Structural basis for allosteric regulation of human phosphofructokinase-1
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P20GM144230
U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
F32 GM154453
NIGMS NIH HHS - United States
S10OD023476
U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
S10 OD023476
NIH HHS - United States
P20 GM144230
NIGMS NIH HHS - United States
R35 GM149542
NIGMS NIH HHS - United States
1R35GM149542
U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
PubMed
39183237
PubMed Central
PMC11345425
DOI
10.1038/s41467-024-51808-6
PII: 10.1038/s41467-024-51808-6
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfát * metabolismus MeSH
- alosterická regulace MeSH
- elektronová kryomikroskopie MeSH
- fosfofruktokinasa-1 * metabolismus chemie genetika MeSH
- fosfofruktokinasy MeSH
- glykolýza MeSH
- játra enzymologie metabolismus MeSH
- konformace proteinů MeSH
- lidé MeSH
- molekulární modely MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosintrifosfát * MeSH
- fosfofruktokinasa-1 * MeSH
- fosfofruktokinasy MeSH
- PFKL protein, human MeSH Prohlížeč
- Pfkl protein, mouse MeSH Prohlížeč
Phosphofructokinase-1 (PFK1) catalyzes the rate-limiting step of glycolysis, committing glucose to conversion into cellular energy. PFK1 is highly regulated to respond to the changing energy needs of the cell. In bacteria, the structural basis of PFK1 regulation is a textbook example of allostery; molecular signals of low and high cellular energy promote transition between an active R-state and inactive T-state conformation, respectively. Little is known, however, about the structural basis for regulation of eukaryotic PFK1. Here, we determine structures of the human liver isoform of PFK1 (PFKL) in the R- and T-state by cryoEM, providing insight into eukaryotic PFK1 allosteric regulatory mechanisms. The T-state structure reveals conformational differences between the bacterial and eukaryotic enzyme, the mechanisms of allosteric inhibition by ATP binding at multiple sites, and an autoinhibitory role of the C-terminus in stabilizing the T-state. We also determine structures of PFKL filaments that define the mechanism of higher-order assembly and demonstrate that these structures are necessary for higher-order assembly of PFKL in cells.
Department of Biochemistry and Molecular Medicine West Virginia University Morgantown WV USA
Department of Biochemistry University of Washington Seattle WA USA
Zobrazit více v PubMed
Evans, P. R., Farrants, G. W. & Lawrence, M. C. Crystallographic structure of allosterically inhibited phosphofructokinase at 7 A resolution. PubMed DOI
Schirmer, T. & Evans, P. R. Structural basis of the allosteric behaviour of phosphofructokinase. PubMed DOI
Evans, P. R., Farrants, G. W. & Hudson, P. J. Phosphofructokinase: structure and control. PubMed DOI
Poorman, R. A., Randolph, A., Kemp, R. G. & Heinrikson, R. L. Evolution of phosphofructokinase—gene duplication and creation of new effector sites. PubMed DOI
Kemp, R. G. & Gunasekera, D. Evolution of the allosteric ligand sites of mammalian phosphofructo-1-kinase. PubMed DOI
Banaszak, K. et al. The crystal structures of eukaryotic phosphofructokinases from baker’s yeast and rabbit skeletal muscle. PubMed DOI
Webb, B. A. et al. Structures of human phosphofructokinase-1 and atomic basis of cancer-associated mutations. PubMed DOI PMC
Kloos, M., Brüser, A., Kirchberger, J., Schöneberg, T. & Sträter, N. Crystal structure of human platelet phosphofructokinase-1 locked in an activated conformation. PubMed DOI
Zancan, P., Marinho-Carvalho, M. M., Faber-Barata, J., Dellias, J. M. M. & Sola-Penna, M. ATP and fructose-2,6-bisphosphate regulate skeletal muscle 6-phosphofructo-1-kinase by altering its quaternary structure. PubMed DOI
Hesterberg, L. K. & Lee, J. C. Self-association of rabbit muscle phosphofructokinase: effects of ligands. PubMed DOI
Costa Leite, T., Da Silva, D., Guimarães Coelho, R., Zancan, P. & Sola-Penna, M. Lactate favours the dissociation of skeletal muscle 6-phosphofructo-1-kinase tetramers down-regulating the enzyme and muscle glycolysis. PubMed DOI PMC
Hicks, K. G. et al. Protein-metabolite interactomics of carbohydrate metabolism reveal regulation of lactate dehydrogenase. PubMed DOI PMC
Yi, W. et al. Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. PubMed DOI PMC
Zhao, S. et al. Regulation of cellular metabolism by protein lysine acetylation. PubMed DOI PMC
Mahrenholz, A. M., Lan, L. & Mansour, T. E. Phosphorylation of heart phosphofructokinase by Ca2+ calmodulin protein kinase. PubMed DOI
Lee, J.-H. et al. Stabilization of phosphofructokinase 1 platelet isoform by AKT promotes tumorigenesis. PubMed DOI PMC
Fernandes, P. M., Kinkead, J., McNae, I., Michels, P. A. M. & Walkinshaw, M. D. Biochemical and transcript level differences between the three human phosphofructokinases show optimisation of each isoform for specific metabolic niches. PubMed DOI PMC
Webb, B. A., Dosey, A. M., Wittmann, T., Kollman, J. M. & Barber, D. L. The glycolytic enzyme phosphofructokinase-1 assembles into filaments. PubMed DOI PMC
Amara, N. et al. Selective activation of PFKL suppresses the phagocytic oxidative burst. PubMed DOI PMC
Rizzo, S. C. & Eckel, R. E. Control of glycolysis in human erythrocytes by inorganic phosphate and sulfate. PubMed DOI
Mosser, R., Reddy, M. C. M., Bruning, J. B., Sacchettini, J. C. & Reinhart, G. D. Redefining the role of the quaternary shift in Bacillus stearothermophilus phosphofructokinase. PubMed DOI PMC
Jin, M. et al. Glycolytic enzymes coalesce in G bodies under hypoxic stress. PubMed DOI PMC
Adams, A. G., Bulusu, R. K. M., Mukhitov, N., Mendoza-Cortes, J. L. & Roper, M. G. Online measurement of glucose consumption from HepG2 cells using an integrated bioreactor and enzymatic assay. PubMed DOI PMC
Santamaria, B., Estevez, A. M., Martinez-Costa, O. H. & Aragon, J. J. Creation of an allosteric phosphofructokinase starting with a nonallosteric enzyme. The case of dictyostelium discoideum phosphofructokinase. PubMed DOI
Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. PubMed DOI PMC
Yao, X.-Q. et al. Dynamic coupling and allosteric networks in the alpha subunit of heterotrimeric G proteins. PubMed DOI PMC
Yugi, K. et al. Reconstruction of insulin signal flow from phosphoproteome and metabolome data. PubMed DOI
Lynch, E. M., Kollman, J. M. & Webb, B. A. Filament formation by metabolic enzymes—A new twist on regulation. PubMed DOI PMC
Simonet, J. C., Burrell, A. L., Kollman, J. M. & Peterson, J. R. Freedom of assembly: metabolic enzymes come together. PubMed DOI PMC
Hvorecny, K. L. & Kollman, J. M. Greater than the sum of parts: mechanisms of metabolic regulation by enzyme filaments. PubMed DOI PMC
Garcia-Seisdedos, H., Empereur-Mot, C., Elad, N. & Levy, E. D. Proteins evolve on the edge of supramolecular self-assembly. PubMed DOI
Seisdedos, H. G., Levin, T., Shapira, G., Freud, S. & Levy, E. D. Mutant libraries reveal negative design shielding proteins from supramolecular self-assembly and relocalization in cells. PubMed PMC
Lynch, E. M. & Kollman, J. M. Coupled structural transitions enable highly cooperative regulation of human CTPS2 filaments. PubMed DOI PMC
Lynch, E. M. et al. Human CTP synthase filament structure reveals the active enzyme conformation. PubMed DOI PMC
Barry, R. M. et al. Large-scale filament formation inhibits the activity of CTP synthetase. PubMed DOI PMC
Stoddard, P. R. et al. Polymerization in the actin ATPase clan regulates hexokinase activity in yeast. PubMed DOI PMC
Hunkeler, M. et al. Structural basis for regulation of human acetyl-CoA carboxylase. PubMed DOI
Pony, P., Rapisarda, C., Terradot, L., Marza, E. & Fronzes, R. Filamentation of the bacterial bi-functional alcohol/aldehyde dehydrogenase AdhE is essential for substrate channeling and enzymatic regulation. PubMed DOI PMC
Kim, G. et al. Aldehyde-alcohol dehydrogenase undergoes structural transition to form extended spirosomes for substrate channeling. PubMed DOI PMC
Hu, H.-H. et al. Filamentation modulates allosteric regulation of PRPS. PubMed DOI PMC
Burrell, A. L. et al. IMPDH1 retinal variants control filament architecture to tune allosteric regulation. PubMed DOI PMC
Johnson, M. C. & Kollman, J. M. Cryo-EM structures demonstrate human IMPDH2 filament assembly tunes allosteric regulation. PubMed DOI PMC
Hvorecny, K. L., Hargett, K., Quispe, J. D. & Kollman, J. M. Human PRPS1 filaments stabilize allosteric sites to regulate activity. PubMed DOI PMC
Jang, S. et al. Glycolytic enzymes localize to synapses under energy stress to support synaptic function. PubMed DOI PMC
Kohnhorst, C. L. et al. Identification of a multienzyme complex for glucose metabolism in living cells. PubMed DOI PMC
Brüser, A., Kirchberger, J., Kloos, M., Sträter, N. & Schöneberg, T. Functional linkage of adenine nucleotide binding sites in mammalian muscle 6-phosphofructokinase. PubMed DOI PMC
Suloway, C. et al. Automated molecular microscopy: the new Leginon system. PubMed DOI
Vallat, R. Pingouin: statistics in Python. DOI
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. PubMed DOI
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. PubMed DOI PMC
Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. PubMed DOI PMC
Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. PubMed DOI
Young, G. et al. Quantitative mass imaging of single biological macromolecules. PubMed DOI PMC
Voronkova, M. A. et al. Cancer-associated somatic mutations in human phosphofructokinase-1 reveal a critical electrostatic interaction for allosteric regulation of enzyme activity. PubMed DOI PMC
The PyMOL molecular graphics system, Version 2.5.4 Schrödinger, LLC. https://www.pymol.org/ (2022).
Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. DOI
Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. PubMed DOI
Kim, S. et al. CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules. PubMed DOI PMC
Vanommeslaeghe, K. et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. PubMed DOI PMC
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water.
Feenstra, K. A., Hess, B. & Berendsen, H. J. C. Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. PubMed DOI
Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. DOI
Hockney, R. W., Goel, S. P. & Eastwood, J. W. Quiet high-resolution computer models of a plasma. DOI
Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. DOI
Miyamoto, S. & Kollman, P. A. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. DOI
Berendsen, H. J. C., van Postma, J., Van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. DOI
Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. PubMed DOI
Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. DOI
Michaud-Agrawal, N., Denning, E. J., Woolf, T. B. & Beckstein, O. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. PubMed DOI PMC
Grant, B. J., Skjaerven, L. & Yao, X.-Q. The Bio3D packages for structural bioinformatics. PubMed DOI PMC
Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. PubMed DOI