The Performance of a Modified Anode Using a Combination of Kaolin and Graphite Nanoparticles in Microbial Fuel Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
222-11-062
Israeli Ministry of National Infrastructures, Energy and Water Resources
PubMed
38543655
PubMed Central
PMC10974860
DOI
10.3390/microorganisms12030604
PII: microorganisms12030604
Knihovny.cz E-zdroje
- Klíčová slova
- Geobacter sulfurreducens, graphite nanoparticles, immobilized anodes, kaolin, microbial fuel cell,
- Publikační typ
- časopisecké články MeSH
The bacterial anode in microbial fuel cells was modified by increasing the biofilm's adhesion to the anode material using kaolin and graphite nanoparticles. The MFCs were inoculated with G. sulfurreducens, kaolin (12.5 g·L-1), and three different concentrations of graphite (0.25, 1.25, and 2.5 g·L-1). The modified anode with the graphite nanoparticles (1.25 g·L-1) showed the highest electroactivity and biofilm viability. A potential of 0.59, 0.45, and 0.23 V and a power density of 0.54 W·m-2, 0.3 W·m-2, and 0.2 W·m-2 were obtained by the MFCs based on kaolin-graphite nanoparticles, kaolin, and bare anodes, respectively. The kaolin-graphite anode exhibited the highest Coulombic efficiency (21%) compared with the kaolin (17%) and the bare (14%) anodes. Scanning electron microscopy and confocal laser scanning microscopy revealed a large amount of biofilm on the kaolin-graphite anode. We assume that the graphite nanoparticles increased the charge transfer between the bacteria that are in the biofilm and are far from the anode material. The addition of kaolin and graphite nanoparticles increased the attachment of several bacteria. Thus, for MFCs that are fed with wastewater, the modified anode should be prepared with a pure culture of G. sulfurreducens before adding wastewater that includes non-exoelectrogenic bacteria.
Department of Chemical Engineering Ariel University Ariel 40700 Israel
Department of Chemical Sciences Ariel University Ariel 40700 Israel
Department of Environmental Studies University of Delhi New Delhi 110007 India
Zobrazit více v PubMed
Logan B.E. Microbial Fuel Cells. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2008. pp. 1–200. DOI
Unuabonah E.I., Ugwuja C.G., Omorogie M.O., Adewuyi A., Oladoja N.A. Clays for Efficient Disinfection of Bacteria in Water. Appl. Clay Sci. 2018;151:211–223. doi: 10.1016/j.clay.2017.10.005. DOI
Wang Y.H., Siu W.K. Structure Characteristics and Mechanical Properties of Kaolinite Soils. II. Effects of Structure on Mechanical Properties. Can. Geotech. J. 2006;43:601–617. doi: 10.1139/t06-027. DOI
Yıldız Ozer L., Yusuf A., Uratani J.M., Cabal B., Díaz L.A., Torrecillas R., Moya J.S., Rodríguez J., Palmisano G. Water Microbial Disinfection via Supported NAg/Kaolin in a Fixed-Bed Reactor Configuration. Appl. Clay Sci. 2020;184:105387. doi: 10.1016/j.clay.2019.105387. DOI
Oliyaei N., Moosavi-Nasab M., Tamaddon A.M., Fazaeli M. Preparation and Characterization of Porous Starch Reinforced with Halloysite Nanotube by Solvent Exchange Method. Int. J. Biol. Macromol. 2019;123:682–690. doi: 10.1016/j.ijbiomac.2018.11.095. PubMed DOI
Alipoormazandarani N., Ghazihoseini S., Mohammadi Nafchi A. Preparation and Characterization of Novel Bionanocomposite Based on Soluble Soybean Polysaccharide and Halloysite Nanoclay. Carbohydr. Polym. 2015;134:745–751. doi: 10.1016/j.carbpol.2015.08.059. PubMed DOI
Tharmavaram M., Pandey G., Rawtani D. Surface Modified Halloysite Nanotubes: A Flexible Interface for Biological, Environmental and Catalytic Applications. Adv. Colloid Interface Sci. 2018;261:82–101. doi: 10.1016/j.cis.2018.09.001. PubMed DOI
Alekseeva O.V., Smirnova D.N., Noskov A.V., Kuznetsov O.Y., Kirilenko M.A., Agafonov A.V. Mesoporous Halloysite/Magnetite Composite: Synthesis, Characterization and in Vitro Evaluation of the Effect on the Bacteria Viability. Mater. Today Commun. 2022;32:103877. doi: 10.1016/j.mtcomm.2022.103877. DOI
Joussein E. Geology and Mineralogy of Nanosized Tubular Halloysite. Dev. Clay Sci. 2016;7:12–48. doi: 10.1016/B978-0-08-100293-3.00002-9. DOI
Lvov Y., Wang W., Zhang L., Fakhrullin R. Halloysite Clay Nanotubes for Loading and Sustained Release of Functional Compounds. Adv. Mater. 2016;28:1227–1250. doi: 10.1002/adma.201502341. PubMed DOI
Ugochukwu U.C., Jones M.D., Head I.M., Manning D.A.C., Fialips C.I. Biodegradation and Adsorption of Crude Oil Hydrocarbons Supported on “Homoionic” Montmorillonite Clay Minerals. Appl. Clay Sci. 2014;87:81–86. doi: 10.1016/j.clay.2013.11.022. DOI
Liu J., Wu P., Wang F., Niu W., Ahmed Z., Chen M., Lu G., Dang Z. Differential Regulation and the Underlying Mechanisms of Clay Minerals to Escherichia coli under the Stress of Polymyxin B: Comparing Halloysite with Kaolinite. Chemosphere. 2021;265:129095. doi: 10.1016/j.chemosphere.2020.129095. PubMed DOI
Wang R., Yan M., Li H., Zhang L., Peng B., Sun J., Liu D., Liu S. FeS2 Nanoparticles Decorated Graphene as Microbial-Fuel-Cell Anode Achieving High Power Density. Adv. Mater. 2018;30:1800618. doi: 10.1002/adma.201800618. PubMed DOI
Zhang L., He W., Yang J., Sun J., Li H., Han B., Zhao S., Shi Y., Feng Y., Tang Z., et al. Bread-Derived 3D Macroporous Carbon Foams as High Performance Free-Standing Anode in Microbial Fuel Cells. Biosens. Bioelectron. 2018;122:217–223. doi: 10.1016/j.bios.2018.09.005. PubMed DOI
Wei J., Liang P., Cao X., Huang X. Use of Inexpensive Semicoke and Activated Carbon as Biocathode in Microbial Fuel Cells. Bioresour. Technol. 2011;102:10431–10435. doi: 10.1016/j.biortech.2011.08.088. PubMed DOI
Frattini D., Accardo G., Ferone C., Cioffi R. Fabrication and Characterization of Graphite-Cement Composites for Microbial Fuel Cells Applications. Mater. Res. Bull. 2017;88:188–199. doi: 10.1016/j.materresbull.2016.12.037. DOI
Arvaniti I., Fountoulakis M.S. Use of a Graphite-Cement Composite as Electrode Material in up-Flow Constructed Wetland-Microbial Fuel Cell for Greywater Treatment and Bioelectricity Generation. J. Environ. Chem. Eng. 2021;9:105158. doi: 10.1016/j.jece.2021.105158. DOI
Hirsch L.O., Dubrovin I.A., Gandu B., Emanuel E., Kjellerup B.V., Ugur G.E., Schechter A., Cahan R. Anode Amendment with Kaolin and Activated Carbon Increases Electricity Generation in a Microbial Fuel Cell. Bioelectrochemistry. 2023;153:108486. doi: 10.1016/j.bioelechem.2023.108486. PubMed DOI
Rozenfeld S., Teller H., Schechter M., Farber R., Krichevski O., Schechter A., Cahan R. Exfoliated Molybdenum Di-Sulfide (MoS2) Electrode for Hydrogen Production in Microbial Electrolysis Cell. Bioelectrochemistry. 2018;123:201–210. doi: 10.1016/j.bioelechem.2018.05.007. PubMed DOI
Quintelas C., Rocha Z., Silva B., Fonseca B., Figueiredo H., Tavares T. Removal of Cd(II), Cr(VI), Fe(III) and Ni(II) from Aqueous Solutions by an E. Coli Biofilm Supported on Kaolin. Chem. Eng. J. 2009;149:319–324. doi: 10.1016/j.cej.2008.11.025. DOI
Logan B.E., Hamelers B., Rozendal R., Schröder U., Keller J., Freguia S., Aelterman P., Verstraete W., Rabaey K. Microbial Fuel Cells: Methodology and Technology. Environ. Sci. Technol. 2006;40:5181–5192. doi: 10.1021/es0605016. PubMed DOI
Gandu B., Rozenfeld S., Ouaknin Hirsch L., Schechter A., Cahan R. Immobilization of Bacterial Cells on Carbon-Cloth Anode Using Alginate for Hydrogen Generation in a Microbial Electrolysis Cell. J. Power Sources. 2020;455:227986. doi: 10.1016/j.jpowsour.2020.227986. DOI
Fischer E.R., Hansen B.T., Nair V., Hoyt F.H., Dorward D.W. Scanning Electron Microscopy. Curr. Protoc. Microbiol. 2012;25:2B.2.1–2B.2.47. doi: 10.1002/9780471729259.mc02b02s25. PubMed DOI PMC
Stöckl M., Teubner N.C., Holtmann D., Mangold K.M., Sand W. Extracellular Polymeric Substances from Geobacter Sulfurreducens Biofilms in Microbial Fuel Cells. ACS Appl. Mater. Interfaces. 2019;11:8961–8968. doi: 10.1021/acsami.8b14340. PubMed DOI
Dubrovin I.A., Hirsch O.L., Rozenfeld S., Gandu B., Menashe O., Schechter A., Cahan R. Hydrogen Production in Microbial Electrolysis Cells Based on Bacterial Anodes Encapsulated in a Small Bioreactor Platform. Microorganisms. 2022;10:1007. doi: 10.3390/microorganisms10051007. PubMed DOI PMC
Rozenfeld S., Gandu B., Hirsch O.L., Dubrovin I., Schechter A., Cahan R. Hydrogen Production in a Semi-Single-Chamber Microbial Electrolysis Cell Based on Anode Encapsulated in a Dialysis Bag. Int. J. Energy Res. 2021;45:19074–19088. doi: 10.1002/er.7050. DOI
Zhu J., Zhang L., Liu J., Zhong S., Gao P., Shen J. Trichloroethylene Remediation Using Zero-Valent Iron with Kaolin Clay, Activated Carbon and Bacteria. Water Res. 2022;226:119186. doi: 10.1016/j.watres.2022.119186. PubMed DOI
Xu R., Li Q., Nan X., Jiang G., Wang L., Xiong J., Yang Y., Xu B., Jiang T. Simultaneous Removal of Antimony(III/V) and Arsenic(III/V) from Aqueous Solution by Bacteria–Mediated Kaolin@Fe–Mn Binary (Hydr)Oxides Composites. Appl. Clay Sci. 2022;217:106392. doi: 10.1016/j.clay.2021.106392. DOI
Sayed E.T., Abdelkareem M.A., Alawadhi H., Elsaid K., Wilberforce T., Olabi A.G. Graphitic Carbon Nitride/Carbon Brush Composite as a Novel Anode for Yeast-Based Microbial Fuel Cells. Energy. 2021;221:119849. doi: 10.1016/j.energy.2021.119849. DOI
Kim M., Li S., Kong D.S., Song Y.E., Park S.Y., Kim H., Jae J., Chung I., Kim J.R. Polydopamine/Polypyrrole-Modified Graphite Felt Enhances Biocompatibility for Electroactive Bacteria and Power Density of Microbial Fuel Cell. Chemosphere. 2023;313:137388. doi: 10.1016/j.chemosphere.2022.137388. PubMed DOI
Mahmoud M., El-Khatib K.M. Three-Dimensional Graphitic Mesoporous Carbon-Doped Carbon Felt Bioanodes Enables High Electric Current Production in Microbial Fuel Cells. Int. J. Hydrogen Energy. 2020;45:32413–32422. doi: 10.1016/j.ijhydene.2020.08.207. DOI
Mukherjee P., Saravanan P. Graphite Nanopowder Functionalized 3-D Acrylamide Polymeric Anode for Enhanced Performance of Microbial Fuel Cell. Int. J. Hydrogen Energy. 2020;45:23411–23421. doi: 10.1016/j.ijhydene.2020.06.110. DOI
Huang W., Chen J., Hu Y., Chen J., Sun J., Zhang L. Enhanced Simultaneous Decolorization of Azo Dye and Electricity Generation in Microbial Fuel Cell (MFC) with Redox Mediator Modified Anode. Int. J. Hydrogen Energy. 2017;42:2349–2359. doi: 10.1016/j.ijhydene.2016.09.216. DOI
Ma J., Shi N., Jia J. Fe3O4 Nanospheres Decorated Reduced Graphene Oxide as Anode to Promote Extracellular Electron Transfer Efficiency and Power Density in Microbial Fuel Cells. Electrochim. Acta. 2020;362:137126. doi: 10.1016/j.electacta.2020.137126. DOI
Zou L., Huang Y., Wu X., Long Z.-e. Synergistically Promoting Microbial Biofilm Growth and Interfacial Bioelectrocatalysis by Molybdenum Carbide Nanoparticles Functionalized Graphene Anode for Bioelectricity Production. J. Power Sources. 2019;413:174–181. doi: 10.1016/j.jpowsour.2018.12.041. DOI
Zhu K., Wang S., Liu H., Liu S., Zhang J., Yuan J., Fu W., Dang W., Xu Y., Yang X., et al. Heteroatom-Doped Porous Carbon Nanoparticle-Decorated Carbon Cloth (HPCN/CC) as Efficient Anode Electrode for Microbial Fuel Cells (MFCs) J. Clean. Prod. 2022;336:130374. doi: 10.1016/j.jclepro.2022.130374. DOI
Thapa B.S., Seetharaman S., Chetty R., Chandra T.S. Xerogel Based Catalyst for Improved Cathode Performance in Microbial Fuel Cells. Enzyme Microb. Technol. 2019;124:1–8. doi: 10.1016/j.enzmictec.2019.01.007. PubMed DOI
Marassi R.J., López M.B.G., Queiroz L.G., Silva D.C.V.R., da Silva F.T., de Paiva T.C.B., Silva G.C. Efficient Dairy Wastewater Treatment and Power Production Using Graphite Cylinders Electrodes as a Biofilter in Microbial Fuel Cell. Biochem. Eng. J. 2022;178:108283. doi: 10.1016/j.bej.2021.108283. DOI
Zhang D., Li Z., Zhang C., Zhou X., Xiao Z., Awata T., Katayama A. Phenol-Degrading Anode Biofilm with High Coulombic Efficiency in Graphite Electrodes Microbial Fuel Cell. J. Biosci. Bioeng. 2017;123:364–369. doi: 10.1016/j.jbiosc.2016.10.010. PubMed DOI
Godain A., Vogel T.M., Monnier J.M., Paitier A., Haddour N. Metaproteomic and Metagenomic-Coupled Approach to Investigate Microbial Response to Electrochemical Conditions in Microbial Fuel Cells. Microorganisms. 2023;11:2695. doi: 10.3390/microorganisms11112695. PubMed DOI PMC
Schneider G., Pásztor D., Szabó P., Kőrösi L., Kishan N.S., Raju P.A.R.K., Calay R.K. Isolation and Characterisation of Electrogenic Bacteria from Mud Samples. Microorganisms. 2023;11:781. doi: 10.3390/microorganisms11030781. PubMed DOI PMC
Engel C., Schattenberg F., Dohnt K., Schröder U., Müller S., Krull R. Long-Term Behavior of Defined Mixed Cultures of Geobacter Sulfurreducens and Shewanella Oneidensis in Bioelectrochemical Systems. Front. Bioeng. Biotechnol. 2019;7:443540. doi: 10.3389/fbioe.2019.00060. PubMed DOI PMC