CIP/KIP and INK4 families as hostages of oncogenic signaling
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
PRIMUS/22/MED/007
Univerzita Karlova v Praze
National Institute for Cancer Research #LX22NPO5102
European Union - Next Generation EU, Programme EXCELES
PubMed
38561743
PubMed Central
PMC10985988
DOI
10.1186/s13008-024-00115-z
PII: 10.1186/s13008-024-00115-z
Knihovny.cz E-zdroje
- Klíčová slova
- CIP/KIP, Cancer, Cyclin-dependent kinase inhibitors, INK4, Oncogenic signaling, Posttranslational modification, Therapy,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
CIP/KIP and INK4 families of Cyclin-dependent kinase inhibitors (CKIs) are well-established cell cycle regulatory proteins whose canonical function is binding to Cyclin-CDK complexes and altering their function. Initial experiments showed that these proteins negatively regulate cell cycle progression and thus are tumor suppressors in the context of molecular oncology. However, expanded research into the functions of these proteins showed that most of them have non-canonical functions, both cell cycle-dependent and independent, and can even act as tumor enhancers depending on their posttranslational modifications, subcellular localization, and cell state context. This review aims to provide an overview of canonical as well as non-canonical functions of CIP/KIP and INK4 families of CKIs, discuss the potential avenues to promote their tumor suppressor functions instead of tumor enhancing ones, and how they could be utilized to design improved treatment regimens for cancer patients.
Zobrazit více v PubMed
Schirripa A, Sexl V, Kollmann K. Cyclin-dependent kinase inhibitors in malignant hematopoiesis. Front Oncol. 2022;11(12):4100. PubMed PMC
LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS, et al. New functional activities for the p21 family of CDK inhibitors. Genes Dev. 1997;11(7):847–862. doi: 10.1101/gad.11.7.847. PubMed DOI
Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer. 2009;9(6):400–414. doi: 10.1038/nrc2657. PubMed DOI PMC
Larrea MD, Liang J, Da Silva T, Hong F, Shao SH, Han K, et al. Phosphorylation of p27 Kip1 regulates assembly and activation of cyclin D1-Cdk4. Mol Cell Biol. 2008;28(20):6462–6472. doi: 10.1128/MCB.02300-07. PubMed DOI PMC
Bagui TK, Jackson RJ, Agrawal D, Pledger WJ. Analysis of cyclin D3-cdk4 complexes in fibroblasts expressing and lacking p27 kip1 and p21 cip1. Mol Cell Biol. 2000;20(23):8748–8757. doi: 10.1128/MCB.20.23.8748-8757.2000. PubMed DOI PMC
Huang Y, Yoon MK, Otieno S, Lelli M, Kriwacki RW. The activity and stability of the intrinsically disordered Cip/Kip protein family AreRegulated by Non-Receptor TyrosineKinases. J Mol Biol. 2015;427(2):371–386. doi: 10.1016/j.jmb.2014.11.011. PubMed DOI PMC
Kriwacki RW, Hengst L, Tennant L, Reed SI, Wright PE. Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity. Proc Natl Acad Sci. 1996;93(21):11504–11509. doi: 10.1073/pnas.93.21.11504. PubMed DOI PMC
Adkins JN, Lumb KJ. Intrinsic structural disorder and sequence features of the cell cycle inhibitor p57 Kip2. Prote Struct Funct Bioinformat. 2002;46(1):1–7. doi: 10.1002/prot.10018. PubMed DOI
Bienkiewicz EA, Adkins JN, Lumb KJ. Functional Consequences of Preorganized Helical Structure in the Intrinsically Disordered Cell-Cycle Inhibitor p27 Kip1. Biochemistry. 2002;41(3):752–759. doi: 10.1021/bi015763t. PubMed DOI
Baker SJ, Reddy EP. CDK4: A Key Player in the Cell Cycle, Development, and Cancer. Genes Cancer. 2012;3(11–12):658–669. doi: 10.1177/1947601913478972. PubMed DOI PMC
Li Y, Jenkins CW, Nichols MA, Xiong Y. Cell cycle expression and p53 regulation of the cyclin-dependent kinase inhibitor p21. Oncogene. 1994;9(8):2261–2268. PubMed
Baus F, Gire V, Fisher D, Piette J, Dulić V. Permanent cell cycle exit in G2 phase after DNA damage in normal human fibroblasts. EMBO J. 2003;22(15):3992–4002. doi: 10.1093/emboj/cdg387. PubMed DOI PMC
Georgakilas AG, Martin OA, Bonner WM. p21: a two-faced genome guardian. Trends Mol Med. 2017;23(4):310–319. doi: 10.1016/j.molmed.2017.02.001. PubMed DOI
Parveen A, Akash MSH, Rehman K, Kyunn WW. Dual role of p21 in the progression of cancer and its treatment. Crit Rev Eukaryot Gene Expr. 2016;26(1):49–62. doi: 10.1615/CritRevEukaryotGeneExpr.v26.i1.60. PubMed DOI
Wade HJ. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 1993;75(4):805–816. doi: 10.1016/0092-8674(93)90499-G. PubMed DOI
Saha P, Eichbaum Q, Silberman ED, Mayer BJ, Dutta A. p21 CIP1 and Cdc25A: competition between an inhibitor and an activator of cyclin-dependent kinases. Mol Cell Biol. 1997;17(8):4338–4345. doi: 10.1128/MCB.17.8.4338. PubMed DOI PMC
Smits VAJ, Klompmaker R, Vallenius T, Rijksen G, Mäkelä TP, Medema RH. p21 inhibits Thr161 phosphorylation of Cdc2 to enforce the G2 DNA damage checkpoint. J Biol Chem. 2000;275(39):30638–30643. doi: 10.1074/jbc.M005437200. PubMed DOI
Cheng M. The p21Cip1 and p27Kip1 CDK `inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J. 1999;18(6):1571–1583. doi: 10.1093/emboj/18.6.1571. PubMed DOI PMC
Guiley KZ, Stevenson JW, Lou K, Barkovich KJ, Kumarasamy V, Wijeratne TU, et al. p27 allosterically activates cyclin-dependent kinase 4 and antagonizes palbociclib inhibition. Science. 2019;366(6471):eaaw2106. doi: 10.1126/science.aaw2106. PubMed DOI PMC
Tom S, Ranalli TA, Podust VN, Bambara RA. Regulatory roles of p21 and Apurinic/Apyrimidinic endonuclease 1 in base excision repair. J Biol Chem. 2001;276(52):48781–48789. doi: 10.1074/jbc.M109626200. PubMed DOI
Koike M, Yutoku Y, Koike A. Accumulation of p21 proteins at DNA damage sites independent of p53 and core NHEJ factors following irradiation. Biochem Biophys Res Commun. 2011;412(1):39–43. doi: 10.1016/j.bbrc.2011.07.032. PubMed DOI
Mauro M, Rego MA, Boisvert RA, Esashi F, Cavallo F, Jasin M, et al. p21 promotes error-free replication-coupled DNA double-strand break repair. Nucleic Acids Res. 2012;40(17):8348–8360. doi: 10.1093/nar/gks612. PubMed DOI PMC
Jung YS, Qian Y, Chen X. Examination of the expanding pathways for the regulation of p21 expression and activity. Cell Signal. 2010;22(7):1003–1012. doi: 10.1016/j.cellsig.2010.01.013. PubMed DOI PMC
Karimian A, Ahmadi Y, Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair. 2016;42:63–71. doi: 10.1016/j.dnarep.2016.04.008. PubMed DOI
Gartel AL, Goufman E, Najmabadi F, Tyner AL. Sp1 and Sp3 activate p21 (WAF1/CIP1) gene transcription in the Caco-2 colon adenocarcinoma cell line. Oncogene. 2000;19(45):5182–5188. doi: 10.1038/sj.onc.1203900. PubMed DOI
Karkhanis M, Park JI. Sp1 regulates Raf/MEK/ERK-induced p21(CIP1) transcription in TP53-mutated cancer cells. Cell Signal. 2015;27(3):479–486. doi: 10.1016/j.cellsig.2015.01.005. PubMed DOI PMC
Pardali K, Kurisaki A, Morén A, ten Dijke P, Kardassis D, Moustakas A. Role of Smad proteins and transcription factor Sp1 in p21(Waf1/Cip1) regulation by transforming growth factor-beta. J Biol Chem. 2000;275(38):29244–29256. doi: 10.1074/jbc.M909467199. PubMed DOI
Elston R, Inman GJ. Crosstalk between p53 and TGF- <math> <mi mathvariant="bold">β</mi> </math> Signalling. J Signal Transduct. 2012;28(2012):1–10. doi: 10.1155/2012/294097. PubMed DOI PMC
Decesse JT, Medjkane S, Datto MB, Crémisi CE. RB regulates transcription of the p21/WAF1/CIP1 gene. Oncogene. 2001;20(8):962–971. doi: 10.1038/sj.onc.1204169. PubMed DOI
Gartel AL, Tyner AL. Transcriptional regulation of the p21(WAF1/CIP1)Gene. Exp Cell Res. 1999;246(2):280–289. doi: 10.1006/excr.1998.4319. PubMed DOI
Xu H, Wang Z, Jin S, Hao H, Zheng L, Zhou B, et al. Dux4 induces cell cycle arrest at G1 phase through upregulation of p21 expression. Biochem Biophys Res Commun. 2014;446(1):235–240. doi: 10.1016/j.bbrc.2014.02.105. PubMed DOI
Nishitani H, Shiomi Y, Iida H, Michishita M, Takami T, Tsurimoto T. CDK inhibitor p21 Is degraded by a proliferating cell nuclear antigen-coupled Cul4-DDB1Cdt2 pathway during S phase and after UV irradiation. J Biol Chem. 2008;283(43):29045–29052. doi: 10.1074/jbc.M806045200. PubMed DOI PMC
Abbas T, Sivaprasad U, Terai K, Amador V, Pagano M, Dutta A. PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4 Cdt2 ubiquitin ligase complex. Genes Dev. 2008;22(18):2496–2506. doi: 10.1101/gad.1676108. PubMed DOI PMC
Wang W, Nacusi L, Sheaff RJ, Liu X. Ubiquitination of p21 Cip1/WAF1 by SCF Skp2: substrate requirement and ubiquitination site selection. Biochemistry. 2005;44(44):14553–14564. doi: 10.1021/bi051071j. PubMed DOI
Yu ZK, Gervais JLM, Zhang H. Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21 CIP1/WAF1 and cyclin D proteins. Proc Natl Acad Sci. 1998;95(19):11324–11329. doi: 10.1073/pnas.95.19.11324. PubMed DOI PMC
Bornstein G, Bloom J, Sitry-Shevah D, Nakayama K, Pagano M, Hershko A. Role of the SCFSkp2 Ubiquitin Ligase in the degradation of p21Cip1 in S Phase. J Biol Chem. 2003;278(28):25752–25757. doi: 10.1074/jbc.M301774200. PubMed DOI
Amador V, Ge S, Santamaría PG, Guardavaccaro D, Pagano M. APC/C(Cdc20) controls the ubiquitin-mediated degradation of p21 in prometaphase. Mol Cell. 2007;27(3):462–473. doi: 10.1016/j.molcel.2007.06.013. PubMed DOI PMC
Deng T, Yan G, Song X, Xie L, Zhou Y, Li J, et al. Deubiquitylation and stabilization of p21 by USP11 is critical for cell-cycle progression and DNA damage responses. Proc Natl Acad Sci. 2018;115(18):4678–4683. doi: 10.1073/pnas.1714938115. PubMed DOI PMC
Hwang CY, Lee C, Kwon KS. Extracellular signal-regulated kinase 2-dependent phosphorylation induces cytoplasmic localization and degradation of p21 Cip1. Mol Cell Biol. 2009;29(12):3379–3389. doi: 10.1128/MCB.01758-08. PubMed DOI PMC
Rössig L, Badorff C, Holzmann Y, Zeiher AM, Dimmeler S. Glycogen synthase kinase-3 couples AKT-dependent signaling to the regulation of p21Cip1 degradation. J Biol Chem. 2002;277(12):9684–9689. doi: 10.1074/jbc.M106157200. PubMed DOI
Densham RM, O’Neill E, Munro J, König I, Anderson K, Kolch W, et al. MST kinases monitor actin cytoskeletal integrity and signal via c-Jun N-terminal kinase stress-activated kinase to regulate p21 Waf1/Cip1 stability. Mol Cell Biol. 2009;29(24):6380–6390. doi: 10.1128/MCB.00116-09. PubMed DOI PMC
Kim GY, Mercer SE, Ewton DZ, Yan Z, Jin K, Friedman E. The stress-activated protein kinases p38α and JNK1 stabilize p21Cip1 by phosphorylation. J Biol Chem. 2002;277(33):29792–29802. doi: 10.1074/jbc.M201299200. PubMed DOI
Zhu H, Nie L, Maki CG. Cdk2-dependent Inhibition of p21 stability via a C-terminal cyclin-binding motif. J Biol Chem. 2005;280(32):29282–29288. doi: 10.1074/jbc.M407352200. PubMed DOI
Järviluoma A, Child ES, Sarek G, Sirimongkolkasem P, Peters G, Ojala PM, et al. Phosphorylation of the cyclin-dependent kinase inhibitor p21 Cip1 on serine 130 is essential for viral cyclin-mediated bypass of a p21 Cip1 -imposed G 1 arrest. Mol Cell Biol. 2006;26(6):2430–2440. doi: 10.1128/MCB.26.6.2430-2440.2006. PubMed DOI PMC
Li Y, Dowbenko D, Lasky LA. AKT/PKB phosphorylation of p21Cip/WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival. J Biol Chem. 2002;277(13):11352–11361. doi: 10.1074/jbc.M109062200. PubMed DOI
Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC. Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol. 2001;3(3):245–252. doi: 10.1038/35060032. PubMed DOI
Zhang Y, Wang Z, Magnuson NS. Pim-1 Kinase-dependent phosphorylation of p21Cip1/WAF1 regulates its stability and cellular localization in H1299 cells. Mol Cancer Res. 2007;5(9):909–922. doi: 10.1158/1541-7786.MCR-06-0388. PubMed DOI
Wang Z, Zhang Y, Gu JJ, Davitt C, Reeves R, Magnuson NS. Pim-2 phosphorylation of p21Cip1/WAF1 enhances its stability and inhibits cell proliferation in HCT116 cells. Int J Biochem Cell Biol. 2010;42(6):1030–1038. doi: 10.1016/j.biocel.2010.03.012. PubMed DOI PMC
Suzuki H, Yabuta N, Okada N, Torigata K, Aylon Y, Oren M, et al. Lats2 phosphorylates p21/CDKN1A after UV irradiation and regulates apoptosis. J Cell Sci. 2013;126(19):4358–4368. doi: 10.1242/jcs.125815. PubMed DOI
Nakakido M, Deng Z, Suzuki T, Dohmae N, Nakamura Y, Hamamoto R. PRMT6 increases cytoplasmic localization of p21CDKN1A in cancer cells through arginine methylation and makes more resistant to cytotoxic agents. Oncotarget. 2015;6(31):30957–30967. doi: 10.18632/oncotarget.5143. PubMed DOI PMC
García-Fernández RA, García-Palencia P, Sánchez MÁ, Gil-Gómez G, Sánchez B, Rollán E, et al. Combined loss of p21(waf1/cip1) and p27(kip1) enhances tumorigenesis in mice. Lab Invest. 2011;91(11):1634–1642. doi: 10.1038/labinvest.2011.133. PubMed DOI
Martín-Caballero J, Flores JM, García-Palencia P, Serrano M. Tumor susceptibility of p21(Waf1/Cip1)-deficient mice. Cancer Res. 2001;61(16):6234–6238. PubMed
Poole AJ, Heap D, Carroll RE, Tyner AL. Tumor suppressor functions for the Cdk inhibitor p21 in the mouse colon. Oncogene. 2004;23(49):8128–8134. doi: 10.1038/sj.onc.1207994. PubMed DOI
Stewart ZA, Mays D, Pietenpol JA. Defective G1-S cell cycle checkpoint function sensitizes cells to microtubule inhibitor-induced apoptosis. Cancer Res. 1999;59(15):3831–3837. PubMed
Wendt J, Radetzki S, von Haefen C, Hemmati PG, Güner D, Schulze-Osthoff K, et al. Induction of p21CIP/WAF-1 and G2 arrest by ionizing irradiation impedes caspase-3-mediated apoptosis in human carcinoma cells. Oncogene. 2006;25(7):972–980. doi: 10.1038/sj.onc.1209031. PubMed DOI
Sohn D, Essmann F, Schulze-Osthoff K, Jänicke RU. p21 blocks irradiation-induced apoptosis downstream of mitochondria by inhibition of cyclin-dependent kinase-mediated caspase-9 activation. Cancer Res. 2006;66(23):11254–11262. doi: 10.1158/0008-5472.CAN-06-1569. PubMed DOI
Herůdková J, Paruch K, Khirsariya P, Souček K, Krkoška M, Vondálová Blanářová O, et al. Chk1 inhibitor SCH900776 effectively potentiates the cytotoxic effects of platinum-based chemotherapeutic drugs in human colon cancer cells. Neoplasia. 2017;19(10):830–841. doi: 10.1016/j.neo.2017.08.002. PubMed DOI PMC
Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–404. doi: 10.1158/2159-8290.CD-12-0095. PubMed DOI PMC
Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1. doi: 10.1126/scisignal.2004088. PubMed DOI PMC
Chen Z, Wang K, Hou C, Jiang K, Chen B, Chen J, et al. CRL4BDCAF11 E3 ligase targets p21 for degradation to control cell cycle progression in human osteosarcoma cells. Sci Rep. 2017;7(1):1175. doi: 10.1038/s41598-017-01344-9. PubMed DOI PMC
Wang Y, Yan F, Nasar A, Chen ZS, Altorki NK, Stiles B, et al. CUL4high lung adenocarcinomas are dependent on the CUL4-p21 ubiquitin signaling for proliferation and survival. Am J Pathol. 2021;191(9):1638–1650. doi: 10.1016/j.ajpath.2021.05.018. PubMed DOI PMC
Fan T, Jiang S, Chung N, Alikhan A, Ni C, Lee CCR, et al. EZH2-dependent suppression of a cellular senescence phenotype in melanoma cells by inhibition of p21/ CDKN1A expression. Mol Cancer Res. 2011;9(4):418–429. doi: 10.1158/1541-7786.MCR-10-0511. PubMed DOI PMC
Vincent AJ, Ren S, Harris LG, Devine DJ, Samant RS, Fodstad O, et al. Cytoplasmic translocation of p21 mediates NUPR1-induced chemoresistance. FEBS Lett. 2012;586(19):3429–3434. doi: 10.1016/j.febslet.2012.07.063. PubMed DOI
Suzuki A, Tsutomi Y, Yamamoto N, Shibutani T, Akahane K. Mitochondrial regulation of cell death: mitochondria are essential for procaspase 3–p21 complex formation to resist fas-mediated cell death. Mol Cell Biol. 1999;19(5):3842–3847. doi: 10.1128/MCB.19.5.3842. PubMed DOI PMC
Xia X, Ma Q, Li X, Ji T, Chen P, Xu H, et al. Cytoplasmic p21 is a potential predictor for cisplatin sensitivity in ovarian cancer. BMC Cancer. 2011;11(1):399. doi: 10.1186/1471-2407-11-399. PubMed DOI PMC
Xia X, Ji T, Liu R, Weng Y, Fang Y, Wang Z, et al. Cytoplasmic p21 is responsible for paclitaxel resistance in ovarian cancer A2780 cells. Eur J Gynaecol Oncol. 2015;36(6):662–666. PubMed
Maiuthed A, Ninsontia C, Erlenbach-Wuensch K, Ndreshkjana B, Muenzner J, Caliskan A, et al. Cytoplasmic p21 mediates 5-fluorouracil resistance by inhibiting Pro-apoptotic Chk2. Cancers. 2018;10(10):373. doi: 10.3390/cancers10100373. PubMed DOI PMC
Vitiello PF, Staversky RJ, Gehen SC, Johnston CJ, Finkelstein JN, Wright TW, et al. p21Cip1 protection against hyperoxia requires Bcl-XL and is uncoupled from its ability to suppress growth. Am J Pathol. 2006;168(6):1838–1847. doi: 10.2353/ajpath.2006.051162. PubMed DOI PMC
Vitiello P, Wu Y, Staversky R, Oreilly M. p21Cip1 protects against oxidative stress by suppressing ER-dependent activation of mitochondrial death pathways. Free Radic Biol Med. 2009;46(1):33–41. doi: 10.1016/j.freeradbiomed.2008.09.022. PubMed DOI PMC
Giovannini C, Baglioni M, Toaldo MB, Ventrucci C, D’Adamo S, Cipone M, et al. Notch3 inhibition enhances sorafenib cytotoxic efficacy by promoting GSK3β phosphorylation and p21 down-regulation in hepatocellular carcinoma. Oncotarget. 2013;4(10):1618–1631. doi: 10.18632/oncotarget.1221. PubMed DOI PMC
Fu T, Ma X, Du SL, Ke ZY, Wang XC, Yin HH, et al. p21 promotes gemcitabine tolerance in A549 cells by inhibiting DNA damage and altering the cell cycle. Oncol Lett. 2023;26(5):471. doi: 10.3892/ol.2023.14059. PubMed DOI PMC
Cheng T, Rodrigues N, Shen H, Yang YG, Dombkowski D, Sykes M, et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science. 2000;287(5459):1804–1808. doi: 10.1126/science.287.5459.1804. PubMed DOI
Toyoshima H, Hunter T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell. 1994;78(1):67–74. doi: 10.1016/0092-8674(94)90573-8. PubMed DOI
Abbastabar M, Kheyrollah M, Azizian K, Bagherlou N, Tehrani SS, Maniati M, et al. Multiple functions of p27 in cell cycle, apoptosis, epigenetic modification and transcriptional regulation for the control of cell growth: a double-edged sword protein. DNA Repair. 2018;1(69):63–72. doi: 10.1016/j.dnarep.2018.07.008. PubMed DOI
Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27Kip1-deficient mice. Cell. 1996;85(5):733–744. doi: 10.1016/S0092-8674(00)81239-8. PubMed DOI
Kiyokawa H, Kineman RD, Manova-Todorova KO, Soares VC, Huffman ES, Ono M, et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27Kip1. Cell. 1996;85(5):721–732. doi: 10.1016/S0092-8674(00)81238-6. PubMed DOI
Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, et al. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell. 1996;85(5):707–720. doi: 10.1016/S0092-8674(00)81237-4. PubMed DOI
Bencivenga D, Stampone E, Roberti D, Della Ragione F, Borriello A. p27Kip1, an intrinsically unstructured protein with scaffold properties. Cells. 2021;10(9):2254. doi: 10.3390/cells10092254. PubMed DOI PMC
Rath SL, Senapati S. Mechanism of p27 unfolding for CDK2 reactivation. Sci Rep. 2016;6(1):26450. doi: 10.1038/srep26450. PubMed DOI PMC
Grimmler M, Wang Y, Mund T, Cilenšek Z, Keidel EM, Waddell MB, et al. Cdk-inhibitory activity and stability of p27 are directly regulated by oncogenic tyrosine kinases. Cell. 2007;128(2):269–280. doi: 10.1016/j.cell.2006.11.047. PubMed DOI
Bagui TK, Mohapatra S, Haura E, Pledger WJ. p27 Kip1 and p21 Cip1 are not required for the formation of active D cyclin-cdk4 complexes. Mol Cell Biol. 2007;23(20):7285–7290. doi: 10.1128/MCB.23.20.7285-7290.2003. PubMed DOI PMC
Ou 欧 力 L, Ferreira AM, Otieno S, Xiao 肖 利民 L, Bashford D, Kriwacki RW. Incomplete Folding upon Binding Mediates Cdk4/Cyclin D Complex Activation by Tyrosine Phosphorylation of Inhibitor p27 Protein. Journal of Biological Chemistry. 2011;286(34):30142–51. PubMed PMC
Pippa R, Espinosa L, Gundem G, García-Escudero R, Dominguez A, Orlando S, et al. p27Kip1 represses transcription by direct interaction with p130/E2F4 at the promoters of target genes. Oncogene. 2012;31(38):4207–4220. doi: 10.1038/onc.2011.582. PubMed DOI
Perearnau A, Orlando S, Islam AB, Gallastegui E, Martínez J, Jordan A, et al. p27Kip1, PCAF and PAX5 cooperate in the transcriptional regulation of specific target genes. Nucleic Acids Res. 2017;45(9):5086–5099. doi: 10.1093/nar/gkx075. PubMed DOI PMC
Yoon H, Kim M, Jang K, Shin M, Besser A, Xiao X, et al. p27 transcriptionally coregulates cJun to drive programs of tumor progression. Proc Natl Acad Sci. 2019;116(14):7005–7014. doi: 10.1073/pnas.1817415116. PubMed DOI PMC
Zhao D, Besser AH, Wander SA, Sun J, Zhou W, Wang B, et al. Cytoplasmic p27 promotes epithelial–mesenchymal transition and tumor metastasis via STAT3-mediated Twist1 upregulation. Oncogene. 2015;34(43):5447–5459. doi: 10.1038/onc.2014.473. PubMed DOI PMC
Besson A, Gurian-West M, Schmidt A, Hall A, Roberts JM. p27 Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev. 2004;18(8):862–876. doi: 10.1101/gad.1185504. PubMed DOI PMC
Bencivenga D, Tramontano A, Borgia A, Negri A, Caldarelli I, Oliva A, et al. p27Kip1 serine 10 phosphorylation determines its metabolism and interaction with cyclin-dependent kinases. Cell Cycle. 2014;13(23):3768–3782. doi: 10.4161/15384101.2014.965999. PubMed DOI PMC
Campos T, Ziehe J, Palma M, Escobar D, Tapia JC, Pincheira R, et al. Rheb promotes cancer cell survival through p27Kip1-dependent activation of autophagy. Mol Carcinog. 2016;55(2):220–229. doi: 10.1002/mc.22272. PubMed DOI
Nowosad A, Besson A. CDKN1B/p27 regulates autophagy via the control of Ragulator and MTOR activity in amino acid-deprived cells. Autophagy. 2020;16(12):2297–2298. doi: 10.1080/15548627.2020.1831217. PubMed DOI PMC
Khattar E, Kumar V. Mitogenic regulation of p271 gene is mediated by AP-1 transcription factors. J Biol Chem. 2010;285(7):4554–4561. doi: 10.1074/jbc.M109.029280. PubMed DOI PMC
Medema RH, Kops GJPL, Bos JL, Burgering BMT. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature. 2000;404(6779):782–787. doi: 10.1038/35008115. PubMed DOI
Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96(6):857–868. doi: 10.1016/S0092-8674(00)80595-4. PubMed DOI
Brunet A, Park J, Tran H, Hu LS, Hemmings BA, Greenberg ME. Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a) Mol Cell Biol. 2001;21(3):952–965. doi: 10.1128/MCB.21.3.952-965.2001. PubMed DOI PMC
Morishita D, Katayama R, Sekimizu K, Tsuruo T, Fujita N. Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels. Cancer Res. 2008;68(13):5076–5085. doi: 10.1158/0008-5472.CAN-08-0634. PubMed DOI
Wang C, Hou X, Mohapatra S, Ma Y, Cress WD, Pledger WJ, et al. Activation of p27Kip1 expression by E2F1. A negative feedback mechanism. J Biol Chem. 2005;280(13):12339–12343. doi: 10.1074/jbc.C400536200. PubMed DOI
Hao B, Zheng N, Schulman BA, Wu G, Miller JJ, Pagano M, et al. Structural basis of the Cks1-dependent recognition of p27Kip1 by the SCFSkp2 ubiquitin ligase. Mol Cell. 2005;20(1):9–19. doi: 10.1016/j.molcel.2005.09.003. PubMed DOI
Montagnoli A, Fiore F, Eytan E, Carrano AC, Draetta GF, Hershko A, et al. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev. 1999;13(9):1181–1189. doi: 10.1101/gad.13.9.1181. PubMed DOI PMC
Hattori T, Isobe T, Abe K, Kikuchi H, Kitagawa K, Oda T, et al. Pirh2 promotes ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor p27 Kip1. Cancer Res. 2007;67(22):10789–10795. doi: 10.1158/0008-5472.CAN-07-2033. PubMed DOI
Kamura T, Hara T, Matsumoto M, Ishida N, Okumura F, Hatakeyama S, et al. Cytoplasmic ubiquitin ligase KPC regulates proteolysis of p27Kip1 at G1 phase. Nat Cell Biol. 2004;6(12):1229–1235. doi: 10.1038/ncb1194. PubMed DOI
Ishida N, Kitagawa M, Hatakeyama S, Nakayama KI. Phosphorylation at serine 10, a major phosphorylation site of p27, increases its protein stability. J Bio Chem. 2000;275(33):25146–25154. doi: 10.1074/jbc.M001144200. PubMed DOI
Ishida N, Hara T, Kamura T, Yoshida M, Nakayama K, Nakayama KI. Phosphorylation of p27 on serine 10 is required for its binding to CRM1 and nuclear export. J Biol Chem. 2002;277(17):14355–14358. doi: 10.1074/jbc.C100762200. PubMed DOI
Nacusi LP, Sheaff RJ. Akt1 sequentially phosphorylates p27kip1 within a conserved but non-canonical region. Cell Div. 2006;1(1):11. doi: 10.1186/1747-1028-1-11. PubMed DOI PMC
Kajihara R, Fukushige S, Shioda N, Tanabe K, Fukunaga K, Inui S. CaMKII phosphorylates serine 10 of p27 and confers apoptosis resistance to HeLa cells. Biochem Biophys Res Commun. 2010;401(3):350–355. doi: 10.1016/j.bbrc.2010.09.051. PubMed DOI
Fujita N, Sato S, Katayama K, Tsuruo T. Akt-dependent phosphorylation of p27Kip1Promotes Binding to 14-3-3 and cytoplasmic localization. J Biol Chem. 2002;277(32):28706–28713. doi: 10.1074/jbc.M203668200. PubMed DOI
Viglietto G, Motti ML, Bruni P, Melillo RM, D’Alessio A, Califano D, et al. Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27Kip1 by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med. 2002;8(10):1136–1144. doi: 10.1038/nm762. PubMed DOI
Tsvetkov LM, Yeh KH, Lee SJ, Sun H, Zhang H. p27Kip1 ubiquitination and degradation is regulated by the SCFSkp2 complex through phosphorylated Thr187 in p27. Curr Biol. 1999;9(12):661–S2. doi: 10.1016/S0960-9822(99)80290-5. PubMed DOI
Carrano AC, Eytan E, Hershko A, Pagano M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol. 1999;1(4):193–9. doi: 10.1038/12013. PubMed DOI
Sheaff RJ, Groudine M, Gordon M, Roberts JM, Clurman BE. Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev. 1997;11(11):1464–78. doi: 10.1101/gad.11.11.1464. PubMed DOI
Osaki LH, Gama P. MAPK signaling pathway regulates p27 phosphorylation at threonin 187 as part of the mechanism triggered by early-weaning to induce cell proliferation in rat gastric mucosa. PLoS ONE. 2013;8(6):e66651. doi: 10.1371/journal.pone.0066651. PubMed DOI PMC
Perez-Luna M, Aguasca M, Perearnau A, Serratosa J, Martinez-Balbas M, Jesus Pujol M, et al. PCAF regulates the stability of the transcriptional regulator and cyclin-dependent kinase inhibitor p27Kip1. Nucleic Acids Res. 2012;40(14):6520–33. doi: 10.1093/nar/gks343. PubMed DOI PMC
Payne SR, Kemp CJ. p27(Kip1) (Cdkn1b)-deficient mice are susceptible to chemical carcinogenesis and may be a useful model for carcinogen screening. Toxicol Pathol. 2003;31(4):355–63. PubMed
Philipp-Staheli J, Kim KH, Payne SR, Gurley KE, Liggitt D, Longton G, et al. Pathway-specific tumor suppression. Cancer Cell. 2002;1(4):355–68. doi: 10.1016/S1535-6108(02)00054-5. PubMed DOI
Gao H, Ouyang X, Banach-Petrosky W, Borowsky AD, Lin Y, Kim M, et al. A critical role for p27 kip1 gene dosage in a mouse model of prostate carcinogenesis. Proc Natl Acad Sci. 2004;101(49):17204–9. doi: 10.1073/pnas.0407693101. PubMed DOI PMC
Sirma H, Broemel M, Stumm L, Tsourlakis T, Steurer S, Tennstedt P, et al. Loss of CDKN1B/p27Kip1 expression is associated with ERG fusion-negative prostate cancer, but is unrelated to patient prognosis. Oncol Lett. 2013;6(5):1245–52. doi: 10.3892/ol.2013.1563. PubMed DOI PMC
Dobashi Y, Tsubochi H, Minegishi K, Kitagawa M, Otani S, Ooi A. Regulation of p27 by ubiquitin ligases and its pathological significance in human lung carcinomas. Hum Pathol. 2017;1(66):67–78. doi: 10.1016/j.humpath.2017.05.022. PubMed DOI
Loda M, Cukor B, Tam SW, Lavin P, Fiorentinc M, Draetta GF, et al. Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat Med. 1997;3(2):231–4. doi: 10.1038/nm0297-231. PubMed DOI
Zhu J, Li Y, Tian Z, Hua X, Gu J, Li J, et al. ATG7 overexpression is crucial for tumorigenic growth of bladder cancer in vitro and in vivo by targeting the ETS2/miRNA196b/FOXO1/p27 Axis. Mol Ther Nucleic Acids. 2017;7:299–313. doi: 10.1016/j.omtn.2017.04.012. PubMed DOI PMC
Nycum LR, Smith LM, Farley JH, Kost ER, Method MW, Birrer MJ. The role of p27 in Endometrial carcinoma. Gynecol Oncol. 2001;81(2):242–6. doi: 10.1006/gyno.2001.6144. PubMed DOI
Jiao X, Wang B, Feng C, Song S, Tian B, Zhou C, et al. Formin-like protein 2 promotes cell proliferation by a p27-related mechanism in human breast cancer cells. BMC Cancer. 2021;21(1):760. doi: 10.1186/s12885-021-08533-w. PubMed DOI PMC
Schiappacassi M, Lovat F, Canzonieri V, Belletti B, Berton S, Di Stefano D, et al. p27Kip1 expression inhibits glioblastoma growth, invasion, and tumor-induced neoangiogenesis. Mol Cancer Ther. 2008;7(5):1164–75. doi: 10.1158/1535-7163.MCT-07-2154. PubMed DOI
Chen X, Cates JMM, Du YC, Jain A, Jung SY, Li XN, et al. Mislocalized cytoplasmic p27 activates PAK1-mediated metastasis and is a prognostic factor in osteosarcoma. Mol Oncol. 2020;14(4):846–64. doi: 10.1002/1878-0261.12624. PubMed DOI PMC
Calvayrac O, Nowosad A, Cabantous S, Lin L, Figarol S, Jeannot P, et al. Cytoplasmic p27 Kip1 promotes tumorigenesis via suppression of RhoB activity. J Pathol. 2019;247(1):60–71. doi: 10.1002/path.5167. PubMed DOI
Nagahara H, Vocero-Akbani AM, Snyder EL, Ho A, Latham DG, Lissy NA, et al. Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat Med. 1998;4(12):1449–52. doi: 10.1038/4042. PubMed DOI
Kruck S, Merseburger AS, Hennenlotter J, Scharpf M, Eyrich C, Amend B, et al. High cytoplasmic expression of p27 Kip1 is associated with a worse cancer-specific survival in clear cell renal cell carcinoma. BJU Int. 2012;109(10):1565–70. doi: 10.1111/j.1464-410X.2011.10649.x. PubMed DOI
Chen G, Cheng Y, Zhang Z, Martinka M, Li G. Prognostic significance of cytoplasmic p27 expression in human melanoma. Cancer Epidemiol Biomark Prev. 2011;20(10):2212–21. doi: 10.1158/1055-9965.EPI-11-0472. PubMed DOI
Li Y, Nakka M, Kelly AJ, Lau CC, Krailo M, Barkauskas DA, et al. p27 Is a candidate prognostic biomarker and metastatic promoter in osteosarcoma. Cancer Res. 2016;76(13):4002–11. doi: 10.1158/0008-5472.CAN-15-3189. PubMed DOI PMC
Kouvaraki M, Gorgoulis VG, Rassidakis GZ, Liodis P, Markopoulos C, Gogas J, et al. High expression levels of p27 correlate with lymph node status in a subset of advanced invasive breast carcinomas. Cancer. 2002;94(9):2454–65. doi: 10.1002/cncr.10505. PubMed DOI
Denicourt C, Saenz CC, Datnow B, Cui XS, Dowdy SF. Relocalized p27Kip1 tumor suppressor functions as a cytoplasmic metastatic oncogene in melanoma. Cancer Res. 2007;67(19):9238–43. doi: 10.1158/0008-5472.CAN-07-1375. PubMed DOI
Matsuoka S, Edwards MC, Bai C, Parker S, Zhang P, Baldini A, et al. p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev. 1995;9(6):650–62. doi: 10.1101/gad.9.6.650. PubMed DOI
Creff J, Besson A. Functional versatility of the CDK inhibitor p57Kip2. Front Cell Dev Biol. 2020;7:8. PubMed PMC
Watanabe H, Pan ZQ, Schreiber-Agus N, DePinho RA, Hurwitz J, Xiong Y. Suppression of cell transformation by the cyclin-dependent kinase inhibitor p57 KIP2 requires binding to proliferating cell nuclear antigen. Proc Natl Acad Sci. 1998;95(4):1392–7. doi: 10.1073/pnas.95.4.1392. PubMed DOI PMC
Zhang P, Liégeois NJ, Wong C, Finegold M, Hou H, Thompson JC, et al. Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature. 1997;387(6629):151–8. doi: 10.1038/387151a0. PubMed DOI
Yan Y, Frisén J, Lee MH, Massagué J, Barbacid M. Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev. 1997;11(8):973–83. doi: 10.1101/gad.11.8.973. PubMed DOI
Yokoo T, Toyoshima H, Miura M, Wang Y, Iida KT, Suzuki H, et al. p57Kip2 regulates actin dynamics by binding and translocating LIM-kinase 1 to the nucleus. J Biol Chem. 2003;278(52):52919–23. doi: 10.1074/jbc.M309334200. PubMed DOI
Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature. 1998;393(6687):809–12. doi: 10.1038/31735. PubMed DOI
Vlachos P, Joseph B. The Cdk inhibitor p57Kip2 contro LIM-kinase 1 activity and regulates actin cytoskeleton dynamics. Oncogene. 2009;28(47):4175–88. doi: 10.1038/onc.2009.269. PubMed DOI
Sakai K, Peraud A, Mainprize T, Nakayama J, Tsugu A, Hongo K, et al. Inducible expression of p57 KIP2 inhibits glioma cell motility and invasion. J Neurooncol. 2004;68(3):217–23. doi: 10.1023/B:NEON.0000033380.08940.c8. PubMed DOI
Joaquin M, Gubern A, González-Nuñez D, Josué Ruiz E, Ferreiro I, de Nadal E, et al. The p57 CDKi integrates stress signals into cell-cycle progression to promote cell survival upon stress. EMBO J. 2012;31(13):2952–64. doi: 10.1038/emboj.2012.122. PubMed DOI PMC
Chang TS, Kim MJ, Ryoo K, Park J, Eom SJ, Shim J, et al. p57KIP2 modulates stress-activated signaling by inhibiting c-jun NH2-terminal kinase/stress-activated protein kinase. J Biol Chem. 2003;278(48):48092–8. doi: 10.1074/jbc.M309421200. PubMed DOI
Vlachos P, Nyman U, Hajji N, Joseph B. The cell cycle inhibitor p57Kip2 promotes cell death via the mitochondrial apoptotic pathway. Cell Death Differ. 2007;14(8):1497–507. doi: 10.1038/sj.cdd.4402158. PubMed DOI
Gonzalez S, Perez-Perez MM, Hernando E, Serrano M, Cordon-Cardo C. p73β-mediated apoptosis requires p57kip2 induction and IEX-1 inhibition. Cancer Res. 2005;65(6):2186–92. doi: 10.1158/0008-5472.CAN-04-3047. PubMed DOI
Reynaud EG, Leibovitch MP, Tintignac LAJ, Pelpel K, Guillier M, Leibovitch SA. Stabilization of MyoD by direct binding to p57Kip2. J Biol Chem. 2000;275(25):18767–76. doi: 10.1074/jbc.M907412199. PubMed DOI
Joseph B, Wallén-Mackenzie Å, Benoit G, Murata T, Joodmardi E, Okret S, et al. p57 Kip2 cooperates with Nurr1 in developing dopamine cells. Proc Natl Acad Sci. 2003;100(26):15619–24. doi: 10.1073/pnas.2635658100. PubMed DOI PMC
Joseph B, Andersson ER, Vlachos P, Södersten E, Liu L, Teixeira AI, et al. p57Kip2 is a repressor of Mash1 activity and neuronal differentiation in neural stem cells. Cell Death Differ. 2009;16(9):1256–65. doi: 10.1038/cdd.2009.72. PubMed DOI
Ma Y, Cress WD. Transcriptional upregulation of p57 (Kip2) by the cyclin-dependent kinase inhibitor BMS-387032 is E2F dependent and serves as a negative feedback loop limiting cytotoxicity. Oncogene. 2007;26(24):3532–40. doi: 10.1038/sj.onc.1210143. PubMed DOI PMC
Cucciolla V, Borriello A, Criscuolo M, Sinisi AA, Bencivenga D, Tramontano A, et al. Histone deacetylase inhibitors upregulate p57Kip2 level by enhancing its expression through Sp1 transcription factor. Carcinogenesis. 2007;29(3):560–7. doi: 10.1093/carcin/bgn010. PubMed DOI
Schipani E, Ryan HE, Didrickson S, Kobayashi T, Knight M, Johnson RS. Hypoxia in cartilage: HIF-1α is essential for chondrocyte growth arrest and survival. Genes Dev. 2001;15(21):2865–76. doi: 10.1101/gad.934301. PubMed DOI PMC
Scandura JM, Boccuni P, Massagué J, Nimer SD. Transforming growth factor β-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation. Proc Natl Acad Sci. 2004;101(42):15231–6. doi: 10.1073/pnas.0406771101. PubMed DOI PMC
Vaccarello G, Figliola R, Cramerotti S, Novelli F, Maione R. p57Kip2 is induced by MyoD through a p73-dependent pathway. J Mol Biol. 2006;356(3):578–88. doi: 10.1016/j.jmb.2005.12.024. PubMed DOI
Guo H, Jing L, Cheng Y, Atsaves V, Lv Y, Wu T, et al. Down-regulation of the cyclin-dependent kinase inhibitor p57 is mediated by Jab1/Csn5 in hepatocarcinogenesis. Hepatology. 2016;63(3):898–913. doi: 10.1002/hep.28372. PubMed DOI
Giovannini C, Gramantieri L, Minguzzi M, Fornari F, Chieco P, Grazi GL, et al. CDKN1C/P57 is regulated by the notch target gene Hes1 and induces senescence in human hepatocellular carcinoma. Am J Pathol. 2012;181(2):413–22. doi: 10.1016/j.ajpath.2012.04.019. PubMed DOI
Kikuchi T, Toyota M, Itoh F, Suzuki H, Obata T, Yamamoto H, et al. Inactivation of p57KIP2 by regional promoter hypermethylation and histone deacetylation in human tumors. Oncogene. 2002;21(17):2741–9. doi: 10.1038/sj.onc.1205376. PubMed DOI
Yamaguchi T, Cubizolles F, Zhang Y, Reichert N, Kohler H, Seiser C, et al. Histone deacetylases 1 and 2 act in concert to promote the G1-to-S progression. Genes Dev. 2010;24(5):455–69. doi: 10.1101/gad.552310. PubMed DOI PMC
Fan T, Hagan JP, Kozlov SV, Stewart CL, Muegge K. Lsh controls silencing of the imprinted Cdkn1c gene. Development. 2005;132(4):635–44. doi: 10.1242/dev.01612. PubMed DOI
Guo J, Cai J, Yu L, Tang H, Chen C, Wang Z. EZH2 regulates expression of p57 and contributes to progression of ovarian cancer in vitro and in vivo. Cancer Sci. 2011;102(3):530–9. doi: 10.1111/j.1349-7006.2010.01836.x. PubMed DOI
Naito M, Mori M, Inagawa M, Miyata K, Hashimoto N, Tanaka S, et al. Dnmt3a regulates proliferation of muscle satellite cells via p57Kip2. PLoS Genet. 2016;12(7):e1006167. doi: 10.1371/journal.pgen.1006167. PubMed DOI PMC
Kamura T, Hara T, Kotoshiba S, Yada M, Ishida N, Imaki H, et al. Degradation of p57 Kip2 mediated by SCF Skp2 -dependent ubiquitylation. Proc Natl Acad Sci. 2003;100(18):10231–6. doi: 10.1073/pnas.1831009100. PubMed DOI PMC
Kim M, Nakamoto T, Nishimori S, Tanaka K, Chiba T. A new ubiquitin ligase involved in p57 KIP2 proteolysis regulates osteoblast cell differentiation. EMBO Rep. 2008;9(9):878–84. doi: 10.1038/embor.2008.125. PubMed DOI PMC
Lin M, Zhang J, Bouamar H, Wang Z, Sun LZ, Zhu X. Fbxo22 promotes cervical cancer progression via targeting p57Kip2 for ubiquitination and degradation. Cell Death Dis. 2022;13(9):805. doi: 10.1038/s41419-022-05248-z. PubMed DOI PMC
Zhang L, Chen J, Ning D, Liu Q, Wang C, Zhang Z, et al. FBXO22 promotes the development of hepatocellular carcinoma by regulating the ubiquitination and degradation of p21. J Exp Clin Cancer Res. 2019;38(1):101. doi: 10.1186/s13046-019-1058-6. PubMed DOI PMC
Yi L, Wang H, Li W, Ye K, Xiong W, Yu H, et al. The FOXM1/RNF26/p57 axis regulates the cell cycle to promote the aggressiveness of bladder cancer. Cell Death Dis. 2021;12(10):944. doi: 10.1038/s41419-021-04260-z. PubMed DOI PMC
Zhao R, Yang HY, Shin J, Phan L, Fang L, Che TF, et al. CDK inhibitor p57 Kip2 is downregulated by Akt during HER2-mediated tumorigenicity. Cell Cycle. 2013;12(6):935–43. doi: 10.4161/cc.23883. PubMed DOI PMC
Kettenbach AN, Schweppe DK, Faherty BK, Pechenick D, Pletnev AA, Gerber SA. Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal. 2011;4(179):rs5. doi: 10.1126/scisignal.2001497. PubMed DOI PMC
Mishra S, Lin CL, Huang THM, Bouamar H, Sun LZ. MicroRNA-21 inhibits p57Kip2 expression in prostate cancer. Mol Cancer. 2014;13(1):212. doi: 10.1186/1476-4598-13-212. PubMed DOI PMC
Sun K, Wang W, Zeng JJ, Wu CT, Lei ST, Li GX. MicroRNA-221 inhibits CDKN1C/p57 expression in human colorectal carcinoma. Acta Pharmacol Sin. 2011;32(3):375–84. doi: 10.1038/aps.2010.206. PubMed DOI PMC
Ito Y, Takeda T, Wakasa KI, Tsujimoto M, Matsuura N. Expression of p57/Kip2 protein in pancreatic adenocarcinoma. Pancreas. 2001;23(3):246–50. doi: 10.1097/00006676-200110000-00004. PubMed DOI
Biaoxue R, Xiguang C, Hua L, Hui M, Shuanying Y, Wei Z, et al. Decreased expression of decorin and p57(KIP2) correlates with poor survival and lymphatic metastasis in lung cancer patients. Int J Biol Markers. 2011;26(1):9–21. doi: 10.5301/JBM.2011.6372. PubMed DOI
Yang C, Nan H, Ma J, Jiang L, Guo Q, Han L, et al. High Skp2/Low p57 Kip2 expression is associated with poor prognosis in human breast carcinoma. Breast Cancer. 2015;9s1:BCBCR.S30101. doi: 10.4137/BCBCR.S30101. PubMed DOI PMC
Oya M, Schulz WA. Decreased expression of p57KIP2 mRNA in human bladder cancer. Br J Cancer. 2000;83(5):626–31. doi: 10.1054/bjoc.2000.1298. PubMed DOI PMC
Qiu Z, Li Y, Zeng B, Guan X, Li H. Downregulated CDKN1C/p57kip2 drives tumorigenesis and associates with poor overall survival in breast cancer. Biochem Biophys Res Commun. 2018;497(1):187–93. doi: 10.1016/j.bbrc.2018.02.052. PubMed DOI
Kavanagh E, Joseph B. The hallmarks of CDKN1C (p57, KIP2) in cancer. Biochimica et Biophysica Acta Rev Cancer. 2011;1816(1):50–6. doi: 10.1016/j.bbcan.2011.03.002. PubMed DOI
Weis B, Schmidt J, Maamar H, Raj A, Lin H, Tóth C, et al. Inhibition of intestinal tumor formation by deletion of the DNA methyltransferase 3a. Oncogene. 2015;34(14):1822–30. doi: 10.1038/onc.2014.114. PubMed DOI
Ito J, Yamagata K, Shinohara H, Shima Y, Katsumoto T, Aikawa Y, et al. Dual inhibition of EZH1/2 induces cell cycle arrest of B cell acute lymphoblastic leukemia cells through upregulation of CDKN1C and TP53INP1. Int J Hematol. 2023;117(1):78–89. doi: 10.1007/s12185-022-03469-8. PubMed DOI
Lin W, Wang K, Mo J, Wang L, Song Z, Jiang H, et al. <scp>PIK3R3</scp> is upregulated in liver cancer and activates Akt signaling to control cancer growth by regulation of <scp>CDKN1C</scp> and <scp>SMC1A</scp>. Cancer Med. 2023;12(13):14413–25. doi: 10.1002/cam4.6068. PubMed DOI PMC
Oka T, Higa T, Sugahara O, Koga D, Nakayama S, Nakayama KI. Ablation of p57+ quiescent cancer stem cells suppresses recurrence after chemotherapy of intestinal tumors. Cancer Res. 2023;83(9):1393–40. doi: 10.1158/0008-5472.CAN-22-2578. PubMed DOI
Cánepa ET, Scassa ME, Ceruti JM, Marazita MC, Carcagno AL, Sirkin PF, et al. INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions. IUBMB Life. 2007;59(7):419–26. https://iubmb.onlinelibrary.wiley.com/doi/abs/10.1080/15216540701488358 PubMed
Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 1993;366(6456):704–7. doi: 10.1038/366704a0. PubMed DOI
Hannon GJ, Beach D. pl5INK4B is a potentia| effector of TGF-β-induced cell cycle arrest. Nature. 1994;371(6494):257–61. doi: 10.1038/371257a0. PubMed DOI
Forget A, Ayrault O, Den Besten W, Kuo ML, Sherr CJ, Roussel MF. Differential post-transcriptional regulation of two Ink4 proteins, p18 Ink4c and p19Ink4d. Cell Cycle. 2008;7(23):3737–46. doi: 10.4161/cc.7.23.7187. PubMed DOI PMC
Suzuki H, Zhou X, Yin J, Lei J, Jiang HY, Suzuki Y, et al. Intragenic mutations of CDKN2B and CDKN2A in primary human esophageal cancers. Vol. 4, Human Molecular Genetics. 1995. PubMed
Krimpenfort P, Quon KC, Mooi WJ, Loonstra A, Berns A. Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature. 2001;413(6851):83–6. doi: 10.1038/35092584. PubMed DOI
Hirai H, Roussel MF, Kato JY, Ashmun RA, Sherr CJ. Novel INK4 Proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Mol Cell Biol. 1995;15(5):2672–81. doi: 10.1128/MCB.15.5.2672. PubMed DOI PMC
Venkataramani R, Swaminathan K, Marmorstein R. Crystal structure of the CDK4/6 inhibitory protein p18INK4c provides insights into ankyrin-like repeat structure/function and tumor-derived p16INK4 mutations. Nat Struct Biol. 1998;5(1):74–81. doi: 10.1038/nsb0198-74. PubMed DOI
Kumar A, Balbach J, Kumar A, Balbach J, Uversky N. Folding and stability of ankyrin repeats control biological protein function. Biomolecules. 2021;11:840. doi: 10.3390/biom11060840. PubMed DOI PMC
Jeffrey PD, Tong L, Pavletich NP. Structural basis of inhibition of CDK–cyclin complexes by INK4 inhibitors. Genes Dev. 2000;14(24):3115–25. doi: 10.1101/gad.851100. PubMed DOI PMC
Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13(12):1501–12. doi: 10.1101/gad.13.12.1501. PubMed DOI
Schirripa A, Sexl V, Kollmann K. Cyclin-dependent kinase inhibitors in malignant hematopoiesis. Front Oncol. 2022;12:916682. doi: 10.3389/fonc.2022.916682. PubMed DOI PMC
Ohtani N, Zebedee Z, Huot TJG, Stinson JA, Sugimoto M, Ohashi Y, et al. Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature. 2001;409(6823):1067–70. doi: 10.1038/35059131. PubMed DOI
Li J, Poi MJ, Tsai MD. Regulatory mechanisms of tumor suppressor P16INK4A and their relevance to cancer. Biochemistry. 2011;50(25):5566–82. doi: 10.1021/bi200642e. PubMed DOI PMC
Russo AA, Tong L, Lee JO, Jeffrey PD, Pavletich NP. Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16(INK4a) Nature. 1998;395(6699):237–43. doi: 10.1038/26155. PubMed DOI
Reynisdóttir I, Polyak K, Iavarone A, Massagué J. Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. Genes Dev. 1995;9(15):1831–45. doi: 10.1101/gad.9.15.1831. PubMed DOI
Bu YC, Hong SC, Ko K, Cho YY, Zhu F, Bong SK, et al. The tumor suppressor p16INK4a prevents cell transformation through inhibition of c-Jun phosphorylation and AP-1 activity. Nat Struct Mol Biol. 2005;12(8):699–707. doi: 10.1038/nsmb960. PubMed DOI
Souza-Rodrígues E, Estanyol JM, Friedrich-Heineken E, Olmedo E, Vera J, Canela N, et al. Proteomic analysis of p16ink4a-binding proteins. Proteomics. 2007;7(22):4102–11. doi: 10.1002/pmic.200700133. PubMed DOI
Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L, et al. Ink4a/Arf expression is a biomarker of aging. J Clin Investigat. 2004;114(9):1299–307. doi: 10.1172/JCI22475. PubMed DOI PMC
Dietrich N, Bracken AP, Trinh E, Schjerling CK, Koseki H, Rappsilber J, et al. Bypass of senescence by the polycomb group protein CBX8 through direct binding to the INK4A-ARF locus. EMBO J. 2007;26(6):1637–48. doi: 10.1038/sj.emboj.7601632. PubMed DOI PMC
Zhu J, Woods D, McMahon M, Bishop JM. Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev. 1998;12(19):2997–3007. doi: 10.1101/gad.12.19.2997. PubMed DOI PMC
Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M, Lowe SW. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev. 1998;12(19):3008–19. doi: 10.1101/gad.12.19.3008. PubMed DOI PMC
Gonzalez S, Serrano M. a new mechanism of inactivation of the INK4/ARF locus. Cell Cycle. 2006;5(13):1382–4. doi: 10.4161/cc.5.13.2901. PubMed DOI
Wang X, Pan L, Feng Y, Wang Y, Han Q, Han L, et al. p300 plays a role in p16INK4a expression and cell cycle arrest. Oncogene. 2008;27(13):1894–904. doi: 10.1038/sj.onc.1210821. PubMed DOI
Wang X, Feng Y, Xu L, Chen Y, Zhang Y, Su D, et al. YY1 restrained cell senescence through repressing the transcription of p16. Biochimica et Biophysica Acta Mol Cell Res. 2008;1783(10):1876–83. doi: 10.1016/j.bbamcr.2008.05.015. PubMed DOI
Li Y, Nichols MA, Shay JW, Xiong Y. Transcriptional repression of the D-type cyclin-dependent kinase inhibitor p16 by the retinoblastoma susceptibility gene product pRb. Cancer Res. 1994;54(23):6078–82. PubMed
Gil J, Bernard D, Martínez D, Beach D. Polycomb CBX7 has a unifying role in cellular lifespan. Nat Cell Biol. 2004;6(1):67–72. doi: 10.1038/ncb1077. PubMed DOI
Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C, et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 2007;21(5):525–30. doi: 10.1101/gad.415507. PubMed DOI PMC
Frescas D, Guardavaccaro D, Bassermann F, Koyama-Nasu R, Pagano M. JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature. 2007;450(7167):309–13. doi: 10.1038/nature06255. PubMed DOI
Tzatsos A, Pfau R, Kampranis SC, Tsichlis PN. Ndy1/KDM2B immortalizes mouse embryonic fibroblasts by repressing the Ink4a / Arf locus. Proc Natl Acad Sci. 2009;106(8):2641–6. doi: 10.1073/pnas.0813139106. PubMed DOI PMC
Nuovo GJ, Plaia TW, Belinsky SA, Baylin SB, Herman JG. In situ detection of the hypermethylation-induced inactivation of the p16 gene as an early event in oncogenesis. Proc Natl Acad Sci. 1999;96(22):12754–9. doi: 10.1073/pnas.96.22.12754. PubMed DOI PMC
Bai J, Zhang X, Liu B, Wang H, Du Z, Song J. Silencing DNA methyltransferase 1 leads to the activation of the esophageal suppressor gene p16 in vitro and in vivo. Oncol Lett. 2017;14(3):3077–81. doi: 10.3892/ol.2017.6535. PubMed DOI PMC
Lu R, Wang X, Chen ZF, Sun DF, Tian XQ, Fang JY. Inhibition of the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway decreases DNA methylation in colon cancer cells. J Biol Chem. 2007;282(16):12249–59. doi: 10.1074/jbc.M608525200. PubMed DOI
Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997;88(5):593–602. doi: 10.1016/S0092-8674(00)81902-9. PubMed DOI
Agger K, Cloos PAC, Rudkjær L, Williams K, Andersen G, Christensen J, et al. The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A–ARF locus in response to oncogene- and stress-induced senescence. Genes Dev. 2009;23(10):1171–6. doi: 10.1101/gad.510809. PubMed DOI PMC
Al-Khalaf HH, Hendrayani SF, Aboussekhra A. The Atr protein kinase controls UV-dependent upregulation of p16INK4A through inhibition of Skp2-related polyubiquitination/degradation. Mol Cancer Res. 2011;9(3):311–9. doi: 10.1158/1541-7786.MCR-10-0506. PubMed DOI
Gump J, Stokoe D, McCormick F. Phosphorylation of p16 correlates with Cdk4 association. J Biol Chem. 2003;278(9):6619–22. doi: 10.1074/jbc.C200622200. PubMed DOI
Guo Y, Yuan C, Weghorst CM, Li J. IKKβ specifically binds to P16 and phosphorylates Ser8 of P16. Biochem Biophys Res Commun. 2010;393(3):504–8. doi: 10.1016/j.bbrc.2010.02.035. PubMed DOI PMC
Wang X, Huang Y, Zhao J, Zhang Y, Lu J, Huang B. Suppression of PRMT6-mediated arginine methylation of p16 protein potentiates its ability to arrest A549 cell proliferation. Int J Biochem Cell Biol. 2012;44(12):2333–41. doi: 10.1016/j.biocel.2012.09.015. PubMed DOI
Chen P, Zindy F, Abdala C, Liu F, Li X, Roussel MF, et al. Progressive hearing loss in mice lacking the cyclin-dependent kinase inhibitor lnk4d. Nat Cell Biol. 2003;5(5):422–6. doi: 10.1038/ncb976. PubMed DOI
Latres E, Malumbres M, Sotillo R, Martín J, Ortega S, Martín-Caballero J, et al. Limited overlapping roles of p15(INK4b) and p18(INK4c) cell cycle inhibitors in proliferation and tumorigenesis. EMBO J. 2000;19(13):3496. doi: 10.1093/emboj/19.13.3496. PubMed DOI PMC
Krimpenfort P, Ijpenberg A, Song JY, Van Der Valk M, Nawijn M, Zevenhoven J, et al. p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a. Nature. 2007;448(7156):943–6. doi: 10.1038/nature06084. PubMed DOI
Hussussian CJ, Struewing JP, Goldstein AM, Higgins PAT, Ally DS, Sheahan MD, et al. Germline p16 mutations in familial melanoma. Nat Genet. 1994;8(1):15–21. doi: 10.1038/ng0994-15. PubMed DOI
Foulkes WD, Flanders TY, Pollock PM, Hayward NK. The CDKN2A (p16) gene and human cancer. Mol Med. 1997;3:5–20. doi: 10.1007/BF03401664. PubMed DOI PMC
Sweeney SM, Cerami E, Baras A, Pugh TJ, Schultz N, Stricker T, et al. AACR project genie: powering precision medicine through an international consortium. Cancer Discov. 2017;7(8):818–31. doi: 10.1158/2159-8290.CD-17-0151. PubMed DOI PMC
Brenner AJ, Aldaz CM. Chromosome 9p allelic loss and pl6/CDKN2 in breast cancer and evidence of pl6 inactivation in immortal breast epithelial cells. Cancer Res. 1995;55(13):2892–5. PubMed
Nobori S, Carson DA, Sauter ER, Shafarenko M, Mitsunaga S, Ridge JA, et al. Higher frequency of alterations in the pl6/CDKN2 gene in squamous cell carcinoma cell lines than in primary tumors of the head and neck. Cancer Res. 1994;54(19):5050–3. PubMed
Igaki H, Sasaki H, Tachimori Y, Kato H, Watanabe H, Kimura T, et al. Mutation frequency of the p16/CDKN2 gene in primary cancers in the upper digestive tract. Cancer Res. 1995;55(15):3421–3. PubMed
Simboeck E, Ribeiro JD, Teichmann S, Di Croce L. Epigenetics and senescence: learning from the INK4-ARF locus. Biochem Pharmacol. 2011;82:1361–70. doi: 10.1016/j.bcp.2011.07.084. PubMed DOI
Narita M, Nũnez S, Heard E, Narita M, Lin AW, Hearn SA, et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell. 2003;113(6):703–16. doi: 10.1016/S0092-8674(03)00401-X. PubMed DOI
Foos G, García-Ramírez JJ, Galang CK, Hauser CA. Elevated expression of Ets2 or distinct portions of Ets2 can reverse Ras-mediated cellular transformation. J Bio Chem. 1998;273(30):18871–80. doi: 10.1074/jbc.273.30.18871. PubMed DOI
Takahashi A, Ohtani N, Yamakoshi K, Iida SI, Tahara H, Nakayama K, et al. Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat Cell Biol. 2006;8(11):1291–7. doi: 10.1038/ncb1491. PubMed DOI
Herman JG, Civin CI, Issa JPJ, Collector MI, Sharkis SJ, Baylin SB. Distinct patterns of inactivation of p15(INK4B) and p16(INK4A) characterize the major types of hematological malignancies. Cancer Res. 1997;57(5):837–41. PubMed
Jha AK, Nikbakht M, Jain V, Capalash N, Kaur J. P16 ink4a and p15 ink4b gene promoter methylation in cervical cancer patients. Oncol Lett. 2012;3(6):1331–5. doi: 10.3892/ol.2012.655. PubMed DOI PMC
Viswanathan M, Tsuchida N, Shanmugam G. Promoter hypermethylation profile of tumor-associated genes p16, p15, hMLH1, MGMT and E-cadherin in oral squamous cell carcinoma. Int J Cancer. 2003;105(1):41–6. doi: 10.1002/ijc.11028. PubMed DOI
Moselhy SS, Kumosani TA, Kamal I, Jalal J, Jabaar HSA, Dalol A. Hypermethylation of P15, P16, and E-cadherin genes in ovarian cancer. Toxicol Ind Health. 2015;31(10):924–30. doi: 10.1177/0748233713484657. PubMed DOI
Ng MHL, Chung YF, Lo KW, Wickham NWR, Lee JCK, Huang DP. Frequent hypermethylation of p16 and p15 genes in multiple myeloma. Blood. 1997;89(7):2500–6. doi: 10.1182/blood.V89.7.2500. PubMed DOI
Inoue KA, Fry E. Aberrant expression of p16INK4a in human cancers – a new biomarker? Cancer Rep Rev. 2018 doi: 10.15761/CRR.1000145. PubMed DOI PMC
Kim BN, Yamamoto H, Ikeda K, Damdinsuren B, Sugita Y, Ngan CY, et al. Methylation and expression of p16INK4 tumor suppressor gene in primary colorectal cancer tissues. Int J Oncol. 2005;26(5):1217–26. PubMed
King-Yin Lam A, Ong K, Ho YH. Colorectal mucinous adenocarcinoma: The clinicopathologic features and significance of p16 and p53 expression. Dis Colon Rectum. 2006;49(9):1275–83. doi: 10.1007/s10350-006-0650-y. PubMed DOI
J. S, N. M. Promitotic and cyclin-dependent kinase inhibitor proteins show significant correlation with distant metastasis in breast cancer patients. Laboratory Investigation. 2018;98(Supplement 1).
Chang PH, Wang HM, Kuo YC, Lee LY, Liao CJ, Kuo HC, et al. Circulating p16-positive and p16-negative tumor cells serve as independent prognostic indicators of survival in patients with head and neck squamous cell carcinomas. J Pers Med. 2021;11(11):1156. doi: 10.3390/jpm11111156. PubMed DOI PMC
Farooq U, Notani D. Transcriptional regulation of INK4/ARF locus by cis and trans mechanisms. Front Cell Dev Biol. 2022;9:10. PubMed PMC
Chen CR, Kang Y, Siegel PM, Massagué J. E2F4/5 and p107 as smad cofactors linking the TGFΒ receptor to c-myc repression. Cell. 2002;110(1):19–32. doi: 10.1016/S0092-8674(02)00801-2. PubMed DOI
Reynisdóttir I, Polyak K, Iavarone A, Massagué J. Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-β. Genes Dev. 1995;9(15):1831–45. doi: 10.1101/gad.9.15.1831. PubMed DOI
Xia Y, Liu Y, Yang C, Simeone DM, Sun TT, DeGraff DJ, et al. Dominant role of CDKN2B/p15INK4B of 9p213 tumor suppressor hub in inhibition of cell-cycle and glycolysis. Nat Commun. 2021;12(1):2047. doi: 10.1038/s41467-021-22327-5. PubMed DOI PMC
Kheradmand Kia S, Solaimani Kartalaei P, Farahbakhshian E, Pourfarzad F, von Lindern M, Verrijzer CP. EZH2-dependent chromatin looping controls INK4a and INK4b, but not ARF, during human progenitor cell differentiation and cellular senescence. Epigenetics Chromatin. 2009;2(1):16. doi: 10.1186/1756-8935-2-16. PubMed DOI PMC
Jacobs JJL, Kieboom K, Marino S, DePinho RA, van Lohuizen M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature. 1999;397(6715):164–8. doi: 10.1038/16476. PubMed DOI
Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15INK4B tumor suppressor gene. Oncogene. 2011;30(16):1956–62. doi: 10.1038/onc.2010.568. PubMed DOI PMC
Rajaraman P, Melin BS, Wang Z, McKean-Cowdin R, Michaud DS, Wang SS, et al. Genome-wide association study of glioma and meta-analysis. Hum Genet. 2012;131(12):1877–88. doi: 10.1007/s00439-012-1212-0. PubMed DOI PMC
Turnbull C, Ahmed S, Morrison J, Pernet D, Renwick A, Maranian M, et al. Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet. 2010;42(6):504–7. doi: 10.1038/ng.586. PubMed DOI PMC
Pasmant E, Laurendeau I, Héron D, Vidaud M, Vidaud D, Bièche I. Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res. 2007;67(8):3963–9. doi: 10.1158/0008-5472.CAN-06-2004. PubMed DOI
Qiu JJ, Wang Y, Liu YL, Zhang Y, Ding JX, Hua KQ. The long non-coding RNA ANRIL promotes proliferation and cell cycle progression and inhibits apoptosis and senescence in epithelial ovarian cancer. Oncotarget. 2016;7(22):32478–92. doi: 10.18632/oncotarget.8744. PubMed DOI PMC
Hitomi T, Matsuzaki Y, Yasuda S, Kawanaka M, Yogosawa S, Koyama M, et al. is involved in the transcriptional repression of the p15 INK4b gene. FEBS Lett. 2007;581(6):1087–92. doi: 10.1016/j.febslet.2007.01.092. PubMed DOI
Ogura T, Azuma K, Sato J, Kinowaki K, Takayama KI, Takeiwa T, et al. OCT1 is a poor prognostic factor for breast cancer patients and promotes cell proliferation via inducing NCAPH. Int J Mol Sci. 2021;22(21):11505. doi: 10.3390/ijms222111505. PubMed DOI PMC
Zhong Y, Huang H, Chen M, Huang J, Wu Q, Yan GR, et al. POU2F1 over-expression correlates with poor prognoses and promotes cell growth and epithelial-to-mesenchymal transition in hepatocellular carcinoma. Oncotarget. 2017;8(27):44082–95. doi: 10.18632/oncotarget.17296. PubMed DOI PMC
Wang YP, Song GH, Chen J, Xiao C, Li C, Zhong L, et al. Elevated OCT1 participates in colon tumorigenesis and independently predicts poor prognoses of colorectal cancer patients. Tumor Bio. 2016;37(3):3247–55. doi: 10.1007/s13277-015-4080-0. PubMed DOI PMC
Li JM, Datto MB, Shen X, Hu PP, Yu Y, Wang XF , but not Sp3, functions to mediate promoter activation by TGF-beta through canonical Sp1 binding sites. Nucleic Acids Res. 1998;26(10):2449–56. doi: 10.1093/nar/26.10.2449. PubMed DOI PMC
Sandhu C, Garbe J, Bhattacharya N, Daksis J, Pan CH, Yaswen P, et al. Transforming growth factor β stabilizes p15 INK4B protein, increases p15 INK4B -cdk4 complexes, and inhibits Cyclin D1-cdk4 association in human mammary epithelial cells. Mol Cell Biol. 1997;17(5):2458–67. doi: 10.1128/MCB.17.5.2458. PubMed DOI PMC
Katayama K, Nakamura A, Sugimoto Y, Tsuruo T, Fujita N. FOXO transcription factor-dependent p15INK4b and p19INK4d expression. Oncogene. 2008;27(12):1677–86. doi: 10.1038/sj.onc.1210813. PubMed DOI
Ballif BA, Villén J, Beausoleil SA, Schwartz D, Gygi SP. Phosphoproteomic analysis of the developing mouse brain. Mol Cell Proteomics. 2004;3(11):1093–101. doi: 10.1074/mcp.M400085-MCP200. PubMed DOI
Gil J, Peters G. Regulation of the INK4b–ARF–INK4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol. 2006;7(9):667–77. doi: 10.1038/nrm1987. PubMed DOI
Schuster K, Venkateswaran N, Rabellino A, Girard L, Peña-Llopis S, Scaglioni PP. Nullifying the CDKN2AB Locus Promotes Mutant K-ras Lung Tumorigenesis. Mol Cancer Res. 2014;12(6):912–23. PubMed PMC
Tu Q, Hao J, Zhou X, Yan L, Dai H, Sun B, et al. CDKN2B deletion is essential for pancreatic cancer development instead of unmeaningful co-deletion due to juxtaposition to CDKN2A. Oncogene. 2018;37(1):128–38. doi: 10.1038/onc.2017.316. PubMed DOI PMC
Inoue K, Fry EA. Aberrant expression of p16INK4a in human cancers - a new biomarker? Cancer Rep Rev. 2018 doi: 10.15761/CRR.1000145. PubMed DOI PMC
Park SS, Lee YK, Park SH, Lim SB, Choi YW, Shin JS, et al. p15INK4B is an alternative marker of senescent tumor cells in colorectal cancer. Heliyon. 2023;9(2):e13170. doi: 10.1016/j.heliyon.2023.e13170. PubMed DOI PMC
Coppé JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118. doi: 10.1146/annurev-pathol-121808-102144. PubMed DOI PMC
Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, et al. Cellular senescence: defining a path forward. Cell. 2019;179(4):813–27. doi: 10.1016/j.cell.2019.10.005. PubMed DOI
Takasugi M, Yoshida Y, Hara E, Ohtani N. The role of cellular senescence and SASP in tumour microenvironment. FEBS J. 2023;290(5):1348–61. doi: 10.1111/febs.16381. PubMed DOI
Xiao S, Qin D, Hou X, Tian L, Yu Y, Zhang R, et al. Cellular senescence: a double-edged sword in cancer therapy. Front Oncol. 2023;13:1189015. doi: 10.3389/fonc.2023.1189015. PubMed DOI PMC
Buj R, Leon KE, Anguelov MA, Aird KM. Suppression of p16 alleviates the senescence-associated secretory phenotype. Aging. 2021;13(3):3290–312. doi: 10.18632/aging.202640. PubMed DOI PMC
Blais A, Labrie Y, Pouliot F, Lachance Y, Labrie C. Structure of the gene encoding the human cyclin-dependent kinase inhibitor p18 and Mutational Analysis In Breast Cancer. Biochem Biophys Res Commun. 1998;247(1):146–53. doi: 10.1006/bbrc.1998.8497. PubMed DOI
Latres E. Limited overlapping roles of P15INK4b and P18INK4c cell cycle inhibitors in proliferation and tumorigenesis. EMBO J. 2000;19(13):3496–506. doi: 10.1093/emboj/19.13.3496. PubMed DOI PMC
Franklin DS, Godfrey VL, Lee H, Kovalev GI, Schoonhoven R, Chen-Kiang S, et al. CDK inhibitors p18(INK4c) and p27(Kip1) mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev. 1998;12(18):2899–911. doi: 10.1101/gad.12.18.2899. PubMed DOI PMC
Bai F, Pei XH, Godfrey VL, Xiong Y. Haploinsufficiency of p18(INK4c) sensitizes mice to carcinogen-induced tumorigenesis. Mol Cell Biol. 2003;23(4):1269–77. doi: 10.1128/MCB.23.4.1269-1277.2003. PubMed DOI PMC
Bai F, Pei XH, Pandolfi PP, Xiong Y. p18 Ink4c and Pten constrain a positive regulatory loop between cell growth and cell cycle control. Mol Cell Biol. 2006;26(12):4564–76. doi: 10.1128/MCB.00266-06. PubMed DOI PMC
Zindy F, Nilsson LM, Nguyen L, Meunier C, Smeyne RJ, Rehg JE, et al. Hemangiosarcomas, medulloblastomas, and other tumors in Ink4c/p53-null mice. Cancer Res. 2003;63(17):5420–7. PubMed
Blais A, Monté D, Pouliot F, Labrie C. Regulation of the human cyclin-dependent kinase inhibitor p18 by the transcription factors E2F1 and Sp1. J Biol Chem. 2002;277(35):31679–93. doi: 10.1074/jbc.M204554200. PubMed DOI
Sánchez-Aguilera A, Delgado J, Camacho FI, Sánchez-Beato M, Sánchez L, Montalbán C, et al. Silencing of the p18INK4c gene by promoter hypermethylation in Reed-Sternberg cells in Hodgkin lymphomas. Blood. 2004;103(6):2351–7. doi: 10.1182/blood-2003-07-2356. PubMed DOI
Cui H, Zhao C, Gong P, Wang L, Wu H, Zhang K, et al. DNA methyltransferase 3A promotes cell proliferation by silencing CDK inhibitor p18INK4C in gastric carcinogenesis. Sci Rep. 2015;5(1):13781. doi: 10.1038/srep13781. PubMed DOI PMC
Zhou M, Mao Y, Yu S, Li Y, Yin R, Zhang Q, et al. LINC00673 represses CDKN2C and promotes the proliferation of esophageal squamous cell carcinoma cells by EZH2-mediated H3K27 trimethylation. Front Oncol. 2020;18:10. PubMed PMC
Chen H, Su Y, Yang L, Xi L, Li X, Lan B, et al. CBX8 promotes lung adenocarcinoma growth and metastasis through transcriptional repression of CDKN2C and SCEL. J Cell Physiol. 2023;238:2710–23. doi: 10.1002/jcp.31124. PubMed DOI
Tang J, Meng Q, Shi R, Xu Y. PRMT6 serves an oncogenic role in lung adenocarcinoma via regulating p18. Mol Med Rep. 2020;22:3161–72. PubMed PMC
Forget A, Ayrault O, den Besten W, Kuo ML, Sherr CJ, Roussel MF. Differential post-transcriptional regulation of two Ink4 proteins, p18 Ink4c and p19 Ink4d. Cell Cycle. 2008;7(23):3737–46. doi: 10.4161/cc.7.23.7187. PubMed DOI PMC
Li Y, Shi F, Hu J, Xie L, Zhao L, Tang M, et al. Stabilization of p18 by deubiquitylase CYLD is pivotal for cell cycle progression and viral replication. NPJ Precis Oncol. 2021;5(1):14. doi: 10.1038/s41698-021-00153-8. PubMed DOI PMC
Uziel T, Zindy F, Sherr CJ, Roussel MF. The CDK inhibitor p18Ink4c is a tumor suppressor in medulloblastoma. Cell Cycle. 2006;5:363–5. doi: 10.4161/cc.5.4.2475. PubMed DOI
Morishita A, Masaki T, Yoshiji H, Nakai S, Ogi T, Miyauchi Y, et al. Reduced expression of cell cycle regulator p18INK4C in human hepatocellular carcinoma. Hepatology. 2004;40(3):677–86. doi: 10.1002/hep.20337. PubMed DOI
Bartkova J, Thullberg M, Rajpert-De Meyts E, Skakkebæk NE, Bartek J. Cell cycle regulators in testicular cancer: loss of p18(INK4) marks progression from carcinoma in situ to invasive germ cell tumours. Int J Cancer. 2000;85(3):370–5. doi: 10.1002/(SICI)1097-0215(20000201)85:3<370::AID-IJC13>3.0.CO;2-A. PubMed DOI
Van Veelen W, Van Gasteren CJR, Acton DS, Franklin DS, Berger R, Lips CJM, et al. Synergistic effect of oncogenic RET and loss of p18 on medullary thyroid carcinoma development. Cancer Res. 2008;68(5):1329–37. doi: 10.1158/0008-5472.CAN-07-5754. PubMed DOI
Van Veelen W, Klompmaker R, Gloerich M, Van Gasteren CJR, Kalkhoven E, Berger R, et al. P18 is a tumor suppressor gene involved in human medullary thyroid carcinoma and pheochromocytoma development. Int J Cancer. 2009;124(2):339–45. doi: 10.1002/ijc.23977. PubMed DOI
Cui H, Zhao C, Gong P, Wang L, Wu H, Zhang K, et al. DNA methyltransferase 3A promotes cell proliferation by silencing CDK inhibitor p18 INK4C in gastric carcinogenesis. Sci Rep. 2015;5:13781. doi: 10.1038/srep13781. PubMed DOI PMC
Li Q, Jiang B, Guo J, Shao H, Del Priore IS, Chang Q, et al. INK4 tumor suppressor proteins mediate resistance to CDK4/6 kinase inhibitors. Cancer Discov. 2022;12(2):356–71. doi: 10.1158/2159-8290.CD-20-1726. PubMed DOI PMC
Schmalzbauer BS, Thondanpallil T, Heller G, Schirripa A, Sperl CM, Mayer IM, et al. CDK6 degradation is counteracted by p16INK4A and p18INK4C in AML. Cancers. 2022;14(6):1554. doi: 10.3390/cancers14061554. PubMed DOI PMC
Zindy F, Cunningham JJ, Sherr CJ, Jogal S, Smeyne RJ, Roussel MF. Postnatal neuronal proliferation in mice lacking Ink4d and Kip1 inhibitors of cyclin-dependent kinases. Proc Natl Acad Sci. 1999;96(23):13462–7. doi: 10.1073/pnas.96.23.13462. PubMed DOI PMC
Zindy F, den Besten W, Chen B, Rehg JE, Latres E, Barbacid M, et al. Control of spermatogenesis in mice by the cyclin D-dependent kinase inhibitors p18 Ink4c and p19 Ink4d. Mol Cell Biol. 2001;21(9):3244–55. doi: 10.1128/MCB.21.9.3244-3255.2001. PubMed DOI PMC
Han X, Zhang J, Peng Y, Peng M, Chen X, Chen H, et al. Unexpected role for p19INK4d in posttranscriptional regulation of GATA1 and modulation of human terminal erythropoiesis. Blood. 2017;129(2):226–37. doi: 10.1182/blood-2016-09-739268. PubMed DOI PMC
Sonzogni SV, Ogara MF, Belluscio LM, Castillo DS, Scassa ME, Cánepa ET. p19INK4d is involved in the cellular senescence mechanism contributing to heterochromatin formation. Biochimica et Biophysica Acta Gene Sub. 2014;1840(7):2171–83. doi: 10.1016/j.bbagen.2014.03.015. PubMed DOI
Sonzogni SV, Ogara MF, Castillo DS, Sirkin PF, Radicella JP, Cánepa ET. Nuclear translocation of p19INK4d in response to oxidative DNA damage promotes chromatin relaxation. Mol Cell Biochem. 2015;398(1–2):63–72. doi: 10.1007/s11010-014-2205-1. PubMed DOI
Ceruti JM, Scassa ME, Fló JM, Varone CL, Cánepa ET. Induction of p19INK4d in response to ultraviolet light improves DNA repair and confers resistance to apoptosis in neuroblastoma cells. Oncogene. 2005;24(25):4065–80. doi: 10.1038/sj.onc.1208570. PubMed DOI
Scassa ME, Marazita MC, Ceruti JM, Carcagno AL, Sirkin PF, González-Cid M, et al. Cell cycle inhibitor, p19INK4d, promotes cell survival and decreases chromosomal aberrations after genotoxic insult due to enhanced DNA repair. DNA Repair. 2007;6(5):626–38. doi: 10.1016/j.dnarep.2006.12.003. PubMed DOI
Carcagno AL, Marazita MC, Ogara MF, Ceruti JM, Sonzogni SV, Scassa ME, et al. E2F1-mediated upregulation of p19INK4d determines its periodic expression during cell cycle and regulates cellular proliferation. PLoS ONE. 2011;6(7):e21938. doi: 10.1371/journal.pone.0021938. PubMed DOI PMC
Carcagno AL, Giono LE, Marazita MC, Castillo DS, Pregi N, Cánepa ET. E2F1 induces p19INK4d, a protein involved in the DNA damage response, following UV irradiation. Mol Cell Biochem. 2012;366(1–2):123–9. doi: 10.1007/s11010-012-1289-8. PubMed DOI
Tavera-Mendoza L, Wang TT, Lallemant B, Zhang R, Nagai Y, Bourdeau V, et al. Convergence of vitamin D and retinoic acid signalling at a common hormone response element. EMBO Rep. 2006;7(2):180–5. doi: 10.1038/sj.embor.7400594. PubMed DOI PMC
Korf K, Wodrich H, Haschke A, Ocampo C, Harder L, Gieseke F, et al. The PML domain of PML–RARα blocks senescence to promote leukemia. Proc Natl Acad Sci. 2014;111(33):12133–8. doi: 10.1073/pnas.1412944111. PubMed DOI PMC
Zhou H, Cai Y, Liu D, Li M, Sha Y, Zhang W, et al. Pharmacological or transcriptional inhibition of both HDAC 1 and 2 leads to cell cycle blockage and apoptosis via p21 Waf1/Cip1 and p19 INK4d upregulation in hepatocellular carcinoma. Cell Prolif. 2018;51(3):337–42. doi: 10.1111/cpr.12447. PubMed DOI PMC
Thullberg M, Bartek J, Lukas J. Ubiquitin/proteasome-mediated degradation of p19INK4d determines its periodic expression during the cell cycle. Oncogene. 2000;19(24):2870–6. doi: 10.1038/sj.onc.1203579. PubMed DOI
Forget A, Ayrault O, den Besten W, Kuo ML, Sherr CJ, Roussel MF. Differential post-transcriptional regulation of two Ink4 proteins, p18Ink4c and p19Ink4d. Cell Cycle. 2008;7(23):3737–46. doi: 10.4161/cc.7.23.7187. PubMed DOI PMC
Kumar A, Gopalswamy M, Wolf A, Brockwell DJ, Hatzfeld M, Balbach J. Phosphorylation-induced unfolding regulates p19 INK4d during the human cell cycle. Proc Natl Acad Sci. 2018;115(13):3344–9. doi: 10.1073/pnas.1719774115. PubMed DOI PMC
Penas C, Ramachandran V, Ayad NG. The APC/C ubiquitin ligase: from cell biology to tumorigenesis. Front Oncol. 2012;1:60. doi: 10.3389/fonc.2011.00060. PubMed DOI PMC
Msallam M, Sun H, Meledin R, Franz P, Brik A. Examining the role of phosphorylation of p19 INK4d in its stability and ubiquitination using chemical protein synthesis. Chem Sci. 2020;11(21):5526–31. doi: 10.1039/C9SC06300E. PubMed DOI PMC
Marazita MC, Ogara MF, Sonzogni SV, Martí M, DUSETTI NJ, Pignataro OP, et al. CDK2 and PKA mediated-sequential phosphorylation is critical for p19INK4d function in the DNA damage response. PLoS ONE. 2012;7(4):e35638. doi: 10.1371/journal.pone.0035638. PubMed DOI PMC
Bai F, Chan HL, Smith MD, Kiyokawa H, Pei XH. p19 Ink4d is a tumor suppressor and controls pituitary anterior lobe cell proliferation. Mol Cell Biol. 2014;34(12):2121–34. doi: 10.1128/MCB.01363-13. PubMed DOI PMC
Felisiak-Golabek A, Dansonka-Mieszkowska A, Rzepecka IK, Szafron L, Kwiatkowska E, Konopka B, et al. p19 INK4d mRNA and protein expression as new prognostic factors in ovarian cancer patients. Cancer Biol Ther. 2013;14(10):973–81. doi: 10.4161/cbt.25966. PubMed DOI PMC
Morishita A. Frequent loss of p19INK4D expression in hepatocellular carcinoma: relationship to tumor differentiation and patient survival. Oncol Rep. 2011;26:1363–8. PubMed
Parati MC, Pedersini R, Perego G, Reduzzi R, Savio T, Cabiddu M, et al. Ribociclib in the treatment of hormone-receptor positive/HER2-negative advanced and early breast cancer: overview of clinical data and patients selection. Breast Cancer Targets Therapy. 2022;14:101–11. doi: 10.2147/BCTT.S341857. PubMed DOI PMC
Raheem F, Ofori H, Simpson L, Shah V. Abemaciclib: the first FDA-approved CDK4/6 inhibitor for the adjuvant treatment of HR+ HER2−early breast cancer. Ann Pharmacother. 2022;56(11):1258–66. doi: 10.1177/10600280211073322. PubMed DOI
Beaver JA, Amiri-Kordestani L, Charlab R, Chen W, Palmby T, Tilley A, et al. FDA approval: palbociclib for the treatment of postmenopausal patients with estrogen receptor-positive, HER2-negative metastatic breast cancer. Clin Cancer Res. 2015;21(21):4760–6. doi: 10.1158/1078-0432.CCR-15-1185. PubMed DOI
Dhillon S. Trilaciclib: first approval. Drugs. 2021;81(7):867–74. doi: 10.1007/s40265-021-01508-y. PubMed DOI
Mughal MJ, Bhadresha K, Kwok HF. CDK inhibitors from past to present: a new wave of cancer therapy. Semin Cancer Biol. 2023;88:106–22. doi: 10.1016/j.semcancer.2022.12.006. PubMed DOI
Schoninger SF, Blain SW. The ongoing search for biomarkers of CDK4/6 inhibitor responsiveness in breast cancer. Mol Cancer Ther. 2020;19(1):3–12. doi: 10.1158/1535-7163.MCT-19-0253. PubMed DOI PMC
Xu XQ, Pan XH, Wang TT, Wang J, Yang B, He QJ, et al. Intrinsic and acquired resistance to CDK4/6 inhibitors and potential overcoming strategies. Acta Pharmacol Sin. 2021;42(2):171–8. doi: 10.1038/s41401-020-0416-4. PubMed DOI PMC
Papadimitriou MC, Pazaiti A, Iliakopoulos K, Markouli M, Michalaki V, Papadimitriou CA. Resistance to CDK4/6 inhibition: Mechanisms and strategies to overcome a therapeutic problem in the treatment of hormone receptor-positive metastatic breast cancer. Biochimica et Biophysica Acta Mol Cell Res. 2022;1869(12):119346. doi: 10.1016/j.bbamcr.2022.119346. PubMed DOI