Structural basis for allosteric regulation of human phosphofructokinase-1

. 2024 Mar 16 ; () : . [epub] 20240316

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu preprinty, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38559074

Grantová podpora
P20 GM144230 NIGMS NIH HHS - United States
R35 GM149542 NIGMS NIH HHS - United States
S10 OD023476 NIH HHS - United States

Phosphofructokinase-1 (PFK1) catalyzes the rate-limiting step of glycolysis, committing glucose to conversion into cellular energy. PFK1 is highly regulated to respond to the changing energy needs of the cell. In bacteria, the structural basis of PFK1 regulation is a textbook example of allostery; molecular signals of low and high cellular energy promote transition between an active R-state and inactive T-state conformation, respectively Little is known, however, about the structural basis for regulation of eukaryotic PFK1. Here, we determine structures of the human liver isoform of PFK1 (PFKL) in the R- and T-state by cryoEM, providing insight into eukaryotic PFK1 allosteric regulatory mechanisms. The T-state structure reveals conformational differences between the bacterial and eukaryotic enzyme, the mechanisms of allosteric inhibition by ATP binding at multiple sites, and an autoinhibitory role of the C-terminus in stabilizing the T-state. We also determine structures of PFKL filaments that define the mechanism of higher-order assembly and demonstrate that these structures are necessary for higher-order assembly of PFKL in cells.

Aktualizováno

PubMed

Zobrazit více v PubMed

Evans P. R., Farrants G. W. & Lawrence M. C. Crystallographic structure of allosterically inhibited phosphofructokinase at 7 A resolution. J. Mol. Biol. 191, 713–720 (1986). PubMed

Schirmer T. & Evans P. R. Structural basis of the allosteric behaviour of phosphofructokinase. Nature 343, 140–145 (1990). PubMed

Evans P. R., Farrants G. W. & Hudson P. J. Phosphofructokinase: structure and control. Philos. Trans. R. Soc. Lond. B Biol. Sci. 293, 53–62 (1981). PubMed

Poorman R. A., Randolph A., Kemp R. G. & Heinrikson R. L. Evolution of phosphofructokinase—gene duplication and creation of new effector sites. Nature 309, 467–469 (1984). PubMed

Kemp R. G. & Gunasekera D. Evolution of the allosteric ligand sites of mammalian phosphofructo-1-kinase. Biochemistry 41, 9426–9430 (2002). PubMed

Banaszak K. et al. The crystal structures of eukaryotic phosphofructokinases from baker’s yeast and rabbit skeletal muscle. J. Mol. Biol. 407, 284–297 (2011). PubMed

Webb B. A. et al. Structures of human phosphofructokinase-1 and atomic basis of cancer-associated mutations. Nature 523, 111–114 (2015). PubMed PMC

Kloos M., Brüser A., Kirchberger J., Schöneberg T. & Sträter N. Crystal structure of human platelet phosphofructokinase-1 locked in an activated conformation. Biochem. J 469, 421–432 (2015). PubMed

Zancan P., Marinho-Carvalho M. M., Faber-Barata J., Dellias J. M. M. & Sola-Penna M. ATP and fructose-2,6-bisphosphate regulate skeletal muscle 6-phosphofructo-1-kinase by altering its quaternary structure. IUBMB Life 60, 526–533 (2008). PubMed

Hesterberg L. K. & Lee J. C. Self-association of rabbit muscle phosphofructokinase: effects of ligands. Biochemistry 21, 216–222 (1982). PubMed

Costa Leite T., Da Silva D., Guimarães Coelho R., Zancan P. & Sola-Penna M. Lactate favours the dissociation of skeletal muscle 6-phosphofructo-1-kinase tetramers down-regulating the enzyme and muscle glycolysis. Biochem. J 408, 123–130 (2007). PubMed PMC

Hicks K. G. et al. Protein-metabolite interactomics of carbohydrate metabolism reveal regulation of lactate dehydrogenase. Science 379, 996–1003 (2023). PubMed PMC

Yi W. et al. Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science 337, 975–980 (2012). PubMed PMC

Zhao S. et al. Regulation of cellular metabolism by protein lysine acetylation. Science 327, 1000–1004 (2010). PubMed PMC

Mahrenholz A. M., Lan L. & Mansour T. E. Phosphorylation of heart phosphofructokinase by Ca2+ calmodulin protein kinase. Biochem. Biophys. Res. Commun. 174, 1255–1259 (1991). PubMed

Lee J.-H. et al. Stabilization of phosphofructokinase 1 platelet isoform by AKT promotes tumorigenesis. Nat. Commun. 8, 949 (2017). PubMed PMC

Fernandes P. M., Kinkead J., McNae I., Michels P. A. M. & Walkinshaw M. D. Biochemical and transcript level differences between the three human phosphofructokinases show optimisation of each isoform for specific metabolic niches. Biochem. J 477, 4425–4441 (2020). PubMed PMC

Webb B. A., Dosey A. M., Wittmann T., Kollman J. M. & Barber D. L. The glycolytic enzyme phosphofructokinase-1 assembles into filaments. J. Cell Biol. 216, 2305–2313 (2017). PubMed PMC

Amara N. et al. Selective activation of PFKL suppresses the phagocytic oxidative burst. Cell 184, 4480–4494.e15 (2021). PubMed PMC

Mosser R., Reddy M. C. M., Bruning J. B., Sacchettini J. C. & Reinhart G. D. Redefining the role of the quaternary shift in Bacillus stearothermophilus phosphofructokinase. Biochemistry 52, 5421–5429 (2013). PubMed PMC

Rizzo S. C. & Eckel R. E. Control of glycolysis in human erythrocytes by inorganic phosphate and sulfate. Am. J. Physiol. 211, 429–436 (1966). PubMed

Jin M. et al. Glycolytic Enzymes Coalesce in G Bodies under Hypoxic Stress. Cell Rep. 20, 895–908 (2017). PubMed PMC

Adams A. G., Bulusu R. K. M., Mukhitov N., Mendoza-Cortes J. L. & Roper M. G. Online Measurement of Glucose Consumption from HepG2 Cells Using an Integrated Bioreactor and Enzymatic Assay. Anal. Chem. 91, 5184–5190 (2019). PubMed PMC

Santamaria B., Estevez A. M., Martinez-Costa O. H. &Aragon J. J. Creation of an allosteric phosphofructokinase starting with a nonallosteric enzyme. The case of dictyostelium discoideum phosphofructokinase. J. Biol. Chem. 277, 1210–1216 (2002). PubMed

Huang J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017). PubMed PMC

Yugi K. et al. Reconstruction of insulin signal flow from phosphoproteome and metabolome data. Cell Rep. 8, 1171–1183 (2014). PubMed

Lynch E. M., Kollman J. M. & Webb B. A. Filament formation by metabolic enzymes—A new twist on regulation. Curr. Opin. Cell Biol. 66, 28–33 (2020). PubMed PMC

Simonet J. C., Burrell A. L., Kollman J. M. & Peterson J. R. Freedom of assembly: metabolic enzymes come together. Mol. Biol. Cell 31, 1201–1205 (2020). PubMed PMC

Hvorecny K. L. & Kollman J. M. Greater than the sum of parts: Mechanisms of metabolic regulation by enzyme filaments. Curr. Opin. Struct. Biol. 79, 102530 (2023). PubMed PMC

Garcia-Seisdedos H., Empereur-Mot C., Elad N. & Levy E. D. Proteins evolve on the edge of supramolecular self-assembly. Nature 548, 244–247 (2017). PubMed

Seisdedos H. G., Levin T., Shapira G., Freud S. & Levy E. D. Mutant libraries reveal negative design shielding proteins from supramolecular self-assembly and relocalization in cells. Proceedings of the National Academy of Sciences vol. 119 Preprint at 10.1073/pnas.2101117119 (2022). PubMed DOI PMC

Hunkeler M. et al. Structural basis for regulation of human acetyl-CoA carboxylase. Nature 558, 470–474 (2018). PubMed

Lynch E. M. et al. Human CTP synthase filament structure reveals the active enzyme conformation. Nat. Struct. Mol. Biol. 24, 507–514 (2017). PubMed PMC

Barry R. M. et al. Large-scale filament formation inhibits the activity of CTP synthetase. Elife 3, e03638 (2014). PubMed PMC

Stoddard P. R. et al. Polymerization in the actin ATPase clan regulates hexokinase activity in yeast. Science 367, 1039–1042 (2020). PubMed PMC

Lynch E. M. & Kollman J. M. Coupled structural transitions enable highly cooperative regulation of human CTPS2 filaments. Nat. Struct. Mol. Biol. 27, 42–48 (2020). PubMed PMC

Pony P., Rapisarda C., Terradot L., Marza E. & Fronzes R. Filamentation of the bacterial bi-functional alcohol/aldehyde dehydrogenase AdhE is essential for substrate channeling and enzymatic regulation. Nat. Commun. 11, 1426 (2020). PubMed PMC

Kim G. et al. Aldehyde-alcohol dehydrogenase undergoes structural transition to form extended spirosomes for substrate channeling. Commun Biol 3, 298 (2020). PubMed PMC

Hu H.-H. et al. Filamentation modulates allosteric regulation of PRPS. Elife 11, (2022). PubMed PMC

Burrell A. L. et al. IMPDH1 retinal variants control filament architecture to tune allosteric regulation. Nat. Struct. Mol. Biol. 29, 47–58 (2022). PubMed PMC

Johnson M. C. & Kollman J. M. Cryo-EM structures demonstrate human IMPDH2 filament assembly tunes allosteric regulation. eLife vol. 9 Preprint at 10.7554/elife.53243 (2020). PubMed DOI PMC

Hvorecny K. L., Hargett K., Quispe J. D. & Kollman J. M. Human PRPS1 filaments stabilize allosteric sites to regulate activity. Nat. Struct. Mol. Biol. 30, 391–402 (2023). PubMed PMC

Jang S. et al. Glycolytic Enzymes Localize to Synapses under Energy Stress to Support Synaptic Function. Neuron 90, 278–291 (2016). PubMed PMC

Kohnhorst C. L. et al. Identification of a multienzyme complex for glucose metabolism in living cells. J. Biol. Chem. 292, 9191–9203 (2017). PubMed PMC

Brüser A., Kirchberger J., Kloos M., Sträter N. & Schöneberg T. Functional linkage of adenine nucleotide binding sites in mammalian muscle 6-phosphofructokinase. J. Biol. Chem. 287, 17546–17553 (2012). PubMed PMC

Suloway C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005). PubMed

Punjani A., Rubinstein J. L., Fleet D. J. & Brubaker M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017). PubMed

Adams P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010). PubMed PMC

Croll T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr D Struct Biol 74, 519–530 (2018). PubMed PMC

Pettersen E. F. et al. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). PubMed

Young G. et al. Quantitative mass imaging of single biological macromolecules. Science 360, 423–427 (2018). PubMed PMC

Voronkova M. A. et al. Cancer-associated somatic mutations in human phosphofructokinase-1 reveal a critical electrostatic interaction for allosteric regulation of enzyme activity. Biochem. J 480, 1411–1427 (2023). PubMed PMC

The PyMOL Molecular Graphics System, Version 2.5.4 Schrödinger, LLC.

Abraham M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19–25 (2015).

Jo S., Kim T., Iyer V. G. & Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008). PubMed

Kim S. et al. CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules. J. Comput. Chem. 38, 1879–1886 (2017). PubMed PMC

Vanommeslaeghe K. et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671–690 (2010). PubMed PMC

Jorgensen W. L., Chandrasekhar J. & Madura J. D. Comparison of simple potential functions for simulating liquid water. The Journal of (1983).

Feenstra K. A., Hess B. & Berendsen H. J. C. Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. J. Comput. Chem. 20, 786–798 (1999). PubMed

Darden T., York D. & Pedersen L. Particle mesh Ewald: An N log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

Hockney R. W., Goel S. P. & Eastwood J. W. Quiet high-resolution computer models of a plasma. J. Comput. Phys. 14, 148–158 (1974).

Hess B., Bekker H., Berendsen H. J. C. & Fraaije J. G. E. M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).

Miyamoto S. & Kollman P. A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13, 952–962 (1992).

Berendsen H. J. C., van Postma J., Van Gunsteren W. F., DiNola A. & Haak J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

Bussi G., Donadio D. & Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007). PubMed

Parrinello M. & Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

Vallat R. Pingouin: statistics in Python. J. Open Source Softw. 3, 1026 (2018).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...