Biological variation of PIVKA-II in blood serum of healthy subjects measured by automated electrochemiluminescent assay
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38576474
PubMed Central
PMC10992686
DOI
10.1016/j.plabm.2024.e00389
PII: S2352-5517(24)00035-0
Knihovny.cz E-zdroje
- Klíčová slova
- Biological Variation, Index of individuality, PIVKA-II, Reference change value,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Prothrombin/Protein Induced by Vitamin K Absence-II (PIVKA-II) is a candidate biomarker of hepatocellular cancer, recommended both for diagnostics and monitoring. The aim was to evaluate biological variation (BV) of serum PIVKA-II. METHODS: Within-subject (CVI) and between-subject (CVG) BV estimates were assessed in 14 healthy volunteers in a 6-week protocol. Serum concentrations of PIVKA-II were measured by a Roche Elecsys PIVKA-II diagnostic kit (cobas e8000). Precision (CVA) was assessed from duplicate measurements of all volunteers' samples. Two methods were used for the estimation of CVI: SD-ANOVA and CV-ANOVA method. We calculated the index of individuality (II) and reference change value. The experiment was fully compliant with EFLM database checklist. RESULTS: The CVI of PIVKA-II in healthy persons, as calculated by two statistical methods, were 8.2% (SD-ANOVA with CVA of 3.2%) and 9.4% (CV-ANOVA) with CVA of 2.7%). The CVG was 19.5% (SD-ANOVA), and respective II and RCV were 0.42 and 24.4%. CONCLUSIONS: CVI and CVG of PIVKA-II were 8.2% and 19.5%, respectively, with CVA below 4%. The low II and RCV below 25% enable the use of this biomarker both for diagnostics and monitoring. More data are needed before the introduction of PIVKA-II into clinical practice.
Zobrazit více v PubMed
Chan H.L.Y., Vogel A., Berg T., De Toni E.N., Kudo M., Trojan J., Eiblmaier A., Klein H.-G., Hegel J.K., Sharma A., Madin K., Rolny V., Lisy M.-R., Piratvisuth T. Performance evaluation of the Elecsys PIVKA-II and Elecsys AFP assays for hepatocellular carcinoma diagnosis. JGH Open. 2022;6:292–300. doi: 10.1002/jgh3.12720. PubMed DOI PMC
Piratvisuth T T., Hou J., Tanwandee T., Berg T., Vogel A., Trojan J., De Toni E.N., Kudo M., Eiblmaier A., Klein H.G., Hegel J.K., Madin K., Kroeniger K., Sharma A., Chan H.L.Y. Development and clinical validation of a novel algorithmic score (GAAD) for detecting HCC in prospective cohort studies. Hepatol Commun. 2023 Nov 8;7(11) doi: 10.1097/HC9.0000000000000317. PubMed DOI PMC
Best J., Bilgi H., Heider D., Schotten C., Manka P., Bedreli S., Gorray M., Ertle J., van Grunsven L.A., Dechêne A. The GALAD scoring algorithm based on AFP, AFP-L3, and DCP significantly improves detection of BCLC early stage hepatocellular carcinoma. Z. Gastroenterol. 2016 Dec;54(12):1296–1305. doi: 10.1055/s-0042-119529. PubMed DOI
Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality Worldwide for 36 cancers in 185 Countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI
Mazzaferro V., Regalia E., Doci R., Andreola S., Pulvirenti A., Bozzetti F., Montalto F., Ammatuna M., Morabito A., Gennari L. Treatment of Small hepatocellular Carcinomas in patients with Cirrhosis. N. Engl. J. Med. 1996;334(11):693–699. doi: 10.1056/NEJM199603143341104. PubMed DOI
Shimamura T., Goto R., Watanabe M., Kawamura N., Takada Y. Liver transplantation for hepatocellular carcinoma: How should We Improve the Thresholds? Cancers. 2022;14(2):419. doi: 10.3390/cancers14020419. PubMed DOI PMC
Aarsand A.K., Fernandez-Calle P., Webster C., Coskun A., Gonzales-Lao E., Diaz-Garzon J., Jonker N., Simon M., Braga F., Perich C., Boned B., Marques-Garcia F., Carobene A., Aslan B., Sezer E., Bartlett W.A., Sandberg S. The EFLM biological variation Database. https://biologicalvariation.eu Available from.
Aarsand A.K., Røraas T., Fernandez-Calle P., Ricos C., Díaz-Garzón J., Jonker N., Perich C., González-Lao E., Carobene A., Minchinela J., Coşkun A., Simón M., Álvarez V., Bartlett W.A., Fernández-Fernández P., Boned B., Braga F., Corte Z., Aslan B., Sandberg S. The biological variation data Critical Appraisal Checklist: a standard for evaluating studies on biological variation. Clin. Chem. 2018;64:501–514. doi: 10.1373/clinchem.2017.281808. PubMed DOI
Jones G.R.D. Estimates of within-subject biological variation derived from Pathology Databases: an Approach to allow assessment of the Effects of age, Sex, time between sample Collections, and Analyte concentration on reference change values. Clin. Chem. 2019;65:579–588. doi: 10.1373/clinchem.2018.290841. PubMed DOI
Jabor A., Kubíček Z., Komrsková J., Vacková T., Vymětalík J., Franeková J. Biological variation of intact fibroblast growth factor 23 measured on a fully automated chemiluminescent platform. Ann. Clin. Biochem. 2019;56:381–386. doi: 10.1177/0004563219826161. PubMed DOI
Braga F., Panteghini M. Generation of data on within-subject biological variation in laboratory medicine: an update. Crit. Rev. Clin. Lab Sci. 2016;53:313–325. doi: 10.3109/10408363.2016.1150252. PubMed DOI
Røraas T., Støve B., Petersen P.H., Sandberg S. Biological variation: the effect of different distributions on estimated within-person variation and reference change values. Clin. Chem. 2016;62:725–736. doi: 10.1373/clinchem.2015.252296. PubMed DOI
Røraas T. University of Bergen; 2017. Estimating Biological Variation: Methodological and Statistical Aspects. [Ph.D. thesis], Norway, Bergen. DOI
R Core Team . R Foundation for Statistical Computing; Vienna, Austria: 2022. R: A Language and Environment for Statistical Computing.https://www.R-project.org/
Fokkema M.R., Herrmann Z., Muskiet F.A., Moecks J. Reference change values for brain natriuretic peptides revisited. Clin. Chem. 2006;52:1602–1603. doi: 10.1373/clinchem.2006.069369. PubMed DOI
Carobene A., Marino I., Coşkun A., Serteser M., Unsal I., Guerra E., Bartlett W.A., Sandberg S., Aarsand A.K., Sylte M.S., Røraas T., Sølvik U.Ø., Fernandez-Calle P., Díaz-Garzón J., Tosato F., Plebani M., Jonker N., Barla G., Ceriotti F. European biological variation study of the EFLM working group on biological variation. The EuBIVAS Project: within- and between-subject biological variation data for serum Creatinine using Enzymatic and Alkaline Picrate methods and Implications for monitoring. Clin. Chem. 2017;63:1527–1536. doi: 10.1373/clinchem.2017.275115. PubMed DOI
Røraas T., Petersen P.H., Sandberg S. Confidence intervals and power calculations for within-person biological variation: effect of analytical imprecision, number of replicates, number of samples, and number of individuals. Clin. Chem. 2012;58:1306–1313. doi: 10.1373/clinchem.2012.187781. PubMed DOI
Bayart J.L., Mairesse A., Gruson D., van Dievoet M.A. Analytical performances and biological variation of PIVKA-II (des-y-carboxy-prothrombin) in European healthy adults. Clin. Chim. Acta. 2020;509:264–267. doi: 10.1016/j.cca.2020.06.035. PubMed DOI
Fraser C.G. AACC Press; Washington, DC: 2001. Biological Variation: from Principles to Practice.
Fraser C.G. Reference change values. Mini review. Clin. Chem. Lab. Med. 2012;50:807–812. doi: 10.1515/CCLM.2011.733. PubMed DOI
Sagar V.M., Herring K., Curbishley S., Hodson J., Fletcher P., Karkhanis S., Mehrzad H., Punia P., Shah T., Shetty S., Ma Y.T. The potential of PIVKA-II as a treatment response biomarker in hepatocellular carcinoma: a prospective United Kingdom cohort study. Oncotarget. 2021;12:2338–2350. doi: 10.18632/oncotarget.28136. PubMed DOI PMC