Effects of lipids on the rate-limiting steps in the dark-to-light transition of Photosystem II core complex of Thermostichus vulcanus

. 2024 ; 15 () : 1381040. [epub] 20240321

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38576791

In our earlier works, we have shown that the rate-limiting steps, associated with the dark-to-light transition of Photosystem II (PSII), reflecting the photochemical activity and structural dynamics of the reaction center complex, depend largely on the lipidic environment of the protein matrix. Using chlorophyll-a fluorescence transients (ChlF) elicited by single-turnover saturating flashes, it was shown that the half-waiting time (Δτ 1/2) between consecutive excitations, at which 50% of the fluorescence increment was reached, was considerably larger in isolated PSII complexes of Thermostichus (T.) vulcanus than in the native thylakoid membrane (TM). Further, it was shown that the addition of a TM lipid extract shortened Δτ 1/2 of isolated PSII, indicating that at least a fraction of the 'missing' lipid molecules, replaced by detergent molecules, caused the elongation of Δτ 1/2. Here, we performed systematic experiments to obtain information on the nature of TM lipids that are capable of decreasing Δτ 1/2. Our data show that while all lipid species shorten Δτ 1/2, the negatively charged lipid phosphatidylglycerol appears to be the most efficient species - suggesting its prominent role in determining the structural dynamics of PSII reaction center.

Zobrazit více v PubMed

Andrizhiyevskaya E. G., Chojnicka A., Bautista J. A., Diner B. A., Van Grondelle R., Dekker J. P. (2005). Origin of the F685 and F695 fluorescence in photosystem II. Photosynthesis Res. 84, 173–180. doi: 10.1007/s11120-005-0478-7 PubMed DOI

Aronsson H., Schottler M. A., Kelly A. A., Sundqvist C., Dormann P., Karim S., et al. . (2008). Monogalactosyldiacylglycerol deficiency in Arabidopsis affects pigment composition in the prolamellar body and impairs thylakoid membrane energization and photoprotection in leaves. Plant Physiol. 148, 580–592. doi: 10.1104/pp.108.123372 PubMed DOI PMC

Boekema E. J., Hankamer B., Bald D., Kruip J., Nield J., Boonstra A. F., et al. . (1995). Supramolecular structure of the photosystem II complex from green plants and cyanobacteria. Proc. Natl. Acad. Sci. U.S.A. 92, 175–179. doi: 10.1073/pnas.92.1.175 PubMed DOI PMC

Cardona T., Sedoud A., Cox N., Rutherford A. W. (2012). Charge separation in Photosystem II: A comparative and evolutionary overview. Biochim. Et Biophys. Acta-Bioenergetics 1817, 26–43. doi: 10.1016/j.bbabio.2011.07.012 PubMed DOI

Dorne A. J., Joyard J., Douce R. (1990). Do thylakoids really contain phosphatidylcholine. Proc. Natl. Acad. Sci. United States America 87, 71–74. doi: 10.1073/pnas.87.1.71 PubMed DOI PMC

Garab G., Yaguzhinsky L. S., Dlouhy O., Nesterov S. V., Spunda V., Gasanoff E. S. (2022). Structural and functional roles of non-bilayer lipid phases of chloroplast thylakoid membranes and mitochondrial inner membranes. Prog. Lipid Res. 86, 101163. doi: 10.1016/j.plipres.2022.101163 PubMed DOI

Gombos Z., Várkonyi Z., Hagio M., Iwaki M., Kovács L., Masamoto K., et al. . (2002). Phosphatidylglycerol requirement for the function of electron acceptor plastoquinone QB in the photosystem II reaction center. Biochemistry 41, 3796–3802. doi: 10.1021/bi011884h PubMed DOI

Govindjee G., Papageorgiou G. (2004). Chlorophyll A Fluorescence: A Signature of Photosynthesis (Dordrecht: Springer; ). doi: 10.1007/978-1-4020-3218-9 DOI

Güler S., Seeliger A., Hartel H., Renger G., Benning C. (1996). A null mutant of Synechococcus sp PCC7942 deficient in the sulfolipid sulfoquinovosyl diacylglycerol. J. Biol. Chem. 271, 7501–7507. doi: 10.1074/jbc.271.13.7501 PubMed DOI

Guskov A., Kern J., Gabdulkhakov A., Broser M., Zouni A., Saenger W. (2009). Cyanobacterial photosystem II at 2.9-A resolution and the role of quinones, lipids, channels and chloride. Nat. Struct. Mol. Biol. 16, 334–342. doi: 10.1038/nsmb.1559 PubMed DOI

Jarvis P., Dormann P., Peto C. A., Lutes J., Benning C., Chory J. (2000). Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant. Proc. Natl. Acad. Sci. U.S.A. 97, 8175–8179. doi: 10.1073/pnas.100132197 PubMed DOI PMC

Joliot P., Joliot A. (1979). Comparative-study of the fluorescence yield and of the C550 absorption change at room-temperature. Biochim. Et Biophys. Acta 546, 93–105. doi: 10.1016/0005-2728(79)90173-7 PubMed DOI

Jones M. R. (2007). Lipids in photosynthetic reaction centres: structural roles and functional holes. Prog. Lipid Res. 46, 56–87. doi: 10.1016/j.plipres.2006.06.001 PubMed DOI

Kansy M., Wilhelm C., Goss R. (2014). Influence of thylakoid membrane lipids on the structure and function of the plant photosystem II core complex. Planta 240, 781–796. doi: 10.1007/s00425-014-2130-2 PubMed DOI

Kato K., Miyazaki N., Hamaguchi T., Nakajima Y., Akita F., Yonekura K., et al. . (2021). High-resolution cryo-EM structure of photosystem II reveals damage from high-dose electron beams. Commun. Biol. 4. doi: 10.1038/s42003-021-01919-3 PubMed DOI PMC

Kawakami K., Shen J. R. (2018). Purification of fully active and crystallizable photosystem II from thermophilic cyanobacteria. Methods Enzymol. 613, 1–16. doi: 10.1016/bs.mie.2018.10.002 PubMed DOI

Kobayashi K., Narise T., Sonoike K., Hashimoto H., Sato N., Kondo M., et al. . (2013). Role of galactolipid biosynthesis in coordinated development of photosynthetic complexes and thylakoid membranes during chloroplast biogenesis in Arabidopsis. Plant J. 73, 250–261. doi: 10.1111/tpj.12028 PubMed DOI

Koike H., Inoue Y. (1983). “Preparation of oxygen-evolving photosystem II particles from a thermophilic blue-green alga,” in The Oxygen Evolving System of Photosynthesis. Eds. Inoue Y., Crofts A. R., Govindjee, Murata N., Renger G., Satoh K. (San Diego, CA: Academic Press; ).

Kouril R., Dekker J. P., Boekema E. J. (2012). Supramolecular organization of photosystem II in green plants. Biochim. Biophys. Acta 1817, 2–12. doi: 10.1016/j.bbabio.2011.05.024 PubMed DOI

Kruse O., Hankamer B., Konczak C., Gerle C., Morris E., Radunz A., et al. . (2000). Phosphatidylglycerol is involved in the dimerization of photosystem II. J. Biol. Chem. 275, 6509–6514. doi: 10.1074/jbc.275.9.6509 PubMed DOI

Laisk A., Oja V. (2020). Variable fluorescence of closed photochemical reaction centers. Photosynth Res. 143, 335–346. doi: 10.1007/s11120-020-00712-3 PubMed DOI

Lambrev P. H., Miloslavina Y., Jahns P., Holzwarth A. R. (2012). On the relationship between non-photochemical quenching and photoprotection of Photosystem II. Biochim. Et Biophys. Acta-Bioenergetics 1817, 760–769. doi: 10.1016/j.bbabio.2012.02.002 PubMed DOI

Leng J., Sakurai I., Wada H., Shen J. R. (2008). Effects of phospholipase and lipase treatments on photosystem II core dimer from a thermophilic cyanobacterium. Photosynth Res. 98, 469–478. doi: 10.1007/s11120-008-9335-9 PubMed DOI

Magyar M., Akhtar P., Sipka G., Han W., Li X., Han G., et al. . (2022). Dependence of the rate-limiting steps in the dark-to-light transition of photosystem II on the lipidic environment of the reaction center. Photosynthetica 60, 147–156. doi: 10.32615/ps.2022.016 DOI

Magyar M., Sipka G., Han W. H., Li X. Y., Han G. Y., Shen J. R., et al. . (2023). Characterization of the rate-limiting steps in the dark-to-light transitions of closed photosystem II: temperature dependence and invariance of waiting times during multiple light reactions. Int. J. Mol. Sci. 24. doi: 10.3390/ijms24010094 PubMed DOI PMC

Magyar M., Sipka G., Kovács L., Ughy B., Zhu Q. J., Han G. Y., et al. . (2018). Rate-limiting steps in the dark-to-light transition of Photosystem II - revealed by chlorophyll-fluorescence induction. Sci. Rep. 8. doi: 10.1038/s41598-018-21195-2 PubMed DOI PMC

Mcintosh T. J., Simon S. A. (2006). Roles of bilayer material properties in function and distribution of membrane proteins. Annu. Rev. Biophys. Biomol Struct. 35, 177–198. doi: 10.1146/annurev.biophys.35.040405.102022 PubMed DOI

Minoda A., Sonoike K., Okada K., Sato N., Tsuzuki M. (2003). Decrease in the efficiency of the electron donation to tyrosine Z of photosystem II in an SQDG-deficient mutant of. FEBS Lett. 553, 109–112. doi: 10.1016/S0014-5793(03)00981-5 PubMed DOI

Murata N., Sato N., Omata T., Kuwabara T. (1981). Separation and characterization of thylakoid and cell-envelope of the blue-green-alga (Cyanobacterium) anacystis-nidulans. Plant Cell Physiol. 22, 855–866. doi: 10.1093/oxfordjournals.pcp.a076231 DOI

Nakajima Y., Umena Y., Nagao R., Endo K., Kobayashi K., Akita F., et al. . (2018). Thylakoid membrane lipid sulfoquinovosyl-diacylglycerol (SQDG) is required for full functioning of photosystem II in Thermosynechococcus elongatus. J. Biol. Chem. 293, 14786–14797. doi: 10.1074/jbc.RA118.004304 PubMed DOI PMC

Nelson N., Ben-Shem A. (2004). The complex architecture of oxygenic photosynthesis. Nat. Rev. Mol. Cell Biol. 5, 971–982. doi: 10.1038/nrm1525 PubMed DOI

Papageorgiou G. C., Govindjee (2011). Photosystem II fluorescence: Slow changes - Scaling from the past. J. Photochem. Photobiol. B-Biology 104, 258–270. doi: 10.1016/j.jphotobiol.2011.03.008 PubMed DOI

Romero E., Novoderezhkin V. I., Van Grondelle R. (2017). Quantum design of photosynthesis for bio-inspired solar-energy conversion. Nature 543, 355–365. doi: 10.1038/nature22012 PubMed DOI

Sakurai I., Hagio M., Gombos Z., Tyystjärvi T., Paakkarinen V., Aro E. M., et al. . (2003). Requirement of phosphatidylglycerol for maintenance of photosynthetic machinery. Plant Physiol. 133, 1376–1384. doi: 10.1104/pp.103.026955 PubMed DOI PMC

Sakurai I., Mizusawa N., Wada H., Sato N. (2007). Digalactosyldiacylglycerol is required for stabilization of the oxygen-evolving complex in photosystem II. Plant Physiol. 145, 1361–1370. doi: 10.1104/pp.107.106781 PubMed DOI PMC

Sakurai I., Shen J. R., Leng J., Ohashi S., Kobayashi M., Wada H. (2006). Lipids in oxygen-evolving photosystem II complexes of cyanobacteria and higher plants. J. Biochem. 140, 201–209. doi: 10.1093/jb/mvj141 PubMed DOI

Schagger H., Cramer W. A., Von Jagow G. (1994). Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal. Biochem. 217, 220–230. doi: 10.1006/abio.1994.1112 PubMed DOI

Shen J. R., Inoue Y. (1993). Binding and functional properties of two new extrinsic components, cytochrome c-550 and a 12-kDa protein, in cyanobacterial photosystem II. Biochemistry 32, 1825–1832. doi: 10.1021/bi00058a017 PubMed DOI

Shen J. R., Kamiya N. (2000). Crystallization and the crystal properties of the oxygen-evolving photosystem II from Synechococcus vulcanus. Biochemistry 39, 14739–14744. doi: 10.1021/bi001402m PubMed DOI

Shen J.-R., Kawakami K., Koike H. (2011). “Purification and crystallization of oxygen-evolving photosystem II core complex from thermophilic cyanobacteria,” in Photosynthesis Research Protocols. Ed. Carpentier R. (Humana Press, Totowa, NJ: ). PubMed

Shibata Y., Nishi S., Kawakami K., Shen J. R., Renger T. (2013). Photosystem II does not possess a simple excitation energy funnel: time-resolved fluorescence spectroscopy meets theory. J. Am. Chem. Soc. 135, 6903–6914. doi: 10.1021/ja312586p PubMed DOI PMC

Siegenthaler P.-A., Murata N. (1998). Lipids in Photosynthesis: Structure, Function and Genetics (Kluwer Academic Publishers: The Netherlands; ).

Sipka G. B., Magyar M., Mezzetti A., Akhtar P., Zhu Q., Xiao Y., et al. . (2021). Light-adapted charge-separated state of photosystem II: structural and functional dynamics of the closed reaction center. Plant Cell 33, 1286–1302. doi: 10.1093/plcell/koab008 PubMed DOI PMC

Sipka G., Müller P., Brettel K., Magyar M., Kovács L., Zhu Q. J., et al. . (2019). Redox transients of P680 associated with the incremental chlorophyll-a fluorescence yield rises elicited by a series of saturating flashes in diuron-treated photosystem II core complex of Thermosynechococcus vulcanus. Physiologia Plantarum 166, 22–32. doi: 10.1111/ppl.12945 PubMed DOI

Suga M., Akita F., Hirata K., Ueno G., Murakami H., Nakajima Y., et al. . (2015). Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature 517, 99–U265. doi: 10.1038/nature13991 PubMed DOI

Takahashi T., Inoue-Kashino N., Ozawa S., Takahashi Y., Kashino Y., Satoh K. (2009). Photosystem II complex is a monomer. J. Biol. Chem. 284, 15598–15606. doi: 10.1074/jbc.M109.000372 PubMed DOI PMC

Tyystjarvi E., Vass I. (2004). “Light emission as a probe of charge separation and recombination in the photosynthetic apparatus: relation of prompt fluorescence to delayed light emission and thermoluminescence,” in Chlorophyll a Fluorescence: A Signature of Photosynthesis. Eds. Papageorgiou G. C., Govindjee (Springer Netherlands, Dordrecht: ).

Umena Y., Kawakami K., Shen J. R., Kamiya N. (2011). Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55–U65. doi: 10.1038/nature09913 PubMed DOI

Van Eerden F. J., Melo M. N., Frederix P., Marrink S. J. (2017). Prediction of thylakoid lipid binding sites on photosystem II. Biophys. J. 113, 2669–2681. doi: 10.1016/j.bpj.2017.09.039 PubMed DOI PMC

Watanabe M., Iwai M., Narikawa R., Ikeuchi M. (2009). Is the photosystem II complex a monomer or a dimer? Plant Cell Physiol. 50, 1674–1680. doi: 10.1093/pcp/pcp112 PubMed DOI

Wu W., Ping W., Wu H., Li M., Gu D., Xu Y. (2013). Monogalactosyldiacylglycerol deficiency in tobacco inhibits the cytochrome b6f-mediated intersystem electron transport process and affects the photostability of the photosystem II apparatus. Biochim. Biophys. Acta 1827, 709–722. doi: 10.1016/j.bbabio.2013.02.013 PubMed DOI

Yoshihara A., Kobayashi K. (2022). Lipids in photosynthetic protein complexes in the thylakoid membrane of plants, algae, and cyanobacteria. J. Exp. Bot. 73, 2735–2750. doi: 10.1093/jxb/erac017 PubMed DOI

Yu H. X., Hamaguchi T., Nakajima Y., Kato K., Kawakami K., Akita F., et al. . (2021). Cryo-EM structure of monomeric photosystem II at 2.78 Å resolution reveals factors important for the formation of dimer. Biochim. Et Biophys. Acta-Bioenergetics 1862. doi: 10.1016/j.bbabio.2021.148471 PubMed DOI

Yu B., Xu C. C., Benning C. (2002). Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc. Natl. Acad. Sci. United States America 99, 5732–5737. doi: 10.1073/pnas.082696499 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace