: 10.1016/j.msea.2022.143874. DOI

Kordizadeh F., Mohajerani S., Safaei K., Andani N.T., Pourshams M., Abdollahzadeh M.J., Elahinia M. Investigating the Elastocaloric Effect of the NiTi Fabricated by Laser Powder Bed Fusion: Effect of the Building Orientation. Materialia. 2023;30:101817. doi: 10.1016/j.mtla.2023.101817. DOI

Safaei K., Andani N.T., Poorganji B., Andani M.T., Elahinia M. Controlling Texture of NiTi Alloy Processed by Laser Powder Bed Fusion: Smart Build Orientation and Scanning Strategy. Addit. Manuf. Lett. 2023;5:100126. doi: 10.1016/j.addlet.2023.100126. DOI

Zhang X.-L., Wang S., Jiang Y., Huang J., Wang S.-P., Zhang Q.-Q., Li Q., Guo Y.-Q., Zhang Z.-H. Influence of Building Directions on the Impact Properties of NiTi Fabricated via Laser Powder Bed Fusion. J. Mater. Res. Technol. 2024;28:3186–3195. doi: 10.1016/j.jmrt.2023.12.160. DOI

Zhan J., Wu J., Ma R., Li K., Lin J., Murr L.E. Tuning the Functional Properties by Laser Powder Bed Fusion with Partitioned Repetitive Laser Scanning: Toward Editable 4D Printing of NiTi Alloys. J. Manuf. Process. 2023;101:1468–1481. doi: 10.1016/j.jmapro.2023.07.009. DOI

Jalali M., Mohammadi K., Movahhedy M.R., Karimi F., Sadrnezhaad S.K., Chernyshikhin S.V., Shishkovsky I.V. SLM Additive Manufacturing of NiTi Porous Implants: A Review of Constitutive Models, Finite Element Simulations, Manufacturing, Heat Treatment, Mechanical, and Biomedical Studies. Met. Mater. Int. 2023;29:2458–2491. doi: 10.1007/s12540-023-01401-1. DOI

Haberland C., Meier H., Frenzel J. On the Properties of Ni-Rich NiTi Shape Memory Parts Produced by Selective Laser Melting; Proceedings of the ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems; Stone Mountain, GA, USA. 19–21 September 2012; pp. 97–104. DOI

Maniruzzaman M. 3D and 4D Printing in Biomedical Applications. John Wiley & Sons; Weinheim, Germany: 2018.

DebRoy T., Wei H.L., Zuback J.S., Mukherjee T., Elmer J.W., Milewski J.O., Beese A.M., Wilson-Heid A., De A., Zhang W. Additive Manufacturing of Metallic Components—Process, Structure and Properties. Prog. Mater. Sci. 2018;92:112–224. doi: 10.1016/j.pmatsci.2017.10.001. DOI

Pu Z., Du D., Wang K., Liu G., Zhang D., Liang Z., Xi R., Wang X., Chang B. Evolution of Transformation Behavior and Tensile Functional Properties with Process Parameters for Electron Beam Wire-Feed Additive Manufactured NiTi Shape Memory Alloys. Mater. Sci. Eng. A. 2022;840:142977. doi: 10.1016/j.msea.2022.142977. DOI

Pu Z., Du D., Wang K., Liu G., Zhang D., Zhang H., Xi R., Wang X., Chang B. Study on the NiTi Shape Memory Alloys In-Situ Synthesized by Dual-Wire-Feed Electron Beam Additive Manufacturing. Addit. Manuf. 2022;56:102886. doi: 10.1016/j.addma.2022.102886. DOI

Li B., Wang L., Wang B., Li D., Cui R., Su B., Yao L., Luo L., Chen R., Su Y., et al. Solidification Characterization and Its Correlation with the Mechanical Properties and Functional Response of NiTi Shape Memory Alloy Manufactured by Electron Beam Freeform Fabrication. Addit. Manuf. 2021;48:102468. doi: 10.1016/j.addma.2021.102468. DOI

Pu Z., Du D., Zhang D., Li Z., Xue S., Xi R., Wang X., Chang B. Improvement of Tensile Superelasticity by Aging Treatment of NiTi Shape Memory Alloys Fabricated by Electron Beam Wire-Feed Additive Manufacturing. J. Mater. Sci. Technol. 2023;145:185–196. doi: 10.1016/j.jmst.2022.10.050. DOI

Chen G., Ma Y., Teng X., Liu J., Zhang B., Cao J., Huang Y. Microstructure Evolution and Shape Memory Function Mechanism of NiTi Alloy by Electron Beam 4D Printing. Appl. Mater. Today. 2023;31:101749. doi: 10.1016/j.apmt.2023.101749. DOI

Dutkiewicz J., Rogal Ł., Kalita D., Kawałko J., Węglowski M.S., Kwieciński K., Śliwiński P., Danielewski H., Antoszewski B., Cesari E. Microstructure, Mechanical Properties, and Martensitic Transformation in NiTi Shape Memory Alloy Fabricated Using Electron Beam Additive Manufacturing Technique. J. Mater. Eng. Perform. 2022;31:1609–1621. doi: 10.1007/s11665-021-06241-x. DOI

Zeng Z., Cong B.Q., Oliveira J.P., Ke W.C., Schell N., Peng B., Qi Z.W., Ge F.G., Zhang W., Ao S.S. Wire and Arc Additive Manufacturing of a Ni-Rich NiTi Shape Memory Alloy: Microstructure and Mechanical Properties. Addit. Manuf. 2020;32:101051. doi: 10.1016/j.addma.2020.101051. DOI

Karunakaran R., Ortgies S., Tamayol A., Bobaru F., Sealy M.P. Additive Manufacturing of Magnesium Alloys. Bioact. Mater. 2020;5:44–54. doi: 10.1016/j.bioactmat.2019.12.004. PubMed DOI PMC

Cai W.S., Luo Y., Yan A., Kang L.M., Zhang L.C., Suryanarayana C., Yang C. Balanced Strength-Ductility Combination and Good Recoverable Strain of Ni50.7Ti49.3 Alloy Fabricated by High Scanning Velocity in Selective Laser Melting. Mater. Charact. 2023;195:112490. doi: 10.1016/j.matchar.2022.112490. DOI

Ge J., Yuan B., Chen H., Pan J., Liu Q., Yan M., Lu Z., Zhang S., Zhang L. Anisotropy in Microstructural Features and Tensile Performance of Laser Powder Bed Fusion NiTi Alloys. J. Mater. Res. Technol. 2023;24:8656–8668. doi: 10.1016/j.jmrt.2023.05.046. DOI

Chekotu J.C., Degli-Alessandrini G., Mughal M.Z., Chatterjee S., Goodall R., Kinahan D., Brabazon D. Control of Mechanical and Shape Memory Characteristics in Martensitic NiTi by Setting L-PBF Parameters and Build Orientation. J. Mater. Res. Technol. 2023;25:6407–6431. doi: 10.1016/j.jmrt.2023.07.092. DOI

Jiang H., Wang X., Xi R., Li G., Wei H., Liu J., Zhang B., Kustov S., Vanmeensel K., Van Humbeeck J., et al. Size Effect on the Microstructure, Phase Transformation Behavior, and Mechanical Properties of NiTi Shape Memory Alloys Fabricated by Laser Powder Bed Fusion. J. Mater. Sci. Technol. 2023;157:200–212. doi: 10.1016/j.jmst.2023.02.026. DOI

Liu Z., Zhang L.M., Ren D.C., Ma A.L., Ji H.B., Zheng Y.G. Significantly Improved Mechanical and Corrosion-Resistant Properties of NiTi Alloy Fabricated by Selective Laser Melting through Heat Treatments. Mater. Lett. 2023;347:134622. doi: 10.1016/j.matlet.2023.134622. DOI

Sequeda Leon E.M., Singamneni S., Guraya T., Chen Z.W. Effect of Laser Power in Laser Powder Bed Fusion on Ni Content and Structure of Nitinol. Mater. Today Proc. 2023. in press . DOI

Zhan J., Wu J., Ma R., Li K., Huang T., Lin J., Murr L.E. Effect of Microstructure on the Superelasticity of High-Relative-Density Ni-Rich NiTi Alloys Fabricated by Laser Powder Bed Fusion. J. Mater. Process Technol. 2023;317:117988. doi: 10.1016/j.jmatprotec.2023.117988. DOI

Obeidi M.A. Achieving High Quality Nitinol Parts with Minimised Input Thermal Energy by Optimised Pulse Wave Laser Powder Bed Fusion Process. Results Mater. 2022;14:100279. doi: 10.1016/j.rinma.2022.100279. DOI

Zhang C., Ozcan H., Xue L., Atli K.C., Arróyave R., Karaman I., Elwany A. On the Effect of Scan Strategies on the Transformation Behavior and Mechanical Properties of Additively Manufactured NiTi Shape Memory Alloys. J. Manuf. Process. 2022;84:260–271. doi: 10.1016/j.jmapro.2022.09.051. DOI

Nematollahi M., Saghaian S.E., Safaei K., Bayati P., Bassani P., Biffi C., Tuissi A., Karaca H., Elahinia M. Building Orientation-Structure-Property in Laser Powder Bed Fusion of NiTi Shape Memory Alloy. J. Alloys Compd. 2021;873:159791. doi: 10.1016/j.jallcom.2021.159791. DOI

Obeidi M.A., Monu M., Hughes C., Bourke D., Dogu M.N., Francis J., Zhang M., Ahad I.U., Brabazon D. Laser Beam Powder Bed Fusion of Nitinol Shape Memory Alloy (SMA) J. Mater. Res. Technol. 2021;14:2554–2570. doi: 10.1016/j.jmrt.2021.07.126. DOI

Wen S., Liu Y., Zhou Y., Zhao A., Yan C., Shi Y. Effect of Ni Content on the Transformation Behavior and Mechanical Property of NiTi Shape Memory Alloys Fabricated by Laser Powder Bed Fusion. Opt. Laser Technol. 2021;134:106653. doi: 10.1016/j.optlastec.2020.106653. DOI

Wang C., Tan X.P., Du Z., Chandra S., Sun Z., Lim C.W.J., Tor S.B., Lim C.S., Wong C.H. Additive Manufacturing of NiTi Shape Memory Alloys Using Pre-Mixed Powders. J. Mater. Process Technol. 2019;271:152–161. doi: 10.1016/j.jmatprotec.2019.03.025. DOI

Shayesteh Moghaddam N., Saghaian S.E., Amerinatanzi A., Ibrahim H., Li P., Toker G.P., Karaca H.E., Elahinia M. Anisotropic Tensile and Actuation Properties of NiTi Fabricated with Selective Laser Melting. Mater. Sci. Eng. A. 2018;724:220–230. doi: 10.1016/j.msea.2018.03.072. DOI

Hamilton R.F., Bimber B.A., Taheri Andani M., Elahinia M. Multi-Scale Shape Memory Effect Recovery in NiTi Alloys Additive Manufactured by Selective Laser Melting and Laser Directed Energy Deposition. J. Mater. Process Technol. 2017;250:55–64. doi: 10.1016/j.jmatprotec.2017.06.027. DOI

Dadbakhsh S., Vrancken B., Kruth J.-P., Luyten J., Van Humbeeck J. Texture and Anisotropy in Selective Laser Melting of NiTi Alloy. Mater. Sci. Eng. A. 2016;650:225–232. doi: 10.1016/j.msea.2015.10.032. DOI

Saedi S., Turabi A.S., Taheri Andani M., Haberland C., Karaca H., Elahinia M. The Influence of Heat Treatment on the Thermomechanical Response of Ni-Rich NiTi Alloys Manufactured by Selective Laser Melting. J. Alloys Compd. 2016;677:204–210. doi: 10.1016/j.jallcom.2016.03.161. DOI

Dadbakhsh S., Speirs M., Kruth J.-P., Van Humbeeck J. Influence of SLM on Shape Memory and Compression Behaviour of NiTi Scaffolds. CIRP Ann. 2015;64:209–212. doi: 10.1016/j.cirp.2015.04.039. DOI

Zhang B., Chen J., Coddet C. Microstructure and Transformation Behavior of In-Situ Shape Memory Alloys by Selective Laser Melting Ti–Ni Mixed Powder. J. Mater. Sci. Technol. 2013;29:863–867. doi: 10.1016/j.jmst.2013.05.006. DOI

Shishkovsky I., Yadroitsev I., Smurov I. Direct Selective Laser Melting of Nitinol Powder. Phys. Procedia. 2012;39:447–454. doi: 10.1016/j.phpro.2012.10.060. DOI

Halani P.R., Kaya I., Shin Y.C., Karaca H.E. Phase Transformation Characteristics and Mechanical Characterization of Nitinol Synthesized by Laser Direct Deposition. Mater. Sci. Eng. A. 2013;559:836–843. doi: 10.1016/j.msea.2012.09.031. DOI

Malukhin K., Ehmann K. Material Characterization of NiTi Based Memory Alloys Fabricated by the Laser Direct Metal Deposition Process. J. Manuf. Sci. Eng. 2006;128:691–696. doi: 10.1115/1.2193553. DOI

Fink A., Fu Z., Körner C. Functional Properties and Shape Memory Effect of Nitinol Manufactured via Electron Beam Powder Bed Fusion. Materialia. 2023;30:101823. doi: 10.1016/j.mtla.2023.101823. DOI

Bormann T., Müller B., Schinhammer M., Kessler A., Thalmann P., de Wild M. Microstructure of Selective Laser Melted Nickel–Titanium. Mater. Charact. 2014;94:189–202. doi: 10.1016/j.matchar.2014.05.017. DOI

Pfeifer R., Müller C.W., Hurschler C., Kaierle S., Wesling V., Haferkamp H. Adaptable Orthopedic Shape Memory Implants. Procedia CIRP. 2013;5:253–258. doi: 10.1016/j.procir.2013.01.050. DOI

Ferčec J., Anžel I., Rudolf R. Stress Dependent Electrical Resistivity of Orthodontic Wire from the Shape Memory Alloy NiTi. Mater. Des. 2014;55:699–706. doi: 10.1016/j.matdes.2013.10.041. DOI

Liu Y., Galvin S.P. Criteria for Pseudoelasticity in Near-Equiatomic NiTi Shape Memory Alloys. Acta Mater. 1997;45:4431–4439. doi: 10.1016/S1359-6454(97)00144-4. DOI

Mwangi J.W., Nguyen L.T., Bui V.D., Berger T., Zeidler H., Schubert A. Nitinol Manufacturing and Micromachining. J. Manuf. Process. 2019;38:355–369. doi: 10.1016/j.jmapro.2019.01.003. DOI

Pelton A.R., Russell S.M., DiCello J. The Physical Metallurgy of Nitinol for Medical Applications. JOM. 2003;55:33–37. doi: 10.1007/s11837-003-0243-3. DOI

Bhagyaraj J., Ramaiah K.V., Saikrishna C.N., Bhaumik S.K. Gouthama Behavior and Effect of Ti2Ni Phase during Processing of NiTi Shape Memory Alloy Wire from Cast Ingot. J. Alloys Compd. 2013;581:344–351. doi: 10.1016/j.jallcom.2013.07.046. DOI

Thier M., Hühner M., Kobus E., Drescher D., Bourauel C. Microstructure of As-Cast NiTi Alloy. Mater. Charact. 1991;27:133–140. doi: 10.1016/1044-5803(91)90056-A. DOI

Nishida M., Wayman C.M., Honma T. Precipitation Processes in Near-Equiatomic TiNi Shape Memory Alloys. Metall. Trans. A. 1986;17:1505–1515. doi: 10.1007/BF02650086. DOI

Nishida M., Wayman C.M. Phase Transformations in Ti2Ni3 Precipitates Formed in Aged Ti-52 At. Pct Ni. Metall. Trans. A. 1987;18:785–799. doi: 10.1007/BF02646921. DOI

Lang P., Wojcik T., Povoden-Karadeniz E., Cirstea C.D., Kozeschnik E. Crystal Structure and Free Energy of Ti 2 Ni 3 Precipitates in Ti–Ni Alloys from First Principles. Comput. Mater. Sci. 2014;93:46–49. doi: 10.1016/j.commatsci.2014.06.019. DOI

Hara T., Ohba T., Otsuka K., Nishida M. Phase transformation and crystal structures of Ti2Ni3 precipitates in ti–ni alloys. Mater. Trans. JIM. 1997;38:277–284. doi: 10.2320/matertrans1989.38.277. DOI

Tadayyon G., Mazinani M., Guo Y., Zebarjad S.M., Tofail S.A.M., Biggs M.J. The Effect of Annealing on the Mechanical Properties and Microstructural Evolution of Ti-Rich NiTi Shape Memory Alloy. Mater. Sci. Eng. A. 2016;662:564–577. doi: 10.1016/j.msea.2016.03.004. DOI

Jiang S., Zhang Y., Zhao Y., Liu S., Hu L., Zhao C. Influence of Ni4Ti3 Precipitates on Phase Transformation of NiTi Shape Memory Alloy. Trans. Nonferrous Met. Soc. China. 2015;25:4063–4071. doi: 10.1016/S1003-6326(15)64056-0. DOI

Zhou N., Shen C., Wagner M.F.-X., Eggeler G., Mills M.J., Wang Y. Effect of Ni4Ti3 Precipitation on Martensitic Transformation in Ti–Ni. Acta Mater. 2010;58:6685–6694. doi: 10.1016/j.actamat.2010.08.033. DOI

Adharapurapu R.R., Jiang F., Vecchio K.S. Aging Effects on Hardness and Dynamic Compressive Behavior of Ti–55Ni (at.%) Alloy. Mater. Sci. Eng. A. 2010;527:1665–1676. doi: 10.1016/j.msea.2009.10.069. DOI

Gu D., Ma C. In-Situ Formation of Ni4Ti3 Precipitate and Its Effect on Pseudoelasticity in Selective Laser Melting Additive Manufactured NiTi-Based Composites. Appl. Surf. Sci. 2018;441:862–870. doi: 10.1016/j.apsusc.2018.01.317. DOI

Ma C., Gu D., Dai D., Xia M., Chen H. Selective Growth of Ni4Ti3 Precipitate Variants Induced by Complicated Cyclic Stress during Laser Additive Manufacturing of NiTi-Based Composites. Mater. Charact. 2018;143:191–196. doi: 10.1016/j.matchar.2018.04.004. DOI

Otsuka K., Kakeshita T. Science and Technology of Shape-Memory Alloys: New Developments. MRS Bull. 2002;27:91–100. doi: 10.1557/mrs2002.43. DOI

Yang Z., Tirry W., Schryvers D. Analytical TEM Investigations on Concentration Gradients Surrounding Ni4Ti3 Precipitates in Ni–Ti Shape Memory Material. Scr. Mater. 2005;52:1129–1134. doi: 10.1016/j.scriptamat.2005.02.013. DOI

Zou W.H., Han X.D., Wang R., Zhang Z., Zhang W.-Z., Lai J.K.L. TEM and HREM Study of the Interphase Interface Structure of Ti3Ni4 Precipitates and Parent Phase in an Aged TiNi Shape Memory Alloy. Mater. Sci. Eng. A. 1996;219:142–147. doi: 10.1016/S0921-5093(96)10418-4. DOI

Hamilton R.F., Bimber B.A., Palmer T.A. Correlating Microstructure and Superelasticity of Directed Energy Deposition Additive Manufactured Ni-Rich NiTi Alloys. J. Alloys Compd. 2018;739:712–722. doi: 10.1016/j.jallcom.2017.12.270. DOI

Li S., Hassanin H., Attallah M.M., Adkins N.J.E., Essa K. The Development of TiNi-Based Negative Poisson’s Ratio Structure Using Selective Laser Melting. Acta Mater. 2016;105:75–83. doi: 10.1016/j.actamat.2015.12.017. DOI

Sames W.J., List F.A., Pannala S., Dehoff R.R., Babu S.S. The Metallurgy and Processing Science of Metal Additive Manufacturing. Int. Mater. Rev. 2016;61:315–360. doi: 10.1080/09506608.2015.1116649. DOI

Slotwinski J.A., Garboczi E.J., Stutzman P.E., Ferraris C.F., Watson S.S., Peltz M.A. Characterization of Metal Powders Used for Additive Manufacturing. J. Res. Natl. Inst. Stand. Technol. 2014;119:460. doi: 10.6028/jres.119.018. PubMed DOI PMC

Santomaso A., Lazzaro P., Canu P. Powder Flowability and Density Ratios: The Impact of Granules Packing. Chem. Eng. Sci. 2003;58:2857–2874. doi: 10.1016/S0009-2509(03)00137-4. DOI

Drápala J., Losertová M., Štencek M., Konečná K., Matýsek D., Sevostyanov M.A. Structural Characteristics of NiTi Alloys after Thermal Treatment. IOP Conf. Ser. Mater. Sci. Eng. 2020;726:012019. doi: 10.1088/1757-899X/726/1/012019. DOI

Zhou Q., Hayat M.D., Chen G., Cai S., Qu X., Tang H., Cao P. Selective Electron Beam Melting of NiTi: Microstructure, Phase Transformation and Mechanical Properties. Mater. Sci. Eng. A. 2019;744:290–298. doi: 10.1016/j.msea.2018.12.023. DOI

Kopelent M., Losertová M., Konečná K., Skoupý O., Čepica D., Halo T., Frydrýšek K., Vlček T. Effect of Thermal Treatment and Strain Rate on Superelastic and Mechanical Properties of NiTi Sheet. J. Phys. Conf. Ser. 2023;2572:012008. doi: 10.1088/1742-6596/2572/1/012008. DOI

Zhang D., Guo B., Tong Y., Tian B., Li L., Zheng Y., Gunderov D.-V., Valiev R.-Z. Effect of Annealing Temperature on Martensitic Transformation of Ti49.2Ni50.8 Alloy Processed by Equal Channel Angular Pressing. Trans. Nonferrous Met. Soc. China. 2016;26:448–455. doi: 10.1016/S1003-6326(16)64133-X. DOI

Schryvers D. Advanced Electron Microscopy Characterisation of Important Precipitation and Ordering Phenomena in Shape Memory Systems. Shape Mem. Superelasticity. 2015;1:78–84. doi: 10.1007/s40830-015-0006-3. DOI

Tan C., Li S., Essa K., Jamshidi P., Zhou K., Ma W., Attallah M.M. Laser Powder Bed Fusion of Ti-Rich TiNi Lattice Structures: Process Optimisation, Geometrical Integrity, and Phase Transformations. Int. J. Mach. Tools Manuf. 2019;141:19–29. doi: 10.1016/j.ijmachtools.2019.04.002. DOI

Wang X., Yu J., Liu J., Chen L., Yang Q., Wei H., Sun J., Wang Z., Zhang Z., Zhao G., et al. Effect of Process Parameters on the Phase Transformation Behavior and Tensile Properties of NiTi Shape Memory Alloys Fabricated by Selective Laser Melting. Addit. Manuf. 2020;36:101545. doi: 10.1016/j.addma.2020.101545. DOI

Shiva S., Palani I.A., Mishra S.K., Paul C.P., Kukreja L.M. Investigations on the Influence of Composition in the Development of Ni–Ti Shape Memory Alloy Using Laser Based Additive Manufacturing. Opt. Laser Technol. 2015;69:44–51. doi: 10.1016/j.optlastec.2014.12.014. DOI

Chad Hornbuckle B., Yu X.X., Noebe R.D., Martens R., Weaver M.L., Thompson G.B. Hardening Behavior and Phase Decomposition in Very Ni-Rich Nitinol Alloys. Mater. Sci. Eng. A. 2015;639:336–344. doi: 10.1016/j.msea.2015.04.079. DOI

Marattukalam J.J., Singh A.K., Datta S., Das M., Balla V.K., Bontha S., Kalpathy S.K. Microstructure and Corrosion Behavior of Laser Processed NiTi Alloy. Mater. Sci. Eng. C. 2015;57:309–313. doi: 10.1016/j.msec.2015.07.067. PubMed DOI

Mantovani D. Shape Memory Alloys. JOM. 2000;52:36–44. doi: 10.1007/s11837-000-0082-4. DOI

Yu Z., Xu Z., Guo Y., Sha P., Liu R., Xin R., Li L., Chen L., Wang X., Zhang Z., et al. Analysis of Microstructure, Mechanical Properties, Wear Characteristics and Corrosion Behavior of SLM-NiTi under Different Process Parameters. J. Manuf. Process. 2022;75:637–650. doi: 10.1016/j.jmapro.2022.01.010. DOI

Hayat M.D., Chen G., Khan S., Liu N., Tang H., Cao P. Physical and Tensile Properties of NiTi Alloy by Selective Electron Beam Melting. Key Eng. Mater. 2018;770:148–154. doi: 10.4028/www.scientific.net/KEM.770.148. DOI

Baran A., Polanski M. Microstructure and Properties of LENS (Laser Engineered Net Shaping) Manufactured Ni-Ti Shape Memory Alloy. J. Alloys Compd. 2018;750:863–870. doi: 10.1016/j.jallcom.2018.03.400. DOI

Bimber B.A., Hamilton R.F., Keist J., Palmer T.A. Anisotropic Microstructure and Superelasticity of Additive Manufactured NiTi Alloy Bulk Builds Using Laser Directed Energy Deposition. Mater. Sci. Eng. A. 2016;674:125–134. doi: 10.1016/j.msea.2016.07.059. DOI

Pu Z., Du D., Wang K., Liu G., Zhang D., Wang X., Chang B. Microstructure, Phase Transformation Behavior and Tensile Superelasticity of NiTi Shape Memory Alloys Fabricated by the Wire-Based Vacuum Additive Manufacturing. Mater. Sci. Eng. A. 2021;812:141077. doi: 10.1016/j.msea.2021.141077. DOI

Liu G., Zhou S., Lin P., Zong X., Chen Z., Zhang Z., Ren L. Analysis of Microstructure, Mechanical Properties, and Wear Performance of NiTi Alloy Fabricated by Cold Metal Transfer Based Wire Arc Additive Manufacturing. J. Mater. Res. Technol. 2022;20:246–259. doi: 10.1016/j.jmrt.2022.07.068. DOI

Singh S., Palani I.A., Dehgahi S., Paul C.P., Prashanth K.G., Qureshi A.J. Influence of the Interlayer Temperature on Structure and Properties of CMT Wire Arc Additive Manufactured NiTi Structures. J. Alloys Compd. 2023;966:171447. doi: 10.1016/j.jallcom.2023.171447. DOI

Yu L., Chen K., Zhang Y., Liu J., Yang L., Shi Y. Microstructures and Mechanical Properties of NiTi Shape Memory Alloys Fabricated by Wire Arc Additive Manufacturing. J. Alloys Compd. 2022;892:162193. doi: 10.1016/j.jallcom.2021.162193. DOI

Zhang M., Fang X., Wang Y., Jiang X., Chang T., Xi N., Huang K. High Superelasticity NiTi Fabricated by Cold Metal Transfer Based Wire Arc Additive Manufacturing. Mater. Sci. Eng. A. 2022;840:143001. doi: 10.1016/j.msea.2022.143001. DOI

Resnina N., Palani I.A., Belyaev S., Singh S., Liulchak P., Karaseva U., Mani Prabu S.S., Jayachandran S., Kalganov V., Iaparova E., et al. Influence of Heat Treatment on the Structure and Martensitic Transformation in NiTi Alloy Produced by Wire Arc Additive Manufacturing. Materialia. 2021;20:101238. doi: 10.1016/j.mtla.2021.101238. DOI

Resnina N., Palani I.A., Belyaev S., Prabu S.S.M., Liulchak P., Karaseva U., Manikandan M., Jayachandran S., Bryukhanova V., Sahu A., et al. Structure, Martensitic Transformations and Mechanical Behaviour of NiTi Shape Memory Alloy Produced by Wire Arc Additive Manufacturing. J. Alloys Compd. 2021;851:156851. doi: 10.1016/j.jallcom.2020.156851. DOI

Li B., Wang B., Wang L., Oliveira J.P., Cui R., Wang Y., Zhu G., Yu J., Su Y. Effect of Post-Heat Treatments on the Microstructure, Martensitic Transformation and Functional Performance of EBF3-Fabricated NiTi Shape Memory Alloy. Mater. Sci. Eng. A. 2023;871:144897. doi: 10.1016/j.msea.2023.144897. DOI

Huang Y., Xin D., Chen X. Microstructure and Properties of NiTi Shape Memory Alloy Fabricated by Double-Wire Plasma Arc Additive Manufacturing with a Nearly Equal Atomic Ratio. Mater. Lett. 2024;354:135406. doi: 10.1016/j.matlet.2023.135406. DOI

Han J., Chen X., Zhang G., Liu B., Cai Y., Chen M., Jiang H., Tian Y. Ni50.8Ti49.2 Alloy Prepared by Double-Wire + Arc Additive Manufacturing with a Substrate Heating Temperature of 600 °C. J. Manuf. Process. 2023;104:76–86. doi: 10.1016/j.jmapro.2023.08.042. DOI

Teng J.Z., Jiang P.F., Cui X.H., Nie M.H., Li X.R., Liu C.Z., Zhang Z.H. Revealing Microstructural Evolutions, Mechanical Properties and Wear Performance of Wire Arc Additive Manufacturing Homogeneous and Heterogeneous NiTi Alloy. J. Mater. Res. Technol. 2023;27:1593–1610. doi: 10.1016/j.jmrt.2023.10.055. DOI

Khismatullin A., Panchenko O., Kurushkin D., Kladov I., Popovich A. Functional and Mechanical Properties of As-Deposited and Heat Treated WAAM-Built NiTi Shape-Memory Alloy. Metals. 2022;12:1044. doi: 10.3390/met12061044. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...