The Performance of a Modified Anode Using a Combination of Kaolin and Graphite Nanoparticles in Microbial Fuel Cells

. 2024 Mar 18 ; 12 (3) : . [epub] 20240318

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38543655

Grantová podpora
222-11-062 Israeli Ministry of National Infrastructures, Energy and Water Resources

Odkazy

PubMed 38543655
PubMed Central PMC10974860
DOI 10.3390/microorganisms12030604
PII: microorganisms12030604
Knihovny.cz E-zdroje

The bacterial anode in microbial fuel cells was modified by increasing the biofilm's adhesion to the anode material using kaolin and graphite nanoparticles. The MFCs were inoculated with G. sulfurreducens, kaolin (12.5 g·L-1), and three different concentrations of graphite (0.25, 1.25, and 2.5 g·L-1). The modified anode with the graphite nanoparticles (1.25 g·L-1) showed the highest electroactivity and biofilm viability. A potential of 0.59, 0.45, and 0.23 V and a power density of 0.54 W·m-2, 0.3 W·m-2, and 0.2 W·m-2 were obtained by the MFCs based on kaolin-graphite nanoparticles, kaolin, and bare anodes, respectively. The kaolin-graphite anode exhibited the highest Coulombic efficiency (21%) compared with the kaolin (17%) and the bare (14%) anodes. Scanning electron microscopy and confocal laser scanning microscopy revealed a large amount of biofilm on the kaolin-graphite anode. We assume that the graphite nanoparticles increased the charge transfer between the bacteria that are in the biofilm and are far from the anode material. The addition of kaolin and graphite nanoparticles increased the attachment of several bacteria. Thus, for MFCs that are fed with wastewater, the modified anode should be prepared with a pure culture of G. sulfurreducens before adding wastewater that includes non-exoelectrogenic bacteria.

Zobrazit více v PubMed

Logan B.E. Microbial Fuel Cells. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2008. pp. 1–200. DOI

Unuabonah E.I., Ugwuja C.G., Omorogie M.O., Adewuyi A., Oladoja N.A. Clays for Efficient Disinfection of Bacteria in Water. Appl. Clay Sci. 2018;151:211–223. doi: 10.1016/j.clay.2017.10.005. DOI

Wang Y.H., Siu W.K. Structure Characteristics and Mechanical Properties of Kaolinite Soils. II. Effects of Structure on Mechanical Properties. Can. Geotech. J. 2006;43:601–617. doi: 10.1139/t06-027. DOI

Yıldız Ozer L., Yusuf A., Uratani J.M., Cabal B., Díaz L.A., Torrecillas R., Moya J.S., Rodríguez J., Palmisano G. Water Microbial Disinfection via Supported NAg/Kaolin in a Fixed-Bed Reactor Configuration. Appl. Clay Sci. 2020;184:105387. doi: 10.1016/j.clay.2019.105387. DOI

Oliyaei N., Moosavi-Nasab M., Tamaddon A.M., Fazaeli M. Preparation and Characterization of Porous Starch Reinforced with Halloysite Nanotube by Solvent Exchange Method. Int. J. Biol. Macromol. 2019;123:682–690. doi: 10.1016/j.ijbiomac.2018.11.095. PubMed DOI

Alipoormazandarani N., Ghazihoseini S., Mohammadi Nafchi A. Preparation and Characterization of Novel Bionanocomposite Based on Soluble Soybean Polysaccharide and Halloysite Nanoclay. Carbohydr. Polym. 2015;134:745–751. doi: 10.1016/j.carbpol.2015.08.059. PubMed DOI

Tharmavaram M., Pandey G., Rawtani D. Surface Modified Halloysite Nanotubes: A Flexible Interface for Biological, Environmental and Catalytic Applications. Adv. Colloid Interface Sci. 2018;261:82–101. doi: 10.1016/j.cis.2018.09.001. PubMed DOI

Alekseeva O.V., Smirnova D.N., Noskov A.V., Kuznetsov O.Y., Kirilenko M.A., Agafonov A.V. Mesoporous Halloysite/Magnetite Composite: Synthesis, Characterization and in Vitro Evaluation of the Effect on the Bacteria Viability. Mater. Today Commun. 2022;32:103877. doi: 10.1016/j.mtcomm.2022.103877. DOI

Joussein E. Geology and Mineralogy of Nanosized Tubular Halloysite. Dev. Clay Sci. 2016;7:12–48. doi: 10.1016/B978-0-08-100293-3.00002-9. DOI

Lvov Y., Wang W., Zhang L., Fakhrullin R. Halloysite Clay Nanotubes for Loading and Sustained Release of Functional Compounds. Adv. Mater. 2016;28:1227–1250. doi: 10.1002/adma.201502341. PubMed DOI

Ugochukwu U.C., Jones M.D., Head I.M., Manning D.A.C., Fialips C.I. Biodegradation and Adsorption of Crude Oil Hydrocarbons Supported on “Homoionic” Montmorillonite Clay Minerals. Appl. Clay Sci. 2014;87:81–86. doi: 10.1016/j.clay.2013.11.022. DOI

Liu J., Wu P., Wang F., Niu W., Ahmed Z., Chen M., Lu G., Dang Z. Differential Regulation and the Underlying Mechanisms of Clay Minerals to Escherichia coli under the Stress of Polymyxin B: Comparing Halloysite with Kaolinite. Chemosphere. 2021;265:129095. doi: 10.1016/j.chemosphere.2020.129095. PubMed DOI

Wang R., Yan M., Li H., Zhang L., Peng B., Sun J., Liu D., Liu S. FeS2 Nanoparticles Decorated Graphene as Microbial-Fuel-Cell Anode Achieving High Power Density. Adv. Mater. 2018;30:1800618. doi: 10.1002/adma.201800618. PubMed DOI

Zhang L., He W., Yang J., Sun J., Li H., Han B., Zhao S., Shi Y., Feng Y., Tang Z., et al. Bread-Derived 3D Macroporous Carbon Foams as High Performance Free-Standing Anode in Microbial Fuel Cells. Biosens. Bioelectron. 2018;122:217–223. doi: 10.1016/j.bios.2018.09.005. PubMed DOI

Wei J., Liang P., Cao X., Huang X. Use of Inexpensive Semicoke and Activated Carbon as Biocathode in Microbial Fuel Cells. Bioresour. Technol. 2011;102:10431–10435. doi: 10.1016/j.biortech.2011.08.088. PubMed DOI

Frattini D., Accardo G., Ferone C., Cioffi R. Fabrication and Characterization of Graphite-Cement Composites for Microbial Fuel Cells Applications. Mater. Res. Bull. 2017;88:188–199. doi: 10.1016/j.materresbull.2016.12.037. DOI

Arvaniti I., Fountoulakis M.S. Use of a Graphite-Cement Composite as Electrode Material in up-Flow Constructed Wetland-Microbial Fuel Cell for Greywater Treatment and Bioelectricity Generation. J. Environ. Chem. Eng. 2021;9:105158. doi: 10.1016/j.jece.2021.105158. DOI

Hirsch L.O., Dubrovin I.A., Gandu B., Emanuel E., Kjellerup B.V., Ugur G.E., Schechter A., Cahan R. Anode Amendment with Kaolin and Activated Carbon Increases Electricity Generation in a Microbial Fuel Cell. Bioelectrochemistry. 2023;153:108486. doi: 10.1016/j.bioelechem.2023.108486. PubMed DOI

Rozenfeld S., Teller H., Schechter M., Farber R., Krichevski O., Schechter A., Cahan R. Exfoliated Molybdenum Di-Sulfide (MoS2) Electrode for Hydrogen Production in Microbial Electrolysis Cell. Bioelectrochemistry. 2018;123:201–210. doi: 10.1016/j.bioelechem.2018.05.007. PubMed DOI

Quintelas C., Rocha Z., Silva B., Fonseca B., Figueiredo H., Tavares T. Removal of Cd(II), Cr(VI), Fe(III) and Ni(II) from Aqueous Solutions by an E. Coli Biofilm Supported on Kaolin. Chem. Eng. J. 2009;149:319–324. doi: 10.1016/j.cej.2008.11.025. DOI

Logan B.E., Hamelers B., Rozendal R., Schröder U., Keller J., Freguia S., Aelterman P., Verstraete W., Rabaey K. Microbial Fuel Cells: Methodology and Technology. Environ. Sci. Technol. 2006;40:5181–5192. doi: 10.1021/es0605016. PubMed DOI

Gandu B., Rozenfeld S., Ouaknin Hirsch L., Schechter A., Cahan R. Immobilization of Bacterial Cells on Carbon-Cloth Anode Using Alginate for Hydrogen Generation in a Microbial Electrolysis Cell. J. Power Sources. 2020;455:227986. doi: 10.1016/j.jpowsour.2020.227986. DOI

Fischer E.R., Hansen B.T., Nair V., Hoyt F.H., Dorward D.W. Scanning Electron Microscopy. Curr. Protoc. Microbiol. 2012;25:2B.2.1–2B.2.47. doi: 10.1002/9780471729259.mc02b02s25. PubMed DOI PMC

Stöckl M., Teubner N.C., Holtmann D., Mangold K.M., Sand W. Extracellular Polymeric Substances from Geobacter Sulfurreducens Biofilms in Microbial Fuel Cells. ACS Appl. Mater. Interfaces. 2019;11:8961–8968. doi: 10.1021/acsami.8b14340. PubMed DOI

Dubrovin I.A., Hirsch O.L., Rozenfeld S., Gandu B., Menashe O., Schechter A., Cahan R. Hydrogen Production in Microbial Electrolysis Cells Based on Bacterial Anodes Encapsulated in a Small Bioreactor Platform. Microorganisms. 2022;10:1007. doi: 10.3390/microorganisms10051007. PubMed DOI PMC

Rozenfeld S., Gandu B., Hirsch O.L., Dubrovin I., Schechter A., Cahan R. Hydrogen Production in a Semi-Single-Chamber Microbial Electrolysis Cell Based on Anode Encapsulated in a Dialysis Bag. Int. J. Energy Res. 2021;45:19074–19088. doi: 10.1002/er.7050. DOI

Zhu J., Zhang L., Liu J., Zhong S., Gao P., Shen J. Trichloroethylene Remediation Using Zero-Valent Iron with Kaolin Clay, Activated Carbon and Bacteria. Water Res. 2022;226:119186. doi: 10.1016/j.watres.2022.119186. PubMed DOI

Xu R., Li Q., Nan X., Jiang G., Wang L., Xiong J., Yang Y., Xu B., Jiang T. Simultaneous Removal of Antimony(III/V) and Arsenic(III/V) from Aqueous Solution by Bacteria–Mediated Kaolin@Fe–Mn Binary (Hydr)Oxides Composites. Appl. Clay Sci. 2022;217:106392. doi: 10.1016/j.clay.2021.106392. DOI

Sayed E.T., Abdelkareem M.A., Alawadhi H., Elsaid K., Wilberforce T., Olabi A.G. Graphitic Carbon Nitride/Carbon Brush Composite as a Novel Anode for Yeast-Based Microbial Fuel Cells. Energy. 2021;221:119849. doi: 10.1016/j.energy.2021.119849. DOI

Kim M., Li S., Kong D.S., Song Y.E., Park S.Y., Kim H., Jae J., Chung I., Kim J.R. Polydopamine/Polypyrrole-Modified Graphite Felt Enhances Biocompatibility for Electroactive Bacteria and Power Density of Microbial Fuel Cell. Chemosphere. 2023;313:137388. doi: 10.1016/j.chemosphere.2022.137388. PubMed DOI

Mahmoud M., El-Khatib K.M. Three-Dimensional Graphitic Mesoporous Carbon-Doped Carbon Felt Bioanodes Enables High Electric Current Production in Microbial Fuel Cells. Int. J. Hydrogen Energy. 2020;45:32413–32422. doi: 10.1016/j.ijhydene.2020.08.207. DOI

Mukherjee P., Saravanan P. Graphite Nanopowder Functionalized 3-D Acrylamide Polymeric Anode for Enhanced Performance of Microbial Fuel Cell. Int. J. Hydrogen Energy. 2020;45:23411–23421. doi: 10.1016/j.ijhydene.2020.06.110. DOI

Huang W., Chen J., Hu Y., Chen J., Sun J., Zhang L. Enhanced Simultaneous Decolorization of Azo Dye and Electricity Generation in Microbial Fuel Cell (MFC) with Redox Mediator Modified Anode. Int. J. Hydrogen Energy. 2017;42:2349–2359. doi: 10.1016/j.ijhydene.2016.09.216. DOI

Ma J., Shi N., Jia J. Fe3O4 Nanospheres Decorated Reduced Graphene Oxide as Anode to Promote Extracellular Electron Transfer Efficiency and Power Density in Microbial Fuel Cells. Electrochim. Acta. 2020;362:137126. doi: 10.1016/j.electacta.2020.137126. DOI

Zou L., Huang Y., Wu X., Long Z.-e. Synergistically Promoting Microbial Biofilm Growth and Interfacial Bioelectrocatalysis by Molybdenum Carbide Nanoparticles Functionalized Graphene Anode for Bioelectricity Production. J. Power Sources. 2019;413:174–181. doi: 10.1016/j.jpowsour.2018.12.041. DOI

Zhu K., Wang S., Liu H., Liu S., Zhang J., Yuan J., Fu W., Dang W., Xu Y., Yang X., et al. Heteroatom-Doped Porous Carbon Nanoparticle-Decorated Carbon Cloth (HPCN/CC) as Efficient Anode Electrode for Microbial Fuel Cells (MFCs) J. Clean. Prod. 2022;336:130374. doi: 10.1016/j.jclepro.2022.130374. DOI

Thapa B.S., Seetharaman S., Chetty R., Chandra T.S. Xerogel Based Catalyst for Improved Cathode Performance in Microbial Fuel Cells. Enzyme Microb. Technol. 2019;124:1–8. doi: 10.1016/j.enzmictec.2019.01.007. PubMed DOI

Marassi R.J., López M.B.G., Queiroz L.G., Silva D.C.V.R., da Silva F.T., de Paiva T.C.B., Silva G.C. Efficient Dairy Wastewater Treatment and Power Production Using Graphite Cylinders Electrodes as a Biofilter in Microbial Fuel Cell. Biochem. Eng. J. 2022;178:108283. doi: 10.1016/j.bej.2021.108283. DOI

Zhang D., Li Z., Zhang C., Zhou X., Xiao Z., Awata T., Katayama A. Phenol-Degrading Anode Biofilm with High Coulombic Efficiency in Graphite Electrodes Microbial Fuel Cell. J. Biosci. Bioeng. 2017;123:364–369. doi: 10.1016/j.jbiosc.2016.10.010. PubMed DOI

Godain A., Vogel T.M., Monnier J.M., Paitier A., Haddour N. Metaproteomic and Metagenomic-Coupled Approach to Investigate Microbial Response to Electrochemical Conditions in Microbial Fuel Cells. Microorganisms. 2023;11:2695. doi: 10.3390/microorganisms11112695. PubMed DOI PMC

Schneider G., Pásztor D., Szabó P., Kőrösi L., Kishan N.S., Raju P.A.R.K., Calay R.K. Isolation and Characterisation of Electrogenic Bacteria from Mud Samples. Microorganisms. 2023;11:781. doi: 10.3390/microorganisms11030781. PubMed DOI PMC

Engel C., Schattenberg F., Dohnt K., Schröder U., Müller S., Krull R. Long-Term Behavior of Defined Mixed Cultures of Geobacter Sulfurreducens and Shewanella Oneidensis in Bioelectrochemical Systems. Front. Bioeng. Biotechnol. 2019;7:443540. doi: 10.3389/fbioe.2019.00060. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Hydrogen Production in Microbial Electrolysis Cells Using an Alginate Hydrogel Bioanode Encapsulated with a Filter Bag

. 2024 Jul 12 ; 16 (14) : . [epub] 20240712

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...