Hydrogen Production in Microbial Electrolysis Cells Using an Alginate Hydrogel Bioanode Encapsulated with a Filter Bag
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
222-11-062
Israeli Ministry of National Infrastructures, Energy and Water Resources
PubMed
39065313
PubMed Central
PMC11280511
DOI
10.3390/polym16141996
PII: polym16141996
Knihovny.cz E-resources
- Keywords
- alginate hydrogel, hydrogen evolution reaction, impedance, microbial electrolysis cell,
- Publication type
- Journal Article MeSH
The bacterial anode of microbial electrolysis cells (MECs) is the limiting factor in a high hydrogen evolution reaction (HER). This study focused on improving biofilm attachment to a carbon-cloth anode using an alginate hydrogel. In addition, the modified bioanode was encapsulated by a filter bag that served as a physical barrier, to overcome its low mechanical strength and alginate degradation by certain bacterial species in wastewater. The MEC based on an encapsulated alginate bioanode (alginate bioanode encapsulated by a filter bag) was compared with three controls: an MEC based on a bare bioanode (non-immobilized bioanode), an alginate bioanode, and an encapsulated bioanode (bioanode encapsulated by a filter bag). At the beginning of the operation, the Rct value for the encapsulated alginate bioanode was 240.2 Ω, which decreased over time and dropped to 9.8 Ω after three weeks of operation when the Geobacter medium was used as the carbon source. When the MECs were fed with wastewater, the encapsulated alginate bioanode led to the highest current density of 9.21 ± 0.16 A·m-2 (at 0.4 V), which was 20%, 95%, and 180% higher, compared to the alginate bioanode, bare bioanode, and encapsulated bioanode, respectively. In addition, the encapsulated alginate bioanode led to the highest reduction currents of (4.14 A·m-2) and HER of 0.39 m3·m-3·d-1. The relative bacterial distribution of Geobacter was 79%. The COD removal by all the bioanodes was between 62% and 88%. The findings of this study demonstrate that the MEC based on the encapsulated alginate bioanode exhibited notably higher bio-electroactivity compared to both bare, alginate bioanode, and an encapsulated bioanode. We hypothesize that this improvement in electron transfer rate is attributed to the preservation and the biofilm on the anode material using alginate hydrogel which was inserted into a filter bag.
Department of Chemical Engineering Ariel University Ariel 40700 Israel
Department of Chemical Sciences Ariel University Ariel 40700 Israel
Department of Environmental Studies University of Delhi New Delhi 110007 India
See more in PubMed
Molinos-Senante M., Maziotis A. Evaluation of Energy Efficiency of Wastewater Treatment Plants: The Influence of the Technology and Aging Factors. Appl. Energy. 2022;310:118535. doi: 10.1016/j.apenergy.2022.118535. DOI
Escapa A., Gil-Carrera L., García V., Morán A. Performance of a Continuous Flow Microbial Electrolysis Cell (MEC) Fed with Domestic Wastewater. Bioresour. Technol. 2012;117:55–62. doi: 10.1016/j.biortech.2012.04.060. PubMed DOI
Schechter M., Schechter A., Rozenfeld S., Efrat E., Cahan R. Technology and Application of Microbial Fuel Cells. IntechOpen Limited; London, UK: 2014. Anode Biofilm. DOI
Rozenfeld S., Teller H., Schechter M., Farber R., Krichevski O., Schechter A., Cahan R. Exfoliated Molybdenum Di-Sulfide (MoS2) Electrode for Hydrogen Production in Microbial Electrolysis Cell. Bioelectrochemistry. 2018;123:201–210. doi: 10.1016/j.bioelechem.2018.05.007. PubMed DOI
Friman H., Schechter A., Ioffe Y., Nitzan Y., Cahan R. Current Production in a Microbial Fuel Cell Using a Pure Culture of Cupriavidus Basilensis Growing in Acetate or Phenol as a Carbon Source. Microb. Biotechnol. 2013;6:425–434. doi: 10.1111/1751-7915.12026. PubMed DOI PMC
Logan B.E. Microbial Fuel Cells. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2008. pp. 1–200. DOI
Kyazze G., Popov A., Dinsdale R., Esteves S., Hawkes F., Premier G., Guwy A. Influence of Catholyte PH and Temperature on Hydrogen Production from Acetate Using a Two Chamber Concentric Tubular Microbial Electrolysis Cell. Int. J. Hydrogen Energy. 2010;35:7716–7722. doi: 10.1016/j.ijhydene.2010.05.036. DOI
Rousseau R., Etcheverry L., Roubaud E., Basséguy R., Délia M.L., Bergel A. Microbial Electrolysis Cell (MEC): Strengths, Weaknesses and Research Needs from Electrochemical Engineering Standpoint. Appl. Energy. 2020;257:113938. doi: 10.1016/j.apenergy.2019.113938. DOI
Merrill M.D., Logan B.E. Electrolyte Effects on Hydrogen Evolution and Solution Resistance in Microbial Electrolysis Cells. J. Power Sources. 2009;191:203–208. doi: 10.1016/j.jpowsour.2009.02.077. DOI
Gluhchev G., Ignatov I., Karadzhov S., Miloshev G., Ivanov N., Mosin O., Professor A., Professor A. Electrochemically Activited Water. Biophysical and Biological Effects of Anolyte and Catholyte as Types of Water. J. Med. Physiol. Biophys. 2015;10:1–17.
Logan B.E. Exoelectrogenic Bacteria That Power Microbial Fuel Cells. Nat. Rev. Microbiol. 2009;7:375–381. doi: 10.1038/nrmicro2113. PubMed DOI
Kadier A., Simayi Y., Kalil M.S., Abdeshahian P., Hamid A.A. A Review of the Substrates Used in Microbial Electrolysis Cells (MECs) for Producing Sustainable and Clean Hydrogen Gas. Renew. Energy. 2014;71:466–472. doi: 10.1016/j.renene.2014.05.052. DOI
Cheng S., Logan B.E. High Hydrogen Production Rate of Microbial Electrolysis Cell (MEC) with Reduced Electrode Spacing. Bioresour. Technol. 2011;102:3571–3574. doi: 10.1016/j.biortech.2010.10.025. PubMed DOI
Kadier A., Simayi Y., Abdeshahian P., Azman N.F., Chandrasekhar K., Kalil S. A Comprehensive Review of Microbial Electrolysis Cells (MEC) Reactor Designs and Configurations for Sustainable Hydrogen Gas Production. Alex. Eng. J. 2016;55:427–443. doi: 10.1016/j.aej.2015.10.008. DOI
Truong D.H., Dam M.S., Bujna E., Rezessy-Szabo J., Farkas C., Vi V.N.H., Csernus O., Nguyen V.D., Gathergood N., Friedrich L., et al. In Situ Fabrication of Electrically Conducting Bacterial Cellulose-Polyaniline-Titanium-Dioxide Composites with the Immobilization of Shewanella Xiamenensis and Its Application as Bioanode in Microbial Fuel Cell. Fuel. 2021;285:119259. doi: 10.1016/j.fuel.2020.119259. DOI
Yang P., Gao Y., He W., An J., Liu J., Li N., Feng Y. A Wood Pulp Sponge Cleaning Wipe as a High-Performance Bioanode Material in Microbial Electrochemical Systems for Its Vast Biomass Carrying Capacity, Large Capacitance, and Small Charge Transfer Resistance. J. Mater. Sci. Technol. 2024;181:1–10. doi: 10.1016/j.jmst.2023.08.065. DOI
De-Bashan L.E., Bashan Y. Immobilized Microalgae for Removing Pollutants: Review of Practical Aspects. Bioresour. Technol. 2010;101:1611–1627. doi: 10.1016/j.biortech.2009.09.043. PubMed DOI
Christwardana M., Handayani A.S., Yudianti R. Joelianingsih Cellulose—Carrageenan Coated Carbon Felt as Potential Anode Structure for Yeast Microbial Fuel Cell. Int. J. Hydrogen Energy. 2021;46:6076–6086. doi: 10.1016/j.ijhydene.2020.05.265. DOI
Mohebrad B., Ghods G., Rezaee A. Dairy Wastewater Treatment Using Immobilized Bacteria on Calcium Alginate in a Microbial Electrochemical System. J. Water Process Eng. 2022;46:102609. doi: 10.1016/j.jwpe.2022.102609. DOI
Neethu B., Bhowmick G.D., Ghangrekar M.M. Improving Performance of Microbial Fuel Cell by Enhanced Bacterial-Anode Interaction Using Sludge Immobilized Beads with Activated Carbon. Process Saf. Environ. Prot. 2020;143:285–292. doi: 10.1016/j.psep.2020.06.043. DOI
Rozenfeld S., Hirsch L.O., Gandu B., Farber R., Schechter A., Cahan R. Improvement of Microbial Electrolysis Cell Activity by Using Anode Based on Combined Plasma-Pretreated Carbon Cloth and Stainless Steel. Energies. 2019;12:1968. doi: 10.3390/en12101968. DOI
Bormashenko E., Chaniel G., Grynyov R. Towards Understanding Hydrophobic Recovery of Plasma Treated Polymers: Storing in High Polarity Liquids Suppresses Hydrophobic Recovery. Appl. Surf. Sci. 2013;273:549–553. doi: 10.1016/j.apsusc.2013.02.078. DOI
Logan B.E., Regan J.M. Electricity-Producing Bacterial Communities in Microbial Fuel Cells. Trends Microbiol. 2006;14:512–518. doi: 10.1016/j.tim.2006.10.003. PubMed DOI
Gandu B., Rozenfeld S., Ouaknin Hirsch L., Schechter A., Cahan R. Immobilization of Bacterial Cells on Carbon-Cloth Anode Using Alginate for Hydrogen Generation in a Microbial Electrolysis Cell. J. Power Sources. 2020;455:227986. doi: 10.1016/j.jpowsour.2020.227986. DOI
Hirsch L.O., Dubrovin I.A., Gandu B., Emanuel E., Kjellerup B.V., Ugur G.E., Schechter A., Cahan R. Anode Amendment with Kaolin and Activated Carbon Increases Electricity Generation in a Microbial Fuel Cell. Bioelectrochemistry. 2023;153:108486. doi: 10.1016/j.bioelechem.2023.108486. PubMed DOI
Dubrovin I.A., Hirsch L.O., Rozenfeld S., Gandu B., Menashe O., Schechter A., Cahan R. Hydrogen Production in Microbial Electrolysis Cells Based on Bacterial Anodes Encapsulated in a Small Bioreactor Platform. Microorganisms. 2022;10:1007. doi: 10.3390/microorganisms10051007. PubMed DOI PMC
Zhong D., Liao X., Liu Y., Zhong N., Xu Y. Enhanced Electricity Generation Performance and Dye Wastewater Degradation of Microbial Fuel Cell by Using a Petaline NiO@ Polyaniline-Carbon Felt Anode. Bioresour. Technol. 2018;258:125–134. doi: 10.1016/j.biortech.2018.01.117. PubMed DOI
Hirsch L.O., Gandu B., Chiliveru A., Amar Dubrovin I., Rozenfeld S., Schechter A., Cahan R. The Performance of a Modified Anode Using a Combination of Kaolin and Graphite Nanoparticles in Microbial Fuel Cells. Microorganisms. 2024;12:604. doi: 10.3390/microorganisms12030604. PubMed DOI PMC
Szöllősi A., Hoschke Á., Rezessy-Szabó J.M., Bujna E., Kun S., Nguyen Q.D. Formation of Novel Hydrogel Bio-Anode by Immobilization of Biocatalyst in Alginate/Polyaniline/Titanium-Dioxide/Graphite Composites and Its Electrical Performance. Chemosphere. 2017;174:58–65. doi: 10.1016/j.chemosphere.2017.01.095. PubMed DOI
Zhao C., Chen H., Song Y., Zhu L., Ai T., Wang X., Liu Z., Wei X. Electricity Production Performance Enhancement of Microbial Fuel Cells with Double-Layer Sodium Alginate Hydrogel Bioanodes Driven by High-Salinity Waste Leachate. Water Res. 2023;242:120281. doi: 10.1016/j.watres.2023.120281. PubMed DOI
Wang Y., Wen Q., Chen Y., Zheng H., Wang S. Enhanced Performance of Microbial Fuel Cell with Polyaniline/Sodium Alginate/Carbon Brush Hydrogel Bioanode and Removal of COD. Energy. 2020;202:117780. doi: 10.1016/j.energy.2020.117780. DOI
Yong Y.C., Liao Z.H., Sun J.Z., Zheng T., Jiang R.R., Song H. Enhancement of Coulombic Efficiency and Salt Tolerance in Microbial Fuel Cells by Graphite/Alginate Granules Immobilization of Shewanella oneidensis MR-1. Process Biochem. 2013;48:1947–1951. doi: 10.1016/j.procbio.2013.09.008. DOI
Duarte J.C., Rodrigues J.A.R., Moran P.J.S., Valença G.P., Nunhez J.R. Effect of Immobilized Cells in Calcium Alginate Beads in Alcoholic Fermentation. AMB Express. 2013;3:1–8. doi: 10.1186/2191-0855-3-31. PubMed DOI PMC
Hubenova E., Mitov M., Hubenova Y. Electrochemical Performance of Paenibacillus Profundus YoMME Encapsulated in Alginate Polymer. Bioelectrochemistry. 2023;150:108354. doi: 10.1016/j.bioelechem.2022.108354. PubMed DOI
Kannaiah Goud R., Venkata Mohan S. Prolonged Applied Potential to Anode Facilitate Selective Enrichment of Bio-Electrochemically Active Proteobacteria for Mediating Electron Transfer: Microbial Dynamics and Bio-Catalytic Analysis. Bioresour. Technol. 2013;137:160–170. doi: 10.1016/j.biortech.2013.03.059. PubMed DOI
Cao Y., Mu H., Liu W., Zhang R., Guo J., Xian M., Liu H. Electricigens in the Anode of Microbial Fuel Cells: Pure Cultures versus Mixed Communities. Microb. Cell Factories. 2019;18:1–14. doi: 10.1186/s12934-019-1087-z. PubMed DOI PMC
Kumar S.S., Malyan S.K., Basu S., Bishnoi N.R. Syntrophic Association and Performance of Clostridium, Desulfovibrio, Aeromonas and Tetrathiobacter as Anodic Biocatalysts for Bioelectricity Generation in Dual Chamber Microbial Fuel Cell. Environ. Sci. Pollut. Res. 2017;24:16019–16030. doi: 10.1007/s11356-017-9112-4. PubMed DOI
Bond D.R., Lovley D.R. Electricity Production by Geobacter Sulfurreducens Attached to Electrodes. Appl. Environ. Microbiol. 2003;69:1548–1555. doi: 10.1128/AEM.69.3.1548-1555.2003. PubMed DOI PMC
Ochiai I., Harada T., Jomori S., Kouzuma A., Watanabe K. Bioaugmentation of Microbial Electrolysis Cells with Geobacter Sulfurreducens YM18 for Enhanced Hydrogen Production from Starch. Bioresour. Technol. 2023;386:129508. doi: 10.1016/j.biortech.2023.129508. PubMed DOI
Siegert M., Li X.-F., Yates M.D., Logan B.E., Cui Z. The Presence of Hydrogenotrophic Methanogens in the Inoculum Improves Methane Gas Production in Microbial Electrolysis Cells. Front. Microbiol. 2015;5:778. doi: 10.3389/fmicb.2014.00778. PubMed DOI PMC
Villano M., Monaco G., Aulenta F., Majone M. Electrochemically Assisted Methane Production in a Biofilm Reactor. J. Power Sources. 2011;196:9467–9472. doi: 10.1016/j.jpowsour.2011.07.016. DOI
Hadiyanto H., Christwardana M., Pratiwi W.Z., Purwanto P., Sudarno S., Haryani K., Hoang A.T. Response Surface Optimization of Microalgae Microbial Fuel Cell (MMFC) Enhanced by Yeast Immobilization for Bioelectricity Production. Chemosphere. 2022;287:132275. doi: 10.1016/j.chemosphere.2021.132275. PubMed DOI