2D TiO2 Nanosheets Decorated Via Sphere-Like BiVO4: A Promising Non-Toxic Material for Liquid Phase Photocatalysis and Bacterial Eradication
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-21-0039
Slovak Research and Development Agency (APVV)
1/0319/23
Scientific Grant Agency of the Slovak Ministry of Education, Sciences, Research and Sport (VEGA)
Research Infrastructure NanoEnviCz
LM2018124
Ministry of Education, Youth and Sports of the Czech Republic
SUB.Z.A130.23.070
Wroclaw Medical University
V K Unnikrishnan
PubMed
38588020
DOI
10.1002/cssc.202400027
Knihovny.cz E-zdroje
- Klíčová slova
- 2D TiO2, antibiofilm, antimicrobial, cytotoxicity, photocatalysis, sphere-like BiVO4,
- MeSH
- antibakteriální látky * chemie farmakologie MeSH
- biofilmy účinky léků MeSH
- bismut * chemie MeSH
- buňky A549 MeSH
- Enterococcus faecalis účinky léků MeSH
- Escherichia coli * účinky léků MeSH
- fotochemické procesy * MeSH
- fotolýza MeSH
- katalýza MeSH
- lidé MeSH
- nanostruktury chemie MeSH
- rhodaminy chemie MeSH
- titan * chemie MeSH
- vanadáty * chemie farmakologie MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky * MeSH
- bismut * MeSH
- bismuth vanadium tetraoxide MeSH Prohlížeč
- rhodamine B MeSH Prohlížeč
- rhodaminy MeSH
- titan * MeSH
- titanium dioxide MeSH Prohlížeč
- vanadáty * MeSH
An in-depth investigation was conducted on a promising composite material (BiVO4/TiO2), focusing on its potential toxicity, photoinduced catalytic properties, as well as its antibiofilm and antimicrobial functionalities. The preparation process involved the synthesis of 2D TiO2 using the lyophilization method, which was subsequently functionalized with sphere-like BiVO4 through wet impregnation. Finally, we developed BiVO4/TiO2 S-scheme heterojunctions which can greatly promote the separation of electron-hole pairs to achieve high photocatalytic performance. The evaluation of concentration- and time-dependent viability inhibition was performed on human lung carcinoma epithelial A549 cells. This assessment included the estimation of glutathione levels and mitochondrial dehydrogenase activity. Significantly, the BiVO4/TiO2 composite demonstrated minimal toxicity towards A549 cells. Impressively, the BiVO4/TiO2 composite exhibited notable photocatalytic performance in the degradation of rhodamine B (k=0.135 min-1) and phenol (k=0.016 min-1). In terms of photoinduced antimicrobial performance, the composite effectively inactivated both gram-negative E. coli and gram-positive E. faecalis bacteria upon 60 minutes of UV-A light exposure, resulting in a significant log 6 (log 10 CFU/mL) reduction in bacterial count. In addition, a 49 % reduction of E. faecalis biofilm was observed. These promising results can be attributed to the unique 2D morphology of TiO2 modified by sphere-like BiVO4, leading to an increased generation of (intracellular) hydroxyl radicals, which plays a crucial role in the treatments of both organic pollutants and bacteria. This research has significant potential for various applications, particularly in addressing environmental contamination and microbial infections.
Department of Mechanical Engineering City University of Hong Kong 83 Tat Chee Avenue Hong Kong China
Department of Microbiology Faculty of Medicine Wroclaw Medical University 50 368 Wroclaw Poland
Institute of Inorganic Chemistry Czech Academy of Sciences Husinec Rez 1001 Rez 250 68 Czechia
Zobrazit více v PubMed
G. Karthikeyan Thirunavukkarasu, J. Bacova, O. Monfort, E. Dworniczek, E. Paluch, M. Bilal Hanif, S. Rauf, M. Motlochova, J. Capek, K. Hensel, G. Plesch, G. Chodaczek, T. Rousar, M. Motola, Appl. Surf. Sci. 2022, 579, 152145.
H. Choi, Z. Yang, J. C. Weisshaar, PLoS Pathog. 2017, 13, e1006481.
A. Sharma, Indian J. Med. Microbiol. 2011, 29, 91–92.
R. Bushra, M. Shahadat, A. Ahmad, S. A. Nabi, K. Umar, M. Oves, A. S. Raeissi, M. Muneer, J. Hazard. Mater. 2014, 264, 481–489.
A. Fujishima, K. Honda, Nature 1972, 238, 37–38.
S. N. Frank, A. J. Bard, J. Am. Chem. Soc. 1977, 99, 303–304.
J. H. Carey, J. Lawrence, H. M. Tosine, Bull. Environ. Contam. Toxicol. 2013, 16, 697–701.
T. Matsunaga, R. Tomoda, T. Nakajima, H. Wake, FEMS Microbiol. Lett. 1985, 29, 211–214.
H. Wang, X. Li, X. Zhao, C. Li, X. Song, P. Zhang, P. Huo, Chin. J. Catal. 2022, 43, 178–214.
M. Wu, Q. Jing, X. Feng, L. Chen, Appl. Surf. Sci. 2018, 427, 525–532.
Q. Jing, X. Feng, X. Zhao, Z. Duan, J. Pan, L. Chen, Y. Liu, ACS Appl. Nano Mater. 2018, 1, 2653–2661.
Y. Hu, D. Li, Y. Zheng, W. Chen, Y. He, Y. Shao, X. Fu, G. Xiao, Appl. Catal. B 2011, 104, 30–36.
G. Odling, N. Robertson, ChemPhysChem 2016, 17, 2872–2880.
Y. Hu, W. Chen, J. Fu, M. Ba, F. Sun, P. Zhang, J. Zou, Appl. Surf. Sci. 2018, 436, 319–326.
M. Xie, X. Fu, L. Jing, P. Luan, Y. Feng, H. Fu, M. Z. Xie, X. D. Fu, L. Q. Jing, P. Luan, H. G. Fu, Y. J. Feng, Adv. Energy Mater. 2014, 4, 1300995.
X. Song, Y. Li, Z. Wei, S. Ye, D. D. Dionysiou, Chem. Eng. J. 2017, 314, 443–452.
O. Monfort, D. Raptis, L. Satrapinskyy, T. Roch, G. Plesch, P. Lianos, Electrochim. Acta 2017, 251, 244–249.
G. K. Thirunavukkarasu, O. Monfort, M. Motola, M. Motlochová, M. Gregor, T. Roch, M. Čaplovicová, A. Y. Lavrikova, K. Hensel, V. Brezová, M. Jerigová, J. Šubrt, G. Plesch, New J. Chem. 2021, 45, 4174–4184.
S. Brunauer, P. H. Emmett, E. Teller, J. Am. Chem. Soc. 1938, 60, 309–319.
J. L. Lábár, M. Adamik, B. P. Barna, Z. Czigány, Z. Fogarassy, Z. E. Horváth, O. Geszti, F. Misják, J. Morgiel, G. Radnóczi, G. Sáfrán, L. Székely, T. Szüts, Microsc. Microanal. 2012, 18, 406–420.
J. Čapek, M. Hauschke, L. Brůčková, T. Roušar, J. Pharmacol. Toxicol. Methods 2017, 88, 40–45.
G. K. Thirunavukkarasu, S. Gowrisankaran, M. Caplovicova, L. Satrapinskyy, M. Gregor, A. Lavrikova, J. Gregus, R. Halko, G. Plesch, M. Motola, O. Monfort, Dalton Trans. 2022, 51, 10763–10772.
P. I. Gouma, M. J. Mills, J. Am. Ceram. Soc. 2001, 84, 619–622.
E. Pližingrová, M. Klementová, P. Bezdička, J. Boháček, Z. Barbieriková, D. Dvoranová, M. Mazúr, J. Krýsa, J. Šubrt, V. Brezová, Catal. Today 2017, 281, 165–180.
J. Bacova, P. Knotek, K. Kopecka, L. Hromadko, J. Capek, P. Nyvltova, L. Bruckova, L. Schröterova, B. Sestakova, J. Palarcik, M. Motola, D. Cizkova, A. Bezrouk, J. Handl, Z. Fiala, E. Rudolf, Z. Bilkova, J. M. Macak, T. Rousar, Int. J. Nanomed. 2022, 17, 4211–4225.
J. Bacova, L. Hromadko, P. Nyvltová, L. Bruckova, M. Motola, R. Bulanek, M. Rihova, T. Rousar, J. M. Macak, Environ. Sci.-Nano 2022, 9, 4484–4496.
M. G. Bianchi, L. Campagnolo, M. Allegri, S. Ortelli, M. Blosi, M. Chiu, G. Taurino, V. Lacconi, A. Pietroiusti, A. L. Costa, C. A. Poland, D. Baird, R. Duffin, O. Bussolati, E. Bergamaschi, 2019, 14, 433–452, https://doi.org/10.1080/17435390.2019.1687775.
J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D. W. Bahnemann, Chem. Rev. 2014, 114, 9919–9986.
M. Velický, P. S. Toth, Appl Mater Today 2017, 8, 68–103.
S. H. Mir, V. K. Yadav, J. K. Singh, J. K. Singh, ACS Omega 2020, 5, 14203–14211.
T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Sci. Rep. 2014, 4, 1–8.
Y. R. Lv, C. J. Liu, R. K. He, X. Li, Y. H. Xu, Mater. Res. Bull. 2019, 117, 35–40.
W. Wang, Y. Yu, T. An, G. Li, H. Y. Yip, J. C. Yu, P. K. Wong, Environ. Sci. Technol. 2012, 46, 4599–4606.
A. Y. Booshehri, S. Chun-Kiat Goh, J. Hong, R. Jiang, R. Xu, J. Mater. Chem. A 2014, 2, 6209–6217.
E. Dworniczek, G. Plesch, A. Seniuk, R. Adamski, R. Michal, M. Čaplovičová, FEMS Microbiol. Lett. 2016, 363, 51.
T. J. Silhavy, D. Kahne, S. Walker, Cold Spring Harbor Perspect. Biol. 2010, 2(5), a000414, DOI: 10.1101/CSHPERSPECT.A000414.
K. Schilcher, A. R. Horswill, Microbiol. Mol. Biol. Rev. 2020, 84(3), 10–1128, DOI: 10.1128/MMBR.00026-19/ASSET/C007E516-109C-4A10-8C2E-E2515B8431B4/ASSETS/GRAPHIC/MMBR.00026-19-F0002.JPEG.
M. Herb, M. Schramm, Antioxidants 2021, 10, 1–39.
R. van Grieken, J. Marugán, C. Pablos, L. Furones, A. López, Appl. Catal. B 2010, 100, 212–220.
D. Venieri, E. Chatzisymeon, M. S. Gonzalo, R. Rosal, D. Mantzavinos, Photochemical and Photobiological Sciences 2011, 10, 1744–1750.
R. Yang, Z. Zhu, C. Hu, S. Zhong, L. Zhang, B. Liu, W. Wang, Chem. Eng. J. 2020, 390, 124522.
R. Yang, S. Zhong, L. Zhang, B. Liu, Sep. Purif. Technol. 2020, 235, 116270.
Y. Wang, K. Ding, R. Xu, D. Yu, W. Wang, P. Gao, B. Liu, J. Cleaner Prod. 2020, 247, 119108.
J. Li, C. Hu, B. Liu, Z. Liu, Chem. Eng. J. 2023, 452, 139246.
C. Hu, B. Yu, Z. Zhu, J. Zheng, W. Wang, B. Liu, Colloids Surf. A 2023, 664, 131189.
J. Li, H. Wang, N. Reddy, Z. Zhu, J. Zheng, W. Wang, C. Hu, Sci. Total Environ. 2023, 858, 159795.
F. Mei, K. Dai, J. Zhang, W. Li, C. & Liang, Appl. Surf. Sci. 2019, 488, 151–160.
Q. Xu, D. Ma, S. Yang, Z. Tian, B. Cheng, J. Fan, Appl. Surf. Sci. 2019, 495, 143555.
Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, Chem 2020, 6 (7), 1543–1559.
W. Fang, L. Wang, Catalysts 2023, 13 (10), 1325.
Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, Chem 2020, 6 (7), 1543–1559.
L. Zhang, J. Zhang, H. Yu, J. Yu, Adv. Mater. 2022, 34 (11), 2107668.
V. Liapun, M. B. Hanif, M. Sihor, X. Vislocka, S. Pandiaraj, V. K. Unnikrishnan, M. Motola Chemosphere 2023, 337, 139397.
X. Wang, Y. Ren, Y. Li, G. Zhang, Chemosphere 2022, 287, 132098.
Z. Yang, Z. Wang, J. Wang, Y. Li, G. Zhang, Environ. Sci. Technol. 2022, 56 (24), 18008–18017.
X. Wang, Z. Wang, Y. Li, J. Wang, G. Zhang, Appl. Catal. B 2022, 319, 121895.
J. Li, Y. Li, X. Wang, Z. Yang, G. Zhang, Chin. J. Catal. 2023, 51, 145–156.
X. Zheng, Y. Yang, Y. Song, Z. Ma, Q. Gao, Y. Liu, X. Tian, Interdisciplinary Materials 2023, 2 (5), 669–688.