Biological variation of PIVKA-II in blood serum of healthy subjects measured by automated electrochemiluminescent assay

. 2024 Mar ; 39 () : e00389. [epub] 20240319

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38576474
Odkazy

PubMed 38576474
PubMed Central PMC10992686
DOI 10.1016/j.plabm.2024.e00389
PII: S2352-5517(24)00035-0
Knihovny.cz E-zdroje

BACKGROUND: Prothrombin/Protein Induced by Vitamin K Absence-II (PIVKA-II) is a candidate biomarker of hepatocellular cancer, recommended both for diagnostics and monitoring. The aim was to evaluate biological variation (BV) of serum PIVKA-II. METHODS: Within-subject (CVI) and between-subject (CVG) BV estimates were assessed in 14 healthy volunteers in a 6-week protocol. Serum concentrations of PIVKA-II were measured by a Roche Elecsys PIVKA-II diagnostic kit (cobas e8000). Precision (CVA) was assessed from duplicate measurements of all volunteers' samples. Two methods were used for the estimation of CVI: SD-ANOVA and CV-ANOVA method. We calculated the index of individuality (II) and reference change value. The experiment was fully compliant with EFLM database checklist. RESULTS: The CVI of PIVKA-II in healthy persons, as calculated by two statistical methods, were 8.2% (SD-ANOVA with CVA of 3.2%) and 9.4% (CV-ANOVA) with CVA of 2.7%). The CVG was 19.5% (SD-ANOVA), and respective II and RCV were 0.42 and 24.4%. CONCLUSIONS: CVI and CVG of PIVKA-II were 8.2% and 19.5%, respectively, with CVA below 4%. The low II and RCV below 25% enable the use of this biomarker both for diagnostics and monitoring. More data are needed before the introduction of PIVKA-II into clinical practice.

Zobrazit více v PubMed

Chan H.L.Y., Vogel A., Berg T., De Toni E.N., Kudo M., Trojan J., Eiblmaier A., Klein H.-G., Hegel J.K., Sharma A., Madin K., Rolny V., Lisy M.-R., Piratvisuth T. Performance evaluation of the Elecsys PIVKA-II and Elecsys AFP assays for hepatocellular carcinoma diagnosis. JGH Open. 2022;6:292–300. doi: 10.1002/jgh3.12720. PubMed DOI PMC

Piratvisuth T T., Hou J., Tanwandee T., Berg T., Vogel A., Trojan J., De Toni E.N., Kudo M., Eiblmaier A., Klein H.G., Hegel J.K., Madin K., Kroeniger K., Sharma A., Chan H.L.Y. Development and clinical validation of a novel algorithmic score (GAAD) for detecting HCC in prospective cohort studies. Hepatol Commun. 2023 Nov 8;7(11) doi: 10.1097/HC9.0000000000000317. PubMed DOI PMC

Best J., Bilgi H., Heider D., Schotten C., Manka P., Bedreli S., Gorray M., Ertle J., van Grunsven L.A., Dechêne A. The GALAD scoring algorithm based on AFP, AFP-L3, and DCP significantly improves detection of BCLC early stage hepatocellular carcinoma. Z. Gastroenterol. 2016 Dec;54(12):1296–1305. doi: 10.1055/s-0042-119529. PubMed DOI

Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality Worldwide for 36 cancers in 185 Countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI

Mazzaferro V., Regalia E., Doci R., Andreola S., Pulvirenti A., Bozzetti F., Montalto F., Ammatuna M., Morabito A., Gennari L. Treatment of Small hepatocellular Carcinomas in patients with Cirrhosis. N. Engl. J. Med. 1996;334(11):693–699. doi: 10.1056/NEJM199603143341104. PubMed DOI

Shimamura T., Goto R., Watanabe M., Kawamura N., Takada Y. Liver transplantation for hepatocellular carcinoma: How should We Improve the Thresholds? Cancers. 2022;14(2):419. doi: 10.3390/cancers14020419. PubMed DOI PMC

Aarsand A.K., Fernandez-Calle P., Webster C., Coskun A., Gonzales-Lao E., Diaz-Garzon J., Jonker N., Simon M., Braga F., Perich C., Boned B., Marques-Garcia F., Carobene A., Aslan B., Sezer E., Bartlett W.A., Sandberg S. The EFLM biological variation Database. https://biologicalvariation.eu Available from.

Aarsand A.K., Røraas T., Fernandez-Calle P., Ricos C., Díaz-Garzón J., Jonker N., Perich C., González-Lao E., Carobene A., Minchinela J., Coşkun A., Simón M., Álvarez V., Bartlett W.A., Fernández-Fernández P., Boned B., Braga F., Corte Z., Aslan B., Sandberg S. The biological variation data Critical Appraisal Checklist: a standard for evaluating studies on biological variation. Clin. Chem. 2018;64:501–514. doi: 10.1373/clinchem.2017.281808. PubMed DOI

Jones G.R.D. Estimates of within-subject biological variation derived from Pathology Databases: an Approach to allow assessment of the Effects of age, Sex, time between sample Collections, and Analyte concentration on reference change values. Clin. Chem. 2019;65:579–588. doi: 10.1373/clinchem.2018.290841. PubMed DOI

Jabor A., Kubíček Z., Komrsková J., Vacková T., Vymětalík J., Franeková J. Biological variation of intact fibroblast growth factor 23 measured on a fully automated chemiluminescent platform. Ann. Clin. Biochem. 2019;56:381–386. doi: 10.1177/0004563219826161. PubMed DOI

Braga F., Panteghini M. Generation of data on within-subject biological variation in laboratory medicine: an update. Crit. Rev. Clin. Lab Sci. 2016;53:313–325. doi: 10.3109/10408363.2016.1150252. PubMed DOI

Røraas T., Støve B., Petersen P.H., Sandberg S. Biological variation: the effect of different distributions on estimated within-person variation and reference change values. Clin. Chem. 2016;62:725–736. doi: 10.1373/clinchem.2015.252296. PubMed DOI

Røraas T. University of Bergen; 2017. Estimating Biological Variation: Methodological and Statistical Aspects. [Ph.D. thesis], Norway, Bergen. DOI

R Core Team . R Foundation for Statistical Computing; Vienna, Austria: 2022. R: A Language and Environment for Statistical Computing.https://www.R-project.org/

Fokkema M.R., Herrmann Z., Muskiet F.A., Moecks J. Reference change values for brain natriuretic peptides revisited. Clin. Chem. 2006;52:1602–1603. doi: 10.1373/clinchem.2006.069369. PubMed DOI

Carobene A., Marino I., Coşkun A., Serteser M., Unsal I., Guerra E., Bartlett W.A., Sandberg S., Aarsand A.K., Sylte M.S., Røraas T., Sølvik U.Ø., Fernandez-Calle P., Díaz-Garzón J., Tosato F., Plebani M., Jonker N., Barla G., Ceriotti F. European biological variation study of the EFLM working group on biological variation. The EuBIVAS Project: within- and between-subject biological variation data for serum Creatinine using Enzymatic and Alkaline Picrate methods and Implications for monitoring. Clin. Chem. 2017;63:1527–1536. doi: 10.1373/clinchem.2017.275115. PubMed DOI

Røraas T., Petersen P.H., Sandberg S. Confidence intervals and power calculations for within-person biological variation: effect of analytical imprecision, number of replicates, number of samples, and number of individuals. Clin. Chem. 2012;58:1306–1313. doi: 10.1373/clinchem.2012.187781. PubMed DOI

Bayart J.L., Mairesse A., Gruson D., van Dievoet M.A. Analytical performances and biological variation of PIVKA-II (des-y-carboxy-prothrombin) in European healthy adults. Clin. Chim. Acta. 2020;509:264–267. doi: 10.1016/j.cca.2020.06.035. PubMed DOI

Fraser C.G. AACC Press; Washington, DC: 2001. Biological Variation: from Principles to Practice.

Fraser C.G. Reference change values. Mini review. Clin. Chem. Lab. Med. 2012;50:807–812. doi: 10.1515/CCLM.2011.733. PubMed DOI

Sagar V.M., Herring K., Curbishley S., Hodson J., Fletcher P., Karkhanis S., Mehrzad H., Punia P., Shah T., Shetty S., Ma Y.T. The potential of PIVKA-II as a treatment response biomarker in hepatocellular carcinoma: a prospective United Kingdom cohort study. Oncotarget. 2021;12:2338–2350. doi: 10.18632/oncotarget.28136. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...