Multiscale Simulation of Phosphofructokinase-1 Assemblies: Capturing the Interplay between Specific and Transient Interactions

. 2025 Nov 27 ; 129 (47) : 12098-12109. [epub] 20251117

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41247276

Human phosphofructokinase-1 (PFK1) forms filaments and organizes into large-scale assemblies that are thought to play a key role in the spatial organization of glycolysis. However, the molecular interactions driving this assembly and the isoform-specific tendencies to form such structures remain poorly understood. In this work, we combine coarse-grained and all-atom molecular dynamics simulations to characterize interactions between PFK1 tetramers. Using the Martini and OPEPv7 coarse-grained force fields, we identify key regions mediating transient PFK1-PFK1 interactions and show that these include experimentally identified filament-forming interfaces. At the same time, we find that current coarse-grained models─optimized for nonspecific, transient contacts─lack the resolution to capture the specific side-chain interactions critical for filament stability, as revealed by previous experiments and our all-atom simulations. To address this, we propose enhancing the coarse-grained representation of filament-forming interfaces by introducing additional hydrogen-bonding terms for key residues. This modification improves filament stability and more accurately reproduces the effects of the filament-disrupting Asn-to-Thr mutation. Overall, our work provides a foundation for molecular-level modeling of glycolytic enzyme assemblies and offers a strategy to improve the accuracy of coarse-grained models in capturing the delicate interplay between specific and transient interactions in dynamic protein complexes.

Zobrazit více v PubMed

Morais M., Dias F., Teixeira A. L., Medeiros R.. MicroRNAs and altered metabolism of clear cell renal cell carcinoma: Potential role as aerobic glycolysis biomarkers. Biochim. Biophys. Acta Gen. Subj. 2017;1861:2175–2185. doi: 10.1016/j.bbagen.2017.05.028. PubMed DOI

Webb B. A., Forouhar F., Szu F.-E., Seetharaman J., Tong L., Barber D. L.. Structures of human phosphofructokinase-1 and atomic basis of cancer-associated mutations. Nature. 2015;523:111–114. doi: 10.1038/nature14405. PubMed DOI PMC

Compton J. A., Patrick W. M.. The more we learn, the more diverse it gets: structures, functions and evolution in the Phosphofructokinase Superfamily. Biochem. J. 2025;482:467–483. doi: 10.1042/BCJ20253024. PubMed DOI PMC

Trujillo J. L., Deal W. C.. Metabolic control and structure of glycolytic enzymes. 17. Pig liver phosphofructokinase: asymmetry properties, proof of rapid association-dissociation equilibriums, and effect of temperature and protein concentration on the equilibriums. Biochemistry. 1977;16:3098–3104. doi: 10.1021/bi00633a009. PubMed DOI

Foe L., Trujillo J.. Quaternary structure of pig liver phosphofructokinase. J. Biol. Chem. 1980;255:10537–10541. doi: 10.1016/S0021-9258(19)70497-9. PubMed DOI

Reinhart G. D., Lardy H. A.. Rat liver phosphofructokinase: use of fluorescence polarization to study aggregation at low protein concentration. Biochemistry. 1980;19:1484–1490. doi: 10.1021/bi00548a035. PubMed DOI

Webb B. A., Dosey A. M., Wittmann T., Kollman J. M., Barber D. L.. The glycolytic enzyme phosphofructokinase-1 assembles into filaments. J. Cell Biol. 2017;216:2305–2313. doi: 10.1083/jcb.201701084. PubMed DOI PMC

Lynch E. M., Hansen H., Salay L., Cooper M., Timr S., Kollman J. M., Webb B. A.. Structural basis for allosteric regulation of human phosphofructokinase-1. Nat. Commun. 2024;15:7323. doi: 10.1038/s41467-024-51808-6. PubMed DOI PMC

Tien M. Z., Meyer A. G., Sydykova D. K., Spielman S. J., Wilke C. O.. Maximum Allowed Solvent Accessibilites of Residues in Proteins. PLoS One. 2013;8:e80635–e80638. doi: 10.1371/journal.pone.0080635. PubMed DOI PMC

Wang M., Flaswinkel H., Joshi A., Napoli M., Masgrau-Alsina S., Kamper J. M., Henne A., Heinz A., Berouti M., Schmacke N. A.. et al. Phosphorylation of PFKL regulates metabolic reprogramming in macrophages following pattern recognition receptor activation. Nat. Commun. 2024;15:6438. doi: 10.1038/s41467-024-50104-7. PubMed DOI PMC

Sivadas A., McDonald E. F., Shuster S. O., Davis C. M., Plate L.. Site-specific crosslinking reveals Phosphofructokinase-L inhibition drives self-assembly and attenuation of protein interactions. Adv. Biol. Regul. 2023;90:100987–101013. doi: 10.1016/j.jbior.2023.100987. PubMed DOI PMC

Zhan H., Pal D. S., Borleis J., Deng Y., Long Y., Janetopoulos C., Huang C.-H., Devreotes P. N.. Self-organizing glycolytic waves tune cellular metabolic states and fuel cancer progression. Nat. Commun. 2025;16:5563. doi: 10.1038/s41467-025-60596-6. PubMed DOI PMC

Grünewald F., Punt M. H., Jefferys E. E., Vainikka P. A., König M., Virtanen V., Meyer T. A., Pezeshkian W., Gormley A. J., Karonen M.. et al. Martini 3 Coarse-Grained Force Field for Carbohydrates. J. Chem. Theory Comput. 2022;18:7555–7569. doi: 10.1021/acs.jctc.2c00757. PubMed DOI PMC

Timr S., Melchionna S., Derreumaux P., Sterpone F.. Optimized OPEP Force Field for Simulation of Crowded Protein Solutions. J. Phys. Chem. B. 2023;127:3616–3623. doi: 10.1021/acs.jpcb.3c00253. PubMed DOI PMC

Souza P. C. T., Alessandri R., Barnoud J., Thallmair S., Faustino I., Grünewald F., Patmanidis I., Abdizadeh H., Bruininks B. M. H., Wassenaar T. A.. et al. Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nat. Methods. 2021;18:382–388. doi: 10.1038/s41592-021-01098-3. PubMed DOI PMC

Marrink S. J., Risselada H. J., Yefimov S., Tieleman D. P., de Vries A. H.. The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations. J. Phys. Chem. B. 2007;111:7812–7824. doi: 10.1021/jp071097f. PubMed DOI

Monticelli L., Kandasamy S. K., Periole X., Larson R. G., Tieleman D. P., Marrink S.-J.. The MARTINI Coarse-Grained Force Field: Extension to Proteins. J. Chem. Theory Comput. 2008;4:819–834. doi: 10.1021/ct700324x. PubMed DOI

de Jong D. H., Singh G., Bennett W. F. D., Arnarez C., Wassenaar T. A., Schäfer L. V., Periole X., Tieleman D. P., Marrink S. J.. Improved Parameters for the Martini Coarse-Grained Protein Force Field. J. Chem. Theory Comput. 2013;9:687–697. doi: 10.1021/ct300646g. PubMed DOI

Yesylevskyy S. O., Schäfer L. V., Sengupta D., Marrink S. J.. Polarizable Water Model for the Coarse-Grained MARTINI Force Field. PLoS Comput. Biol. 2010;6:1–17. doi: 10.1371/journal.pcbi.1000810. PubMed DOI PMC

Coronas L. E., Van T., Iorio A., Lapidus L. J., Feig M., Sterpone F.. Stability and deformation of biomolecular condensates under the action of shear flow. J. Chem. Phys. 2024;160:215101–215111. doi: 10.1063/5.0209119. PubMed DOI

Stark A. C., Andrews C. T., Elcock A. H.. Toward Optimized Potential Functions for Protein–Protein Interactions in Aqueous Solutions: Osmotic Second Virial Coefficient Calculations Using the MARTINI Coarse-Grained Force Field. J. Chem. Theory Comput. 2013;9:4176–4185. doi: 10.1021/ct400008p. PubMed DOI PMC

Vögele M., Holm C., Smiatek J.. Properties of the polarizable MARTINI water model: A comparative study for aqueous electrolyte solutions. J. Mol. Liq. 2015;212:103–110. doi: 10.1016/j.molliq.2015.08.062. DOI

Berg A., Kukharenko O., Scheffner M., Peter C.. Towards a molecular basis of ubiquitin signaling: A dual-scale simulation study of ubiquitin dimers. PLoS Comput. Biol. 2018;14:e1006589. doi: 10.1371/journal.pcbi.1006589. PubMed DOI PMC

Majumder A., Straub J. E.. Addressing the Excessive Aggregation of Membrane Proteins in the MARTINI Model. J. Chem. Theory Comput. 2021;17:2513–2521. doi: 10.1021/acs.jctc.0c01253. PubMed DOI PMC

Pommié C., Levadoux S., Sabatier R., Lefranc G., Lefranc M.. IMGT standardized criteria for statistical analysis of immunoglobulin V-REGION amino acid properties. J. Mol. Recognit. 2004;17:17–32. doi: 10.1002/jmr.647. PubMed DOI

Miclot T., Timr S.. Beyond contacts: the important role of the support region to distinguish stable and transient protein interfaces. bioRxiv. 2025:1–14. doi: 10.1101/2025.01.29.635419. DOI

Levy E. D.. A Simple Definition of Structural Regions in Proteins and Its Use in Analyzing Interface Evolution. J. Mol. Biol. 2010;403:660–670. doi: 10.1016/j.jmb.2010.09.028. PubMed DOI

Kastritis P. L., Rodrigues J. P., Folkers G. E., Boelens R., Bonvin A. M.. Proteins Feel More Than They See: Fine-Tuning of Binding Affinity by Properties of the Non-Interacting Surface. J. Mol. Biol. 2014;426:2632–2652. doi: 10.1016/j.jmb.2014.04.017. PubMed DOI

Sugita Y., Okamoto Y.. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 1999;314:141–151. doi: 10.1016/S0009-2614(99)01123-9. DOI

Huang J., Rauscher S., Nawrocki G., Ran T., Feig M., de Groot B. L., Grubmüller H., MacKerell A. D.. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods. 2017;14:71–73. doi: 10.1038/nmeth.4067. PubMed DOI PMC

Tian C., Kasavajhala K., Belfon K. A. A., Raguette L., Huang H., Migues A. N., Bickel J., Wang Y., Pincay J., Wu Q.. et al. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. J. Chem. Theory Comput. 2020;16:528–552. doi: 10.1021/acs.jctc.9b00591. PubMed DOI

Pedersen K. B., Borges-Araújo L., Stange A. D., Souza P. C. T., Marrink S. J., Schiøtt B.. OLIVES: A Go̅-like Model for Stabilizing Protein Structure via Hydrogen Bonding Native Contacts in the Martini 3 Coarse-Grained Force Field. J. Chem. Theory Comput. 2024;20:8049–8070. doi: 10.1021/acs.jctc.4c00553. PubMed DOI

Jang S., Xuan Z., Lagoy R. C., Jawerth L. M., Gonzalez I. J., Singh M., Prashad S., Kim H. S., Patel A., Albrecht D. R.. et al. Phosphofructokinase relocalizes into subcellular compartments with liquid-like properties in vivo. Biophys. J. 2021;120:1170–1186. doi: 10.1016/j.bpj.2020.08.002. PubMed DOI PMC

Lynch E. M., Kollman J. M., Webb B. A.. Filament formation by metabolic enzymesA new twist on regulation. Curr. Opin. Cell Biol. 2020;66:28–33. doi: 10.1016/j.ceb.2020.04.006. PubMed DOI PMC

Campos M., Albrecht L. V.. Hitting the Sweet Spot: How Glucose Metabolism Is Orchestrated in Space and Time by Phosphofructokinase-1. Cancers. 2023;16:16. doi: 10.3390/cancers16010016. PubMed DOI PMC

Shegay P. V., Shatova O. P., Zabolotneva A. A., Shestopalov A. V., Kaprin A. D.. Moonlight functions of glycolytic enzymes in cancer. Front. Mol. Biosci. 2023;10:1076138. doi: 10.3389/fmolb.2023.1076138. PubMed DOI PMC

Poma A. B., Cieplak M., Theodorakis P. E.. Combining the MARTINI and Structure-Based Coarse-Grained Approaches for the Molecular Dynamics Studies of Conformational Transitions in Proteins. J. Chem. Theory Comput. 2017;13:1366–1374. doi: 10.1021/acs.jctc.6b00986. PubMed DOI

Hao M.-H.. Theoretical Calculation of Hydrogen-Bonding Strength for Drug Molecules. J. Chem. Theory Comput. 2006;2:863–872. doi: 10.1021/ct0600262. PubMed DOI

Xie N.-Z., Du Q.-S., Li J.-X., Huang R.-B.. Exploring Strong Interactions in Proteins with Quantum Chemistry and Examples of Their Applications in Drug Design. PLoS One. 2015;10:e0137113. doi: 10.1371/journal.pone.0137113. PubMed DOI PMC

Kloos M., Brüser A., Kirchberger J., Schöneberg T., Sträter N.. Crystal Structure of Human Platelet Phosphofructokinase-1 Locked in an Activated Conformation. Biochem. J. 2015;469(3):421–432. doi: 10.1042/BJ20150251. PubMed DOI

Humphrey W., Dalke A., Schulten K.. VMD: Visual molecular dynamics. J. Mol. Graphics Modell. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Kroon, P. ; Grunewald, F. ; Barnoud, J. ; van Tilburg, M. ; Souza, P. ; Wassenaar, T. ; Marrink, S. . Martinize2 and Vermouth: Unified Framework for Topology Generation. arXiv:2212.01191. PubMed PMC

Páll, S. ; Abraham, M. J. ; Kutzner, C. ; Hess, B. ; Lindahl, E. . Tackling exascale software challenges in molecular dynamics simulations with GROMACS; Springer International Publishing, 2014; pp 3–27.

Abraham M. J., Murtola T., Schulz R., Páll S., Smith J. C., Hess B., Lindahl E.. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI

Darden T., York D., Pedersen L.. Particle mesh Ewald: An N.log­(N) method for Ewald sums in large systems. J. Chem. Phys. 1993;98:10089–10092. doi: 10.1063/1.464397. DOI

Bussi G., Donadio D., Parrinello M.. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126:014101–014107. doi: 10.1063/1.2408420. PubMed DOI

Bernetti M., Bussi G.. Pressure control using stochastic cell rescaling. J. Chem. Phys. 2020;153:114107–114112. doi: 10.1063/5.0020514. PubMed DOI

Parrinello M., Rahman A.. Crystal Structure and Pair Potentials: A Molecular-Dynamics Study. Phys. Rev. Lett. 1980;45:1196–1199. doi: 10.1103/PhysRevLett.45.1196. DOI

Eastman P., Galvelis R., Peláez R. P., Abreu C. R. A., Farr S. E., Gallicchio E., Gorenko A., Henry M. M., Hu F., Huang J.. et al. OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials. J. Phys. Chem. B. 2024;128:109–116. doi: 10.1021/acs.jpcb.3c06662. PubMed DOI PMC

Leontyev I. V., Stuchebrukhov A. A.. Polarizable Mean-Field Model of Water for Biological Simulations with AMBER and CHARMM Force Fields. J. Chem. Theory Comput. 2012;8:3207–3216. doi: 10.1021/ct300011h. PubMed DOI PMC

Lemak A. S., Balabaev N. K.. On The Berendsen Thermostat. Mol. Simul. 1994;13:177–187. doi: 10.1080/08927029408021981. DOI

Berendsen H. J. C., Postma J. P. M., van Gunsteren W. F., DiNola A., Haak J. R.. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984;81:3684–3690. doi: 10.1063/1.448118. DOI

Evans D. J., Holian B. L.. The Nose–Hoover thermostat. J. Chem. Phys. 1985;83:4069–4074. doi: 10.1063/1.449071. DOI

Izadi S., Anandakrishnan R., Onufriev A. V.. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 2014;5:3863–3871. doi: 10.1021/jz501780a. PubMed DOI PMC

Kumar S., Rosenberg J. M., Bouzida D., Swendsen R. H., Kollman P. A.. THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 1992;13:1011–1021. doi: 10.1002/jcc.540130812. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...