A Review on Additive Manufacturing Methods for NiTi Shape Memory Alloy Production
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
NU23-08-00043
Ministry of Health of the Czech Republic
PubMed
38541402
PubMed Central
PMC10972012
DOI
10.3390/ma17061248
PII: ma17061248
Knihovny.cz E-zdroje
- Klíčová slova
- NiTi alloy, additive manufacturing, shape memory alloy,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The NiTi alloy, known as Nitinol, represents one of the most investigated smart alloys, exhibiting a shape memory effect and superelasticity. These, among many other remarkable attributes, enable its utilization in various applications, encompassing the automotive industry, aviation, space exploration, and, notably, medicine. Conventionally, Nitinol is predominantly produced in the form of wire or thin sheets that allow producing many required components. However, the manufacturing of complex shapes poses challenges due to the tenacity of the NiTi alloy, and different processing routes at elevated temperatures have to be applied. Overcoming this obstacle may be facilitated by additive manufacturing methods. This article provides an overview of the employment of additive manufacturing methods, allowing the preparation of the required shapes of Nitinol products while retaining their exceptional properties and potential applications.
Zobrazit více v PubMed
Dilibal S., Sehitoglu H., Hamilton R.F., Maier H.J., Chumlyakov Y. On the Volume Change in Co–Ni–Al during Pseudoelasticity. Mater. Sci. Eng. A. 2011;528:2875–2881. doi: 10.1016/j.msea.2010.12.056. DOI
Hamilton R.F., Dilibal S., Sehitoglu H., Maier H.J. Underlying Mechanism of Dual Hysteresis in NiMnGa Single Crystals. Mater. Sci. Eng. A. 2011;528:1877–1881. doi: 10.1016/j.msea.2010.10.042. DOI
Agrawal A., Dube R.K. Methods of Fabricating Cu-Al-Ni Shape Memory Alloys. J. Alloys Compd. 2018;750:235–247. doi: 10.1016/j.jallcom.2018.03.390. DOI
Shichalin O.O., Sakhnevich V.N., Buravlev I.Y., Lembikov A.O., Buravleva A.A., Azon S.A., Yarusova S.B., Danilova S.N., Fedorets A.N., Belov A.A., et al. Synthesis of Ti-Cu Multiphase Alloy by Spark Plasma Sintering: Mechanical and Corrosion Properties. Metals. 2022;12:1089. doi: 10.3390/met12071089. DOI
Otsuka K., Ren X. Physical Metallurgy of Ti–Ni-Based Shape Memory Alloys. Prog. Mater. Sci. 2005;50:511–678. doi: 10.1016/j.pmatsci.2004.10.001. DOI
Mohd Jani J., Leary M., Subic A., Gibson M.A. A Review of Shape Memory Alloy Research, Applications and Opportunities. Mater. Des. 2014;56:1078–1113. doi: 10.1016/j.matdes.2013.11.084. DOI
Farber E., Zhu J.-N., Popovich A., Popovich V. A Review of NiTi Shape Memory Alloy as a Smart Material Produced by Additive Manufacturing. Mater. Today Proc. 2020;30:761–767. doi: 10.1016/j.matpr.2020.01.563. DOI
Wadood A. Brief Overview on Nitinol as Biomaterial. Adv. Mater. Sci. Eng. 2016;2016:4173138. doi: 10.1155/2016/4173138. DOI
Dehghanghadikolaei A., Ibrahim H., Amerinatanzi A., Hashemi M., Moghaddam N.S., Elahinia M. Improving Corrosion Resistance of Additively Manufactured Nickel–Titanium Biomedical Devices by Micro-Arc Oxidation Process. J. Mater. Sci. 2019;54:7333–7355. doi: 10.1007/s10853-019-03375-1. DOI
Elahinia M., Shayesteh Moghaddam N., Taheri Andani M., Amerinatanzi A., Bimber B.A., Hamilton R.F. Fabrication of NiTi through Additive Manufacturing. Prog. Mater. Sci. 2016;83:630–663. doi: 10.1016/j.pmatsci.2016.08.001. DOI
Jamaluddin R., Tan C.L., Hamidon R., Mansor A.F., Azmi A.I. Electrical Discharge Coating of NiTi Alloy in Deionized Water. Mater. Today Proc. 2021;41:109–115. doi: 10.1016/j.matpr.2020.11.1015. DOI
Levintant-Zayonts N., Starzynski G., Kopec M., Kucharski S. Characterization of NiTi SMA in Its Unusual Behaviour in Wear Tests. Tribol. Int. 2019;137:313–323. doi: 10.1016/j.triboint.2019.05.005. DOI
Oshida Y., Tominaga T. Nickel-Titanium Materials: Biomedical Applications. De Gruyter; Berlin, Germany: 2020.
Papadopoulou A., Laucks J., Tibbits S. Active Matter. The MIT Press; Cambridge, MA, USA: 2017. General Principles for Programming Material.
Elahinia M.H., Hashemi M., Tabesh M., Bhaduri S.B. Manufacturing and Processing of NiTi Implants. Prog. Mater. Sci. 2012;57:911–946. doi: 10.1016/j.pmatsci.2011.11.001. DOI
Frenzel J., Zhang Z., Neuking K., Eggeler G. High Quality Vacuum Induction Melting of Small Quantities of NiTi Shape Memory Alloys in Graphite Crucibles. J. Alloys Compd. 2004;385:214–223. doi: 10.1016/j.jallcom.2004.05.002. DOI
Weinert K., Petzoldt V. Machining of NiTi Based Shape Memory Alloys. Mater. Sci. Eng. A. 2004;378:180–184. doi: 10.1016/j.msea.2003.10.344. DOI
Yeom J.-T., Kim J.H., Hong J.-K., Kim S.W., Park C.-H., Nam T.H., Lee K.-Y. Hot Forging Design of As-Cast NiTi Shape Memory Alloy. Mater. Res. Bull. 2014;58:234–238. doi: 10.1016/j.materresbull.2014.04.049. DOI
Parvizi S., Hashemi S.M., Asgarinia F., Nematollahi M., Elahinia M. Effective Parameters on the Final Properties of NiTi-Based Alloys Manufactured by Powder Metallurgy Methods. Prog. Mater. Sci. 2021;117:1000739. doi: 10.1016/j.pmatsci.2020.100739. DOI
Xiong Z., Li Z., Sun Z., Hao S., Yang Y., Li M., Song C., Qiu P., Cui L. Selective Laser Melting of NiTi Alloy with Superior Tensile Property and Shape Memory Effect. J. Mater. Sci. Technol. 2019;35:2238–2242. doi: 10.1016/j.jmst.2019.05.015. DOI
Kapoor D. Nitinol for Medical Applications: A Brief Introduction to the Properties and Processing of Nickel Titanium Shape Memory Alloys and Their Use in Stents. Johns. Matthey Technol. Rev. 2017;61:66–76. doi: 10.1595/205651317X694524. DOI
Dadbakhsh S., Speirs M., Van Humbeeck J., Kruth J.-P. Laser Additive Manufacturing of Bulk and Porous Shape-Memory NiTi Alloys. MRS Bull. 2016;41:765–774. doi: 10.1557/mrs.2016.209. DOI
Taheri Andani M., Saedi S., Turabi A.S., Karamooz M.R., Haberland C., Karaca H.E., Elahinia M. Mechanical and Shape Memory Properties of Porous Ni 50.1 Ti 49.9 Alloys Manufactured by Selective Laser Melting. J. Mech. Behav. Biomed. Mater. 2017;68:224–231. doi: 10.1016/j.jmbbm.2017.01.047. PubMed DOI
Additive Manufacturing—General Principles—Fundamentals and Vocabulary. ASTM; West Conshohocken, PA, USA: 2021.
Saedi S., Turabi A.S., Andani M.T., Haberland C., Elahinia M., Karaca H. Thermomechanical Characterization of Ni-Rich NiTi Fabricated by Selective Laser Melting. Smart Mater. Struct. 2016;25:035005. doi: 10.1088/0964-1726/25/3/035005. DOI
Ma J.-L., Meng F.-L., Xu D., Zhang X.-B. Co-Embedded N-Doped Carbon Fibers as Highly Efficient and Binder-Free Cathode for Na–O2 Batteries. Energy Storage Mater. 2017;6:1–8. doi: 10.1016/j.ensm.2016.09.002. DOI
Bormann T., Schumacher R., Müller B., Mertmann M., de Wild M. Tailoring Selective Laser Melting Process Parameters for NiTi Implants. J. Mater. Eng. Perform. 2012;21:2519–2524. doi: 10.1007/s11665-012-0318-9. DOI
Saedi S., Saghaian S.E., Jahadakbar A., Shayesteh Moghaddam N., Taheri Andani M., Saghaian S.M., Lu Y.C., Elahinia M., Karaca H.E. Shape Memory Response of Porous NiTi Shape Memory Alloys Fabricated by Selective Laser Melting. J. Mater. Sci. Mater. Med. 2018;29:40. doi: 10.1007/s10856-018-6044-6. PubMed DOI
Khoo Z., An J., Chua C., Shen Y., Kuo C., Liu Y. Effect of Heat Treatment on Repetitively Scanned SLM NiTi Shape Memory Alloy. Materials. 2019;12:77. doi: 10.3390/ma12010077. PubMed DOI PMC
Yang Y., Zhan J.B., Li B., Lin J.X., Gao J.J., Zhang Z.Q., Ren L., Castany P., Gloriant T. Laser Beam Energy Dependence of Martensitic Transformation in SLM Fabricated NiTi Shape Memory Alloy. Materialia. 2019;6:100305. doi: 10.1016/j.mtla.2019.100305. DOI
Saedi S., Shayesteh Moghaddam N., Amerinatanzi A., Elahinia M., Karaca H.E. On the Effects of Selective Laser Melting Process Parameters on Microstructure and Thermomechanical Response of Ni-Rich NiTi. Acta Mater. 2018;144:552–560. doi: 10.1016/j.actamat.2017.10.072. DOI
Saedi S., Turabi A.S., Andani M.T., Moghaddam N.S., Elahinia M., Karaca H.E. Texture, Aging, and Superelasticity of Selective Laser Melting Fabricated Ni-Rich NiTi Alloys. Mater. Sci. Eng. A. 2017;686:1–10. doi: 10.1016/j.msea.2017.01.008. DOI
Mohamed O.A., Masood S.H., Xu W. Nickel-Titanium Shape Memory Alloys Made by Selective Laser Melting: A Review on Process Optimisation. Adv. Manuf. 2022;10:24–58. doi: 10.1007/s40436-021-00376-9. DOI
Ehsan Saghaian S., Nematollahi M., Toker G., Hinojos A., Shayesteh Moghaddam N., Saedi S., Lu C.Y., Javad Mahtabi M., Mills M.J., Elahinia M., et al. Effect of Hatch Spacing and Laser Power on Microstructure, Texture, and Thermomechanical Properties of Laser Powder Bed Fusion (L-PBF) Additively Manufactured NiTi. Opt. Laser Technol. 2022;149:107680. doi: 10.1016/j.optlastec.2021.107680. DOI
Ren Q., Chen C., Lu Z., Wang X., Lu H., Yin S., Liu Y., Li H., Wang J., Ren Z. Effect of a Constant Laser Energy Density on the Evolution of Microstructure and Mechanical Properties of NiTi Shape Memory Alloy Fabricated by Laser Powder Bed Fusion. Opt. Laser Technol. 2022;152:108182. doi: 10.1016/j.optlastec.2022.108182. DOI
Chmielewska A., Wysocki B., Buhagiar J., Michalski B., Adamczyk-Cieślak B., Gloc M., Święszkowski W. In Situ Alloying of NiTi: Influence of Laser Powder Bed Fusion (LBPF) Scanning Strategy on Chemical Composition. Mater. Today Commun. 2022;30:103007. doi: 10.1016/j.mtcomm.2021.103007. DOI
Shen F.L., Li H.Q., Guo H., Guo N.N., Fang X.Y. Effect of Energy Density on the Superelastic Property of Ni-Rich NiTi Alloy Fabricated by Laser Powder Bed Fusion. Mater. Sci. Eng. A. 2022;854:143874. doi: 10.1016/j.msea.2022.143874. DOI
Kordizadeh F., Mohajerani S., Safaei K., Andani N.T., Pourshams M., Abdollahzadeh M.J., Elahinia M. Investigating the Elastocaloric Effect of the NiTi Fabricated by Laser Powder Bed Fusion: Effect of the Building Orientation. Materialia. 2023;30:101817. doi: 10.1016/j.mtla.2023.101817. DOI
Safaei K., Andani N.T., Poorganji B., Andani M.T., Elahinia M. Controlling Texture of NiTi Alloy Processed by Laser Powder Bed Fusion: Smart Build Orientation and Scanning Strategy. Addit. Manuf. Lett. 2023;5:100126. doi: 10.1016/j.addlet.2023.100126. DOI
Zhang X.-L., Wang S., Jiang Y., Huang J., Wang S.-P., Zhang Q.-Q., Li Q., Guo Y.-Q., Zhang Z.-H. Influence of Building Directions on the Impact Properties of NiTi Fabricated via Laser Powder Bed Fusion. J. Mater. Res. Technol. 2024;28:3186–3195. doi: 10.1016/j.jmrt.2023.12.160. DOI
Zhan J., Wu J., Ma R., Li K., Lin J., Murr L.E. Tuning the Functional Properties by Laser Powder Bed Fusion with Partitioned Repetitive Laser Scanning: Toward Editable 4D Printing of NiTi Alloys. J. Manuf. Process. 2023;101:1468–1481. doi: 10.1016/j.jmapro.2023.07.009. DOI
Jalali M., Mohammadi K., Movahhedy M.R., Karimi F., Sadrnezhaad S.K., Chernyshikhin S.V., Shishkovsky I.V. SLM Additive Manufacturing of NiTi Porous Implants: A Review of Constitutive Models, Finite Element Simulations, Manufacturing, Heat Treatment, Mechanical, and Biomedical Studies. Met. Mater. Int. 2023;29:2458–2491. doi: 10.1007/s12540-023-01401-1. DOI
Haberland C., Meier H., Frenzel J. On the Properties of Ni-Rich NiTi Shape Memory Parts Produced by Selective Laser Melting; Proceedings of the ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems; Stone Mountain, GA, USA. 19–21 September 2012; pp. 97–104. DOI
Maniruzzaman M. 3D and 4D Printing in Biomedical Applications. John Wiley & Sons; Weinheim, Germany: 2018.
DebRoy T., Wei H.L., Zuback J.S., Mukherjee T., Elmer J.W., Milewski J.O., Beese A.M., Wilson-Heid A., De A., Zhang W. Additive Manufacturing of Metallic Components—Process, Structure and Properties. Prog. Mater. Sci. 2018;92:112–224. doi: 10.1016/j.pmatsci.2017.10.001. DOI
Pu Z., Du D., Wang K., Liu G., Zhang D., Liang Z., Xi R., Wang X., Chang B. Evolution of Transformation Behavior and Tensile Functional Properties with Process Parameters for Electron Beam Wire-Feed Additive Manufactured NiTi Shape Memory Alloys. Mater. Sci. Eng. A. 2022;840:142977. doi: 10.1016/j.msea.2022.142977. DOI
Pu Z., Du D., Wang K., Liu G., Zhang D., Zhang H., Xi R., Wang X., Chang B. Study on the NiTi Shape Memory Alloys In-Situ Synthesized by Dual-Wire-Feed Electron Beam Additive Manufacturing. Addit. Manuf. 2022;56:102886. doi: 10.1016/j.addma.2022.102886. DOI
Li B., Wang L., Wang B., Li D., Cui R., Su B., Yao L., Luo L., Chen R., Su Y., et al. Solidification Characterization and Its Correlation with the Mechanical Properties and Functional Response of NiTi Shape Memory Alloy Manufactured by Electron Beam Freeform Fabrication. Addit. Manuf. 2021;48:102468. doi: 10.1016/j.addma.2021.102468. DOI
Pu Z., Du D., Zhang D., Li Z., Xue S., Xi R., Wang X., Chang B. Improvement of Tensile Superelasticity by Aging Treatment of NiTi Shape Memory Alloys Fabricated by Electron Beam Wire-Feed Additive Manufacturing. J. Mater. Sci. Technol. 2023;145:185–196. doi: 10.1016/j.jmst.2022.10.050. DOI
Chen G., Ma Y., Teng X., Liu J., Zhang B., Cao J., Huang Y. Microstructure Evolution and Shape Memory Function Mechanism of NiTi Alloy by Electron Beam 4D Printing. Appl. Mater. Today. 2023;31:101749. doi: 10.1016/j.apmt.2023.101749. DOI
Dutkiewicz J., Rogal Ł., Kalita D., Kawałko J., Węglowski M.S., Kwieciński K., Śliwiński P., Danielewski H., Antoszewski B., Cesari E. Microstructure, Mechanical Properties, and Martensitic Transformation in NiTi Shape Memory Alloy Fabricated Using Electron Beam Additive Manufacturing Technique. J. Mater. Eng. Perform. 2022;31:1609–1621. doi: 10.1007/s11665-021-06241-x. DOI
Zeng Z., Cong B.Q., Oliveira J.P., Ke W.C., Schell N., Peng B., Qi Z.W., Ge F.G., Zhang W., Ao S.S. Wire and Arc Additive Manufacturing of a Ni-Rich NiTi Shape Memory Alloy: Microstructure and Mechanical Properties. Addit. Manuf. 2020;32:101051. doi: 10.1016/j.addma.2020.101051. DOI
Karunakaran R., Ortgies S., Tamayol A., Bobaru F., Sealy M.P. Additive Manufacturing of Magnesium Alloys. Bioact. Mater. 2020;5:44–54. doi: 10.1016/j.bioactmat.2019.12.004. PubMed DOI PMC
Cai W.S., Luo Y., Yan A., Kang L.M., Zhang L.C., Suryanarayana C., Yang C. Balanced Strength-Ductility Combination and Good Recoverable Strain of Ni50.7Ti49.3 Alloy Fabricated by High Scanning Velocity in Selective Laser Melting. Mater. Charact. 2023;195:112490. doi: 10.1016/j.matchar.2022.112490. DOI
Ge J., Yuan B., Chen H., Pan J., Liu Q., Yan M., Lu Z., Zhang S., Zhang L. Anisotropy in Microstructural Features and Tensile Performance of Laser Powder Bed Fusion NiTi Alloys. J. Mater. Res. Technol. 2023;24:8656–8668. doi: 10.1016/j.jmrt.2023.05.046. DOI
Chekotu J.C., Degli-Alessandrini G., Mughal M.Z., Chatterjee S., Goodall R., Kinahan D., Brabazon D. Control of Mechanical and Shape Memory Characteristics in Martensitic NiTi by Setting L-PBF Parameters and Build Orientation. J. Mater. Res. Technol. 2023;25:6407–6431. doi: 10.1016/j.jmrt.2023.07.092. DOI
Jiang H., Wang X., Xi R., Li G., Wei H., Liu J., Zhang B., Kustov S., Vanmeensel K., Van Humbeeck J., et al. Size Effect on the Microstructure, Phase Transformation Behavior, and Mechanical Properties of NiTi Shape Memory Alloys Fabricated by Laser Powder Bed Fusion. J. Mater. Sci. Technol. 2023;157:200–212. doi: 10.1016/j.jmst.2023.02.026. DOI
Liu Z., Zhang L.M., Ren D.C., Ma A.L., Ji H.B., Zheng Y.G. Significantly Improved Mechanical and Corrosion-Resistant Properties of NiTi Alloy Fabricated by Selective Laser Melting through Heat Treatments. Mater. Lett. 2023;347:134622. doi: 10.1016/j.matlet.2023.134622. DOI
Sequeda Leon E.M., Singamneni S., Guraya T., Chen Z.W. Effect of Laser Power in Laser Powder Bed Fusion on Ni Content and Structure of Nitinol. Mater. Today Proc. 2023. in press . DOI
Zhan J., Wu J., Ma R., Li K., Huang T., Lin J., Murr L.E. Effect of Microstructure on the Superelasticity of High-Relative-Density Ni-Rich NiTi Alloys Fabricated by Laser Powder Bed Fusion. J. Mater. Process Technol. 2023;317:117988. doi: 10.1016/j.jmatprotec.2023.117988. DOI
Obeidi M.A. Achieving High Quality Nitinol Parts with Minimised Input Thermal Energy by Optimised Pulse Wave Laser Powder Bed Fusion Process. Results Mater. 2022;14:100279. doi: 10.1016/j.rinma.2022.100279. DOI
Zhang C., Ozcan H., Xue L., Atli K.C., Arróyave R., Karaman I., Elwany A. On the Effect of Scan Strategies on the Transformation Behavior and Mechanical Properties of Additively Manufactured NiTi Shape Memory Alloys. J. Manuf. Process. 2022;84:260–271. doi: 10.1016/j.jmapro.2022.09.051. DOI
Nematollahi M., Saghaian S.E., Safaei K., Bayati P., Bassani P., Biffi C., Tuissi A., Karaca H., Elahinia M. Building Orientation-Structure-Property in Laser Powder Bed Fusion of NiTi Shape Memory Alloy. J. Alloys Compd. 2021;873:159791. doi: 10.1016/j.jallcom.2021.159791. DOI
Obeidi M.A., Monu M., Hughes C., Bourke D., Dogu M.N., Francis J., Zhang M., Ahad I.U., Brabazon D. Laser Beam Powder Bed Fusion of Nitinol Shape Memory Alloy (SMA) J. Mater. Res. Technol. 2021;14:2554–2570. doi: 10.1016/j.jmrt.2021.07.126. DOI
Wen S., Liu Y., Zhou Y., Zhao A., Yan C., Shi Y. Effect of Ni Content on the Transformation Behavior and Mechanical Property of NiTi Shape Memory Alloys Fabricated by Laser Powder Bed Fusion. Opt. Laser Technol. 2021;134:106653. doi: 10.1016/j.optlastec.2020.106653. DOI
Wang C., Tan X.P., Du Z., Chandra S., Sun Z., Lim C.W.J., Tor S.B., Lim C.S., Wong C.H. Additive Manufacturing of NiTi Shape Memory Alloys Using Pre-Mixed Powders. J. Mater. Process Technol. 2019;271:152–161. doi: 10.1016/j.jmatprotec.2019.03.025. DOI
Shayesteh Moghaddam N., Saghaian S.E., Amerinatanzi A., Ibrahim H., Li P., Toker G.P., Karaca H.E., Elahinia M. Anisotropic Tensile and Actuation Properties of NiTi Fabricated with Selective Laser Melting. Mater. Sci. Eng. A. 2018;724:220–230. doi: 10.1016/j.msea.2018.03.072. DOI
Hamilton R.F., Bimber B.A., Taheri Andani M., Elahinia M. Multi-Scale Shape Memory Effect Recovery in NiTi Alloys Additive Manufactured by Selective Laser Melting and Laser Directed Energy Deposition. J. Mater. Process Technol. 2017;250:55–64. doi: 10.1016/j.jmatprotec.2017.06.027. DOI
Dadbakhsh S., Vrancken B., Kruth J.-P., Luyten J., Van Humbeeck J. Texture and Anisotropy in Selective Laser Melting of NiTi Alloy. Mater. Sci. Eng. A. 2016;650:225–232. doi: 10.1016/j.msea.2015.10.032. DOI
Saedi S., Turabi A.S., Taheri Andani M., Haberland C., Karaca H., Elahinia M. The Influence of Heat Treatment on the Thermomechanical Response of Ni-Rich NiTi Alloys Manufactured by Selective Laser Melting. J. Alloys Compd. 2016;677:204–210. doi: 10.1016/j.jallcom.2016.03.161. DOI
Dadbakhsh S., Speirs M., Kruth J.-P., Van Humbeeck J. Influence of SLM on Shape Memory and Compression Behaviour of NiTi Scaffolds. CIRP Ann. 2015;64:209–212. doi: 10.1016/j.cirp.2015.04.039. DOI
Zhang B., Chen J., Coddet C. Microstructure and Transformation Behavior of In-Situ Shape Memory Alloys by Selective Laser Melting Ti–Ni Mixed Powder. J. Mater. Sci. Technol. 2013;29:863–867. doi: 10.1016/j.jmst.2013.05.006. DOI
Shishkovsky I., Yadroitsev I., Smurov I. Direct Selective Laser Melting of Nitinol Powder. Phys. Procedia. 2012;39:447–454. doi: 10.1016/j.phpro.2012.10.060. DOI
Halani P.R., Kaya I., Shin Y.C., Karaca H.E. Phase Transformation Characteristics and Mechanical Characterization of Nitinol Synthesized by Laser Direct Deposition. Mater. Sci. Eng. A. 2013;559:836–843. doi: 10.1016/j.msea.2012.09.031. DOI
Malukhin K., Ehmann K. Material Characterization of NiTi Based Memory Alloys Fabricated by the Laser Direct Metal Deposition Process. J. Manuf. Sci. Eng. 2006;128:691–696. doi: 10.1115/1.2193553. DOI
Fink A., Fu Z., Körner C. Functional Properties and Shape Memory Effect of Nitinol Manufactured via Electron Beam Powder Bed Fusion. Materialia. 2023;30:101823. doi: 10.1016/j.mtla.2023.101823. DOI
Bormann T., Müller B., Schinhammer M., Kessler A., Thalmann P., de Wild M. Microstructure of Selective Laser Melted Nickel–Titanium. Mater. Charact. 2014;94:189–202. doi: 10.1016/j.matchar.2014.05.017. DOI
Pfeifer R., Müller C.W., Hurschler C., Kaierle S., Wesling V., Haferkamp H. Adaptable Orthopedic Shape Memory Implants. Procedia CIRP. 2013;5:253–258. doi: 10.1016/j.procir.2013.01.050. DOI
Ferčec J., Anžel I., Rudolf R. Stress Dependent Electrical Resistivity of Orthodontic Wire from the Shape Memory Alloy NiTi. Mater. Des. 2014;55:699–706. doi: 10.1016/j.matdes.2013.10.041. DOI
Liu Y., Galvin S.P. Criteria for Pseudoelasticity in Near-Equiatomic NiTi Shape Memory Alloys. Acta Mater. 1997;45:4431–4439. doi: 10.1016/S1359-6454(97)00144-4. DOI
Mwangi J.W., Nguyen L.T., Bui V.D., Berger T., Zeidler H., Schubert A. Nitinol Manufacturing and Micromachining. J. Manuf. Process. 2019;38:355–369. doi: 10.1016/j.jmapro.2019.01.003. DOI
Pelton A.R., Russell S.M., DiCello J. The Physical Metallurgy of Nitinol for Medical Applications. JOM. 2003;55:33–37. doi: 10.1007/s11837-003-0243-3. DOI
Bhagyaraj J., Ramaiah K.V., Saikrishna C.N., Bhaumik S.K. Gouthama Behavior and Effect of Ti2Ni Phase during Processing of NiTi Shape Memory Alloy Wire from Cast Ingot. J. Alloys Compd. 2013;581:344–351. doi: 10.1016/j.jallcom.2013.07.046. DOI
Thier M., Hühner M., Kobus E., Drescher D., Bourauel C. Microstructure of As-Cast NiTi Alloy. Mater. Charact. 1991;27:133–140. doi: 10.1016/1044-5803(91)90056-A. DOI
Nishida M., Wayman C.M., Honma T. Precipitation Processes in Near-Equiatomic TiNi Shape Memory Alloys. Metall. Trans. A. 1986;17:1505–1515. doi: 10.1007/BF02650086. DOI
Nishida M., Wayman C.M. Phase Transformations in Ti2Ni3 Precipitates Formed in Aged Ti-52 At. Pct Ni. Metall. Trans. A. 1987;18:785–799. doi: 10.1007/BF02646921. DOI
Lang P., Wojcik T., Povoden-Karadeniz E., Cirstea C.D., Kozeschnik E. Crystal Structure and Free Energy of Ti 2 Ni 3 Precipitates in Ti–Ni Alloys from First Principles. Comput. Mater. Sci. 2014;93:46–49. doi: 10.1016/j.commatsci.2014.06.019. DOI
Hara T., Ohba T., Otsuka K., Nishida M. Phase transformation and crystal structures of Ti2Ni3 precipitates in ti–ni alloys. Mater. Trans. JIM. 1997;38:277–284. doi: 10.2320/matertrans1989.38.277. DOI
Tadayyon G., Mazinani M., Guo Y., Zebarjad S.M., Tofail S.A.M., Biggs M.J. The Effect of Annealing on the Mechanical Properties and Microstructural Evolution of Ti-Rich NiTi Shape Memory Alloy. Mater. Sci. Eng. A. 2016;662:564–577. doi: 10.1016/j.msea.2016.03.004. DOI
Jiang S., Zhang Y., Zhao Y., Liu S., Hu L., Zhao C. Influence of Ni4Ti3 Precipitates on Phase Transformation of NiTi Shape Memory Alloy. Trans. Nonferrous Met. Soc. China. 2015;25:4063–4071. doi: 10.1016/S1003-6326(15)64056-0. DOI
Zhou N., Shen C., Wagner M.F.-X., Eggeler G., Mills M.J., Wang Y. Effect of Ni4Ti3 Precipitation on Martensitic Transformation in Ti–Ni. Acta Mater. 2010;58:6685–6694. doi: 10.1016/j.actamat.2010.08.033. DOI
Adharapurapu R.R., Jiang F., Vecchio K.S. Aging Effects on Hardness and Dynamic Compressive Behavior of Ti–55Ni (at.%) Alloy. Mater. Sci. Eng. A. 2010;527:1665–1676. doi: 10.1016/j.msea.2009.10.069. DOI
Gu D., Ma C. In-Situ Formation of Ni4Ti3 Precipitate and Its Effect on Pseudoelasticity in Selective Laser Melting Additive Manufactured NiTi-Based Composites. Appl. Surf. Sci. 2018;441:862–870. doi: 10.1016/j.apsusc.2018.01.317. DOI
Ma C., Gu D., Dai D., Xia M., Chen H. Selective Growth of Ni4Ti3 Precipitate Variants Induced by Complicated Cyclic Stress during Laser Additive Manufacturing of NiTi-Based Composites. Mater. Charact. 2018;143:191–196. doi: 10.1016/j.matchar.2018.04.004. DOI
Otsuka K., Kakeshita T. Science and Technology of Shape-Memory Alloys: New Developments. MRS Bull. 2002;27:91–100. doi: 10.1557/mrs2002.43. DOI
Yang Z., Tirry W., Schryvers D. Analytical TEM Investigations on Concentration Gradients Surrounding Ni4Ti3 Precipitates in Ni–Ti Shape Memory Material. Scr. Mater. 2005;52:1129–1134. doi: 10.1016/j.scriptamat.2005.02.013. DOI
Zou W.H., Han X.D., Wang R., Zhang Z., Zhang W.-Z., Lai J.K.L. TEM and HREM Study of the Interphase Interface Structure of Ti3Ni4 Precipitates and Parent Phase in an Aged TiNi Shape Memory Alloy. Mater. Sci. Eng. A. 1996;219:142–147. doi: 10.1016/S0921-5093(96)10418-4. DOI
Hamilton R.F., Bimber B.A., Palmer T.A. Correlating Microstructure and Superelasticity of Directed Energy Deposition Additive Manufactured Ni-Rich NiTi Alloys. J. Alloys Compd. 2018;739:712–722. doi: 10.1016/j.jallcom.2017.12.270. DOI
Li S., Hassanin H., Attallah M.M., Adkins N.J.E., Essa K. The Development of TiNi-Based Negative Poisson’s Ratio Structure Using Selective Laser Melting. Acta Mater. 2016;105:75–83. doi: 10.1016/j.actamat.2015.12.017. DOI
Sames W.J., List F.A., Pannala S., Dehoff R.R., Babu S.S. The Metallurgy and Processing Science of Metal Additive Manufacturing. Int. Mater. Rev. 2016;61:315–360. doi: 10.1080/09506608.2015.1116649. DOI
Slotwinski J.A., Garboczi E.J., Stutzman P.E., Ferraris C.F., Watson S.S., Peltz M.A. Characterization of Metal Powders Used for Additive Manufacturing. J. Res. Natl. Inst. Stand. Technol. 2014;119:460. doi: 10.6028/jres.119.018. PubMed DOI PMC
Santomaso A., Lazzaro P., Canu P. Powder Flowability and Density Ratios: The Impact of Granules Packing. Chem. Eng. Sci. 2003;58:2857–2874. doi: 10.1016/S0009-2509(03)00137-4. DOI
Drápala J., Losertová M., Štencek M., Konečná K., Matýsek D., Sevostyanov M.A. Structural Characteristics of NiTi Alloys after Thermal Treatment. IOP Conf. Ser. Mater. Sci. Eng. 2020;726:012019. doi: 10.1088/1757-899X/726/1/012019. DOI
Zhou Q., Hayat M.D., Chen G., Cai S., Qu X., Tang H., Cao P. Selective Electron Beam Melting of NiTi: Microstructure, Phase Transformation and Mechanical Properties. Mater. Sci. Eng. A. 2019;744:290–298. doi: 10.1016/j.msea.2018.12.023. DOI
Kopelent M., Losertová M., Konečná K., Skoupý O., Čepica D., Halo T., Frydrýšek K., Vlček T. Effect of Thermal Treatment and Strain Rate on Superelastic and Mechanical Properties of NiTi Sheet. J. Phys. Conf. Ser. 2023;2572:012008. doi: 10.1088/1742-6596/2572/1/012008. DOI
Zhang D., Guo B., Tong Y., Tian B., Li L., Zheng Y., Gunderov D.-V., Valiev R.-Z. Effect of Annealing Temperature on Martensitic Transformation of Ti49.2Ni50.8 Alloy Processed by Equal Channel Angular Pressing. Trans. Nonferrous Met. Soc. China. 2016;26:448–455. doi: 10.1016/S1003-6326(16)64133-X. DOI
Schryvers D. Advanced Electron Microscopy Characterisation of Important Precipitation and Ordering Phenomena in Shape Memory Systems. Shape Mem. Superelasticity. 2015;1:78–84. doi: 10.1007/s40830-015-0006-3. DOI
Tan C., Li S., Essa K., Jamshidi P., Zhou K., Ma W., Attallah M.M. Laser Powder Bed Fusion of Ti-Rich TiNi Lattice Structures: Process Optimisation, Geometrical Integrity, and Phase Transformations. Int. J. Mach. Tools Manuf. 2019;141:19–29. doi: 10.1016/j.ijmachtools.2019.04.002. DOI
Wang X., Yu J., Liu J., Chen L., Yang Q., Wei H., Sun J., Wang Z., Zhang Z., Zhao G., et al. Effect of Process Parameters on the Phase Transformation Behavior and Tensile Properties of NiTi Shape Memory Alloys Fabricated by Selective Laser Melting. Addit. Manuf. 2020;36:101545. doi: 10.1016/j.addma.2020.101545. DOI
Shiva S., Palani I.A., Mishra S.K., Paul C.P., Kukreja L.M. Investigations on the Influence of Composition in the Development of Ni–Ti Shape Memory Alloy Using Laser Based Additive Manufacturing. Opt. Laser Technol. 2015;69:44–51. doi: 10.1016/j.optlastec.2014.12.014. DOI
Chad Hornbuckle B., Yu X.X., Noebe R.D., Martens R., Weaver M.L., Thompson G.B. Hardening Behavior and Phase Decomposition in Very Ni-Rich Nitinol Alloys. Mater. Sci. Eng. A. 2015;639:336–344. doi: 10.1016/j.msea.2015.04.079. DOI
Marattukalam J.J., Singh A.K., Datta S., Das M., Balla V.K., Bontha S., Kalpathy S.K. Microstructure and Corrosion Behavior of Laser Processed NiTi Alloy. Mater. Sci. Eng. C. 2015;57:309–313. doi: 10.1016/j.msec.2015.07.067. PubMed DOI
Mantovani D. Shape Memory Alloys. JOM. 2000;52:36–44. doi: 10.1007/s11837-000-0082-4. DOI
Yu Z., Xu Z., Guo Y., Sha P., Liu R., Xin R., Li L., Chen L., Wang X., Zhang Z., et al. Analysis of Microstructure, Mechanical Properties, Wear Characteristics and Corrosion Behavior of SLM-NiTi under Different Process Parameters. J. Manuf. Process. 2022;75:637–650. doi: 10.1016/j.jmapro.2022.01.010. DOI
Hayat M.D., Chen G., Khan S., Liu N., Tang H., Cao P. Physical and Tensile Properties of NiTi Alloy by Selective Electron Beam Melting. Key Eng. Mater. 2018;770:148–154. doi: 10.4028/www.scientific.net/KEM.770.148. DOI
Baran A., Polanski M. Microstructure and Properties of LENS (Laser Engineered Net Shaping) Manufactured Ni-Ti Shape Memory Alloy. J. Alloys Compd. 2018;750:863–870. doi: 10.1016/j.jallcom.2018.03.400. DOI
Bimber B.A., Hamilton R.F., Keist J., Palmer T.A. Anisotropic Microstructure and Superelasticity of Additive Manufactured NiTi Alloy Bulk Builds Using Laser Directed Energy Deposition. Mater. Sci. Eng. A. 2016;674:125–134. doi: 10.1016/j.msea.2016.07.059. DOI
Pu Z., Du D., Wang K., Liu G., Zhang D., Wang X., Chang B. Microstructure, Phase Transformation Behavior and Tensile Superelasticity of NiTi Shape Memory Alloys Fabricated by the Wire-Based Vacuum Additive Manufacturing. Mater. Sci. Eng. A. 2021;812:141077. doi: 10.1016/j.msea.2021.141077. DOI
Liu G., Zhou S., Lin P., Zong X., Chen Z., Zhang Z., Ren L. Analysis of Microstructure, Mechanical Properties, and Wear Performance of NiTi Alloy Fabricated by Cold Metal Transfer Based Wire Arc Additive Manufacturing. J. Mater. Res. Technol. 2022;20:246–259. doi: 10.1016/j.jmrt.2022.07.068. DOI
Singh S., Palani I.A., Dehgahi S., Paul C.P., Prashanth K.G., Qureshi A.J. Influence of the Interlayer Temperature on Structure and Properties of CMT Wire Arc Additive Manufactured NiTi Structures. J. Alloys Compd. 2023;966:171447. doi: 10.1016/j.jallcom.2023.171447. DOI
Yu L., Chen K., Zhang Y., Liu J., Yang L., Shi Y. Microstructures and Mechanical Properties of NiTi Shape Memory Alloys Fabricated by Wire Arc Additive Manufacturing. J. Alloys Compd. 2022;892:162193. doi: 10.1016/j.jallcom.2021.162193. DOI
Zhang M., Fang X., Wang Y., Jiang X., Chang T., Xi N., Huang K. High Superelasticity NiTi Fabricated by Cold Metal Transfer Based Wire Arc Additive Manufacturing. Mater. Sci. Eng. A. 2022;840:143001. doi: 10.1016/j.msea.2022.143001. DOI
Resnina N., Palani I.A., Belyaev S., Singh S., Liulchak P., Karaseva U., Mani Prabu S.S., Jayachandran S., Kalganov V., Iaparova E., et al. Influence of Heat Treatment on the Structure and Martensitic Transformation in NiTi Alloy Produced by Wire Arc Additive Manufacturing. Materialia. 2021;20:101238. doi: 10.1016/j.mtla.2021.101238. DOI
Resnina N., Palani I.A., Belyaev S., Prabu S.S.M., Liulchak P., Karaseva U., Manikandan M., Jayachandran S., Bryukhanova V., Sahu A., et al. Structure, Martensitic Transformations and Mechanical Behaviour of NiTi Shape Memory Alloy Produced by Wire Arc Additive Manufacturing. J. Alloys Compd. 2021;851:156851. doi: 10.1016/j.jallcom.2020.156851. DOI
Li B., Wang B., Wang L., Oliveira J.P., Cui R., Wang Y., Zhu G., Yu J., Su Y. Effect of Post-Heat Treatments on the Microstructure, Martensitic Transformation and Functional Performance of EBF3-Fabricated NiTi Shape Memory Alloy. Mater. Sci. Eng. A. 2023;871:144897. doi: 10.1016/j.msea.2023.144897. DOI
Huang Y., Xin D., Chen X. Microstructure and Properties of NiTi Shape Memory Alloy Fabricated by Double-Wire Plasma Arc Additive Manufacturing with a Nearly Equal Atomic Ratio. Mater. Lett. 2024;354:135406. doi: 10.1016/j.matlet.2023.135406. DOI
Han J., Chen X., Zhang G., Liu B., Cai Y., Chen M., Jiang H., Tian Y. Ni50.8Ti49.2 Alloy Prepared by Double-Wire + Arc Additive Manufacturing with a Substrate Heating Temperature of 600 °C. J. Manuf. Process. 2023;104:76–86. doi: 10.1016/j.jmapro.2023.08.042. DOI
Teng J.Z., Jiang P.F., Cui X.H., Nie M.H., Li X.R., Liu C.Z., Zhang Z.H. Revealing Microstructural Evolutions, Mechanical Properties and Wear Performance of Wire Arc Additive Manufacturing Homogeneous and Heterogeneous NiTi Alloy. J. Mater. Res. Technol. 2023;27:1593–1610. doi: 10.1016/j.jmrt.2023.10.055. DOI
Khismatullin A., Panchenko O., Kurushkin D., Kladov I., Popovich A. Functional and Mechanical Properties of As-Deposited and Heat Treated WAAM-Built NiTi Shape-Memory Alloy. Metals. 2022;12:1044. doi: 10.3390/met12061044. DOI