Evaluating the effectiveness of sulfidated nano zerovalent iron and sludge co-application for reducing metal mobility in contaminated soil
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-23794J
Grantová Agentura České Republiky
PubMed
38594335
PubMed Central
PMC11004183
DOI
10.1038/s41598-024-59059-7
PII: 10.1038/s41598-024-59059-7
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Sewage sludge has long been applied to soils as a fertilizer yet may be enriched with leachable metal(loid)s and other pollutants. Sulfidated nanoscale zerovalent iron (S-nZVI) has proven effective at metal sorption; however, risks associated with the use of engineered nanoparticles cannot be neglected. This study investigated the effects of the co-application of composted sewage sludge with S-nZVI for the stabilization of Cd, Pb, Fe, Zn. Five treatments (control, Fe grit, composted sludge, S-nZVI, composted sludge and S-nZVI), two leaching fluids; synthetic precipitation leaching procedure (SPLP) and toxicity characteristic leaching procedure (TCLP) fluid were used, samples were incubated at different time intervals of 1 week, 1, 3, and 6 months. Fe grit proved most efficient in reducing the concentration of extractable metals in the batch experiment; the mixture of composted sludge and S-nZVI was the most effective in reducing the leachability of metals in the column systems, while S-nZVI was the most efficient for reducing about 80% of Zn concentration in soil solution. Thus, the combination of two amendments, S-nZVI incorporated with composted sewage sludge and Fe grit proved most effective at reducing metal leaching and possibly lowering the associated risks. Future work should investigate the longer-term efficiency of this combination.
Zobrazit více v PubMed
Usman K, et al. Sewage sludge: An important biological resource for sustainable agriculture and its environmental implications. Am. J. Plant Sci. 2012;03:1708–1721. doi: 10.4236/ajps.2012.312209. DOI
Li XQ, Brown DG, Zhang WX. Stabilization of biosolids with nanoscale zero-valent iron (nZVI) J. Nanopart. Res. 2007;9:233–243. doi: 10.1007/s11051-006-9187-1. DOI
Đurđević D, Žiković S, Blecich P. Sustainable sewage sludge management technologies selection based on techno–economic–environmental criteria: Case study of Croatia. Energies. 2022;15:3941. doi: 10.3390/en15113941. DOI
Rorat A, Courtois P, Vandenbulcke F, Lemiere S. Sanitary and environmental aspects of sewage sludge management. In: Prasad MN, de Campos Favas PJ, Vithanage M, Mohan SV, editors. Industrial and Municipal Sludge: Emerging Concerns and Scope for Resource Recovery. Butterworth-Heinemann; 2019. pp. 155–180.
Wu J, et al. Effects of thermal treatment on high solid anaerobic digestion of swine manure: Enhancement assessment and kinetic analysis. Waste Manag. 2017;62:69–75. doi: 10.1016/j.wasman.2017.02.022. PubMed DOI
Lonova K, et al. Microwave pyrolyzed sewage sludge: Influence on soil microbiology, nutrient status, and plant biomass. Chem. Biol. Technol. Agric. 2022;9:1–20. doi: 10.1186/s40538-022-00354-8. DOI
Boudjabi S, Chenchouni H. On the sustainability of land applications of sewage sludge: How to apply the sewage biosolid in order to improve soil fertility and increase crop yield? Chemosphere. 2021;282:131122. doi: 10.1016/j.chemosphere.2021.131122. PubMed DOI
Fijalkowski K, Rorat A, Grobelak A, Kacprzak MJ. The presence of contaminations in sewage sludge—The current situation. J. Environ. Manag. 2017;203:1126–1136. doi: 10.1016/j.jenvman.2017.05.068. PubMed DOI PMC
Melake BA, Endalew SM, Alamirew TS, Temesegen LM. Bioaccumulation and biota-sediment accumulation factor of metals and metalloids in edible fish: A systematic review in Ethiopian surface waters. Environ. Health Insights. 2023;17:11786302231159349. doi: 10.1177/11786302231159349. PubMed DOI PMC
Hidangmayum A, et al. Mechanistic and recent updates in nano-bioremediation for developing green technology to alleviate agricultural contaminants. Int. J. Environ. Sci. Technol. 2022;20:11693–11718. doi: 10.1007/s13762-022-04560-7. PubMed DOI PMC
Roy A, Sharma A, Yadav S, Jule LT, Krishnaraj R. Nanomaterials for remediation of environmental pollutants. Bioinorg. Chem. Appl. 2021;2021:1. doi: 10.1155/2021/1764647. PubMed DOI PMC
Galdames A, Ruiz-Rubio L, Orueta M, Sánchez-Arzalluz M, Vilas-Vilela JL. Zero-valent iron nanoparticles for soil and groundwater remediation. Int. J. Environ. Res. Public Health. 2020;17:1–23. doi: 10.3390/ijerph17165817. PubMed DOI PMC
Brumovský M, et al. Core-shell fe/fes nanoparticles with controlled shell thickness for enhanced trichloroethylene removal. ACS Appl. Mater. Interfaces. 2020;12:35424–35434. doi: 10.1021/acsami.0c08626. PubMed DOI PMC
Fan D, et al. Sulfidation of iron-based materials: A review of processes and implications for water treatment and remediation. Environ. Sci. Technol. 2017;51:13070–13085. doi: 10.1021/acs.est.7b04177. PubMed DOI
Dong H, et al. Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution. Water Res. 2018;135:1–10. doi: 10.1016/j.watres.2018.02.017. PubMed DOI
Rajajayavel SRC, Ghoshal S. Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron. Water Res. 2015;78:144–153. doi: 10.1016/j.watres.2015.04.009. PubMed DOI
Xu J, et al. Reactivity, selectivity, and long-term performance of sulfidized nanoscale zerovalent iron with different properties. Environ. Sci. Technol. 2019;53:5936–5945. doi: 10.1021/acs.est.9b00511. PubMed DOI
Muter O, Dubova L, Kassien O, Cakane J, Alsina I. Application of the sewage sludge in agriculture: Soil fertility, technoeconomic, and life-cycle assessment. Hazard. Waste Manag. 2022 doi: 10.5772/intechopen.104264. DOI
Reyhanitabar A, Ramezanzadeh H, Oustan S, Neyshabouri M. Comparison of batch and column methods in zinc sorption in a sandy soil. Int. J. Adv. Sci. Eng. Technol. 2017;1:2321–9009.
Kokina K, et al. Impact of rapid pH changes on activated sludge process. Appl. Sci. 2022;12:5754. doi: 10.3390/app12115754. DOI
Jalali M, Arfania H. Leaching of heavy metals and nutrients from calcareous sandy-loam soil receiving municipal solid sewage sludge. J. Plant Nutr. Soil Sci. 2010;173:407–416. doi: 10.1002/jpln.200800225. DOI
Yan W, Herzing AA, Kiely CJ, Zhang WX. Nanoscale zero-valent iron (nZVI): Aspects of the core-shell structure and reactions with inorganic species in water. J. Contam. Hydrol. 2010;118:96–104. doi: 10.1016/j.jconhyd.2010.09.003. PubMed DOI
Liang W, Dai C, Zhou X, Zhang Y. Application of zero-valent iron nanoparticles for the removal of aqueous zinc ions under various experimental conditions. PLoS ONE. 2014;9:e85686. doi: 10.1371/journal.pone.0085686. PubMed DOI PMC
Kishimoto N, Iwano S, Narazaki Y. Mechanistic consideration of zinc ion removal by zero-valent iron. Water Air Soil Pollut. 2011;221:183–189. doi: 10.1007/s11270-011-0781-1. DOI
Kržišnik N, et al. Nanoscale zero-valent iron for the removal of Zn2+, Zn(II)-EDTA and Zn(II)-citrate from aqueous solutions. Sci. Total Environ. 2014;476–477:20–28. doi: 10.1016/j.scitotenv.2013.12.113. PubMed DOI
Nik Redzauddin NNI, Kassim J, Amir A. Removal of zinc by nano-scale zero valent iron in groundwater. Appl. Mech. Mater. 2015;773–774:1231–1236. doi: 10.4028/www.scientific.net/AMM.773-774.1231. DOI
Bowszys T, Wierzbowska J, Sternik P, Busse MK. Effect of the application of sewage sludge compost on the content and leaching of zinc and copper from soils under agricultural use. J. Ecol. Eng. 2015;16:1–7. doi: 10.12911/22998993/580. DOI
Zaragüeta A, et al. Effect of the long-term application of sewage sludge to a calcareous soil on its total and bioavailable content in trace elements, and their transfer to the crop. Minerals. 2021;11:356. doi: 10.3390/min11040356. DOI
McBride MB. Long-term biosolids application on land: Beneficial recycling of nutrients or eutrophication of agroecosystems? Soil Syst. 2022;6:9. doi: 10.3390/soilsystems6010009. DOI
Pinto PX, Al-Abed SR. Assessing metal mobilization from industrially lead-contaminated soils located at an urban site. Appl. Geochem. 2017;83:31–40. doi: 10.1016/j.apgeochem.2017.01.025. PubMed DOI PMC
Danila V, Janusevicius T. Removal of Cd, Cu, Ni, and Pb from nanoscale zero-valent iron amended soil using 0.1 M acetic acid solution. Environ. Clim. Technol. 2022;26(1):406–414. doi: 10.2478/rtuect-2022-0031. DOI
Parvin A, et al. Chemical speciation and potential mobility of heavy metals in organic matter amended soil. Appl. Environ. Soil Sci. 2022;2022:1–13. doi: 10.1155/2022/2028860. DOI
Gil-Díaz M, López LF, Alonso J, Lobo MC. Comparison of nanoscale zero-valent iron, compost, and phosphate for Pb immobilization in an acidic soil. Water Air Soil Pollut. 2018;229:1–11. doi: 10.1007/s11270-018-3972-1. DOI
Mitzia A, Vítková M, Komárek M. Assessment of biochar and/or nano zero-valent iron for the stabilisation of Zn, Pb and Cd: A temporal study of solid phase geochemistry under changing soil conditions. Chemosphere. 2020;242:125248. doi: 10.1016/j.chemosphere.2019.125248. PubMed DOI
Zhou YF, Haynes RJ. Sorption of heavy metals by inorganic and organic components of solid wastes: Significance to use of wastes as low-cost adsorbents and immobilizing agents. Crit. Rev. Environ. Sci. Technol. 2010;40:909–977. doi: 10.1080/10643380802586857. DOI
van Herwijnen R, et al. Remediation of metal contaminated soil with mineral-amended composts. Environ. Pollut. 2007;150:347–354. doi: 10.1016/j.envpol.2007.01.023. PubMed DOI
Bolan N, et al. Remediation of heavy metal(loid)s contaminated soils—To mobilize or to immobilize? J. Hazard. Mater. 2014;266:141–166. doi: 10.1016/j.jhazmat.2013.12.018. PubMed DOI
Schwab P, Zhu D, Banks MK. Heavy metal leaching from mine tailings as affected by organic amendments. Bioresour. Technol. 2007;98:2935–2941. doi: 10.1016/j.biortech.2006.10.012. PubMed DOI
Chen W-F, Wang W, Zhang X, Zhang J. Stabilization of heavy metals in contaminated river sediment by nanozero-valent iron/activated carbon composite. J. Environ. Eng. 2016;142:1–9. doi: 10.1061/(ASCE)EE.1943-7870.0001147. DOI
Xue W, et al. Immobilization of cadmium in river sediments using sulfidized nanoscale zero-valent iron synthesized with different iron precursors: Performance and mechanism. J. Soils Sedim. 2023;23:3550–3566. doi: 10.1007/s11368-023-03606-8. DOI
Dungan RS, Dees NH. The characterization of total and leachable metals in foundry molding sands. J. Environ. Manag. 2009;90:539–548. doi: 10.1016/j.jenvman.2007.12.004. PubMed DOI
Al-Abed SR, Hageman PL, Jegadeesan G, Madhavan N, Allen D. Comparative evaluation of short-term leach tests for heavy metal release from mineral processing waste. Sci. Total Environ. 2006;364:14–23. doi: 10.1016/j.scitotenv.2005.10.021. PubMed DOI
Li XQ, Zhang WX. Sequestration of metal cations with zerovalent iron nanoparticles—A study with high resolution X-ray photoelectron spectroscopy (HR-XPS) J. Phys. Chem. C. 2007;111:6939–6946. doi: 10.1021/jp0702189. DOI
Gil-Díaz M, et al. Immobilization and leaching of Pb and Zn in an acidic soil treated with zerovalent iron nanoparticles (nZVI): Physicochemical and toxicological analysis of leachates. Water Air Soil Pollut. 2014;225:1–13. doi: 10.1007/s11270-014-1990-1. DOI
Ashworth DJ, Alloway BJ. Soil mobility of sewage sludge-derived dissolved organic matter, copper, nickel and zinc. Environ. Pollut. 2004;127:137–144. doi: 10.1016/S0269-7491(03)00237-9. PubMed DOI
Liang L, et al. The removal of heavy metal cations by sulfidated nanoscale zero-valent iron (S-nZVI): The reaction mechanisms and the role of sulfur. J. Hazard. Mater. 2021;404:124057. doi: 10.1016/j.jhazmat.2020.124057. PubMed DOI
Liu N, et al. Sulfidated nanoscale zero valent iron for in situ immobilization of hexavalent chromium in soil and response of indigenous microbes. Chemosphere. 2023;344:140343. doi: 10.1016/j.chemosphere.2023.140343. PubMed DOI
Semerád J, et al. Environmental fate of sulfidated nZVI particles: The interplay of nanoparticle corrosion and toxicity during aging. Environ. Sci. Nano. 2020;7:1794–1806. doi: 10.1039/D0EN00075B. DOI
Hui C, et al. Transformation of sulfidized nanoscale zero-valent iron particles and its effects on microbial communities in soil ecosystems. Environ. Pollut. 2022;306:119363. doi: 10.1016/j.envpol.2022.119363. PubMed DOI
Cheng Y, et al. Elucidating the impact of sulfur precursors on the reactivity, toxicity, and colloidal stability of post-sulfidized nanoscale zerovalent iron. Sep. Purif. Technol. 2024;328:125132. doi: 10.1016/j.seppur.2023.125132. DOI
Nováková T, et al. Pollutant dispersal and stability in a severely polluted floodplain: A case study in the Litavka River, Czech Republic. J. Geochem. Explor. 2015;156:131–144. doi: 10.1016/j.gexplo.2015.05.006. DOI
Michálková Z, Komárek M, Vítková M, Řečínská M, Ettler V. Stability, transformations and stabilizing potential of an amorphous manganese oxide and its surface-modified form in contaminated soils. Appl. Geochem. 2016;75:125–136. doi: 10.1016/j.apgeochem.2016.10.020. DOI