Evaluating the effectiveness of sulfidated nano zerovalent iron and sludge co-application for reducing metal mobility in contaminated soil

. 2024 Apr 09 ; 14 (1) : 8322. [epub] 20240409

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38594335

Grantová podpora
21-23794J Grantová Agentura České Republiky

Odkazy

PubMed 38594335
PubMed Central PMC11004183
DOI 10.1038/s41598-024-59059-7
PII: 10.1038/s41598-024-59059-7
Knihovny.cz E-zdroje

Sewage sludge has long been applied to soils as a fertilizer yet may be enriched with leachable metal(loid)s and other pollutants. Sulfidated nanoscale zerovalent iron (S-nZVI) has proven effective at metal sorption; however, risks associated with the use of engineered nanoparticles cannot be neglected. This study investigated the effects of the co-application of composted sewage sludge with S-nZVI for the stabilization of Cd, Pb, Fe, Zn. Five treatments (control, Fe grit, composted sludge, S-nZVI, composted sludge and S-nZVI), two leaching fluids; synthetic precipitation leaching procedure (SPLP) and toxicity characteristic leaching procedure (TCLP) fluid were used, samples were incubated at different time intervals of 1 week, 1, 3, and 6 months. Fe grit proved most efficient in reducing the concentration of extractable metals in the batch experiment; the mixture of composted sludge and S-nZVI was the most effective in reducing the leachability of metals in the column systems, while S-nZVI was the most efficient for reducing about 80% of Zn concentration in soil solution. Thus, the combination of two amendments, S-nZVI incorporated with composted sewage sludge and Fe grit proved most effective at reducing metal leaching and possibly lowering the associated risks. Future work should investigate the longer-term efficiency of this combination.

Zobrazit více v PubMed

Usman K, et al. Sewage sludge: An important biological resource for sustainable agriculture and its environmental implications. Am. J. Plant Sci. 2012;03:1708–1721. doi: 10.4236/ajps.2012.312209. DOI

Li XQ, Brown DG, Zhang WX. Stabilization of biosolids with nanoscale zero-valent iron (nZVI) J. Nanopart. Res. 2007;9:233–243. doi: 10.1007/s11051-006-9187-1. DOI

Đurđević D, Žiković S, Blecich P. Sustainable sewage sludge management technologies selection based on techno–economic–environmental criteria: Case study of Croatia. Energies. 2022;15:3941. doi: 10.3390/en15113941. DOI

Rorat A, Courtois P, Vandenbulcke F, Lemiere S. Sanitary and environmental aspects of sewage sludge management. In: Prasad MN, de Campos Favas PJ, Vithanage M, Mohan SV, editors. Industrial and Municipal Sludge: Emerging Concerns and Scope for Resource Recovery. Butterworth-Heinemann; 2019. pp. 155–180.

Wu J, et al. Effects of thermal treatment on high solid anaerobic digestion of swine manure: Enhancement assessment and kinetic analysis. Waste Manag. 2017;62:69–75. doi: 10.1016/j.wasman.2017.02.022. PubMed DOI

Lonova K, et al. Microwave pyrolyzed sewage sludge: Influence on soil microbiology, nutrient status, and plant biomass. Chem. Biol. Technol. Agric. 2022;9:1–20. doi: 10.1186/s40538-022-00354-8. DOI

Boudjabi S, Chenchouni H. On the sustainability of land applications of sewage sludge: How to apply the sewage biosolid in order to improve soil fertility and increase crop yield? Chemosphere. 2021;282:131122. doi: 10.1016/j.chemosphere.2021.131122. PubMed DOI

Fijalkowski K, Rorat A, Grobelak A, Kacprzak MJ. The presence of contaminations in sewage sludge—The current situation. J. Environ. Manag. 2017;203:1126–1136. doi: 10.1016/j.jenvman.2017.05.068. PubMed DOI PMC

Melake BA, Endalew SM, Alamirew TS, Temesegen LM. Bioaccumulation and biota-sediment accumulation factor of metals and metalloids in edible fish: A systematic review in Ethiopian surface waters. Environ. Health Insights. 2023;17:11786302231159349. doi: 10.1177/11786302231159349. PubMed DOI PMC

Hidangmayum A, et al. Mechanistic and recent updates in nano-bioremediation for developing green technology to alleviate agricultural contaminants. Int. J. Environ. Sci. Technol. 2022;20:11693–11718. doi: 10.1007/s13762-022-04560-7. PubMed DOI PMC

Roy A, Sharma A, Yadav S, Jule LT, Krishnaraj R. Nanomaterials for remediation of environmental pollutants. Bioinorg. Chem. Appl. 2021;2021:1. doi: 10.1155/2021/1764647. PubMed DOI PMC

Galdames A, Ruiz-Rubio L, Orueta M, Sánchez-Arzalluz M, Vilas-Vilela JL. Zero-valent iron nanoparticles for soil and groundwater remediation. Int. J. Environ. Res. Public Health. 2020;17:1–23. doi: 10.3390/ijerph17165817. PubMed DOI PMC

Brumovský M, et al. Core-shell fe/fes nanoparticles with controlled shell thickness for enhanced trichloroethylene removal. ACS Appl. Mater. Interfaces. 2020;12:35424–35434. doi: 10.1021/acsami.0c08626. PubMed DOI PMC

Fan D, et al. Sulfidation of iron-based materials: A review of processes and implications for water treatment and remediation. Environ. Sci. Technol. 2017;51:13070–13085. doi: 10.1021/acs.est.7b04177. PubMed DOI

Dong H, et al. Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution. Water Res. 2018;135:1–10. doi: 10.1016/j.watres.2018.02.017. PubMed DOI

Rajajayavel SRC, Ghoshal S. Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron. Water Res. 2015;78:144–153. doi: 10.1016/j.watres.2015.04.009. PubMed DOI

Xu J, et al. Reactivity, selectivity, and long-term performance of sulfidized nanoscale zerovalent iron with different properties. Environ. Sci. Technol. 2019;53:5936–5945. doi: 10.1021/acs.est.9b00511. PubMed DOI

Muter O, Dubova L, Kassien O, Cakane J, Alsina I. Application of the sewage sludge in agriculture: Soil fertility, technoeconomic, and life-cycle assessment. Hazard. Waste Manag. 2022 doi: 10.5772/intechopen.104264. DOI

Reyhanitabar A, Ramezanzadeh H, Oustan S, Neyshabouri M. Comparison of batch and column methods in zinc sorption in a sandy soil. Int. J. Adv. Sci. Eng. Technol. 2017;1:2321–9009.

Kokina K, et al. Impact of rapid pH changes on activated sludge process. Appl. Sci. 2022;12:5754. doi: 10.3390/app12115754. DOI

Jalali M, Arfania H. Leaching of heavy metals and nutrients from calcareous sandy-loam soil receiving municipal solid sewage sludge. J. Plant Nutr. Soil Sci. 2010;173:407–416. doi: 10.1002/jpln.200800225. DOI

Yan W, Herzing AA, Kiely CJ, Zhang WX. Nanoscale zero-valent iron (nZVI): Aspects of the core-shell structure and reactions with inorganic species in water. J. Contam. Hydrol. 2010;118:96–104. doi: 10.1016/j.jconhyd.2010.09.003. PubMed DOI

Liang W, Dai C, Zhou X, Zhang Y. Application of zero-valent iron nanoparticles for the removal of aqueous zinc ions under various experimental conditions. PLoS ONE. 2014;9:e85686. doi: 10.1371/journal.pone.0085686. PubMed DOI PMC

Kishimoto N, Iwano S, Narazaki Y. Mechanistic consideration of zinc ion removal by zero-valent iron. Water Air Soil Pollut. 2011;221:183–189. doi: 10.1007/s11270-011-0781-1. DOI

Kržišnik N, et al. Nanoscale zero-valent iron for the removal of Zn2+, Zn(II)-EDTA and Zn(II)-citrate from aqueous solutions. Sci. Total Environ. 2014;476–477:20–28. doi: 10.1016/j.scitotenv.2013.12.113. PubMed DOI

Nik Redzauddin NNI, Kassim J, Amir A. Removal of zinc by nano-scale zero valent iron in groundwater. Appl. Mech. Mater. 2015;773–774:1231–1236. doi: 10.4028/www.scientific.net/AMM.773-774.1231. DOI

Bowszys T, Wierzbowska J, Sternik P, Busse MK. Effect of the application of sewage sludge compost on the content and leaching of zinc and copper from soils under agricultural use. J. Ecol. Eng. 2015;16:1–7. doi: 10.12911/22998993/580. DOI

Zaragüeta A, et al. Effect of the long-term application of sewage sludge to a calcareous soil on its total and bioavailable content in trace elements, and their transfer to the crop. Minerals. 2021;11:356. doi: 10.3390/min11040356. DOI

McBride MB. Long-term biosolids application on land: Beneficial recycling of nutrients or eutrophication of agroecosystems? Soil Syst. 2022;6:9. doi: 10.3390/soilsystems6010009. DOI

Pinto PX, Al-Abed SR. Assessing metal mobilization from industrially lead-contaminated soils located at an urban site. Appl. Geochem. 2017;83:31–40. doi: 10.1016/j.apgeochem.2017.01.025. PubMed DOI PMC

Danila V, Janusevicius T. Removal of Cd, Cu, Ni, and Pb from nanoscale zero-valent iron amended soil using 0.1 M acetic acid solution. Environ. Clim. Technol. 2022;26(1):406–414. doi: 10.2478/rtuect-2022-0031. DOI

Parvin A, et al. Chemical speciation and potential mobility of heavy metals in organic matter amended soil. Appl. Environ. Soil Sci. 2022;2022:1–13. doi: 10.1155/2022/2028860. DOI

Gil-Díaz M, López LF, Alonso J, Lobo MC. Comparison of nanoscale zero-valent iron, compost, and phosphate for Pb immobilization in an acidic soil. Water Air Soil Pollut. 2018;229:1–11. doi: 10.1007/s11270-018-3972-1. DOI

Mitzia A, Vítková M, Komárek M. Assessment of biochar and/or nano zero-valent iron for the stabilisation of Zn, Pb and Cd: A temporal study of solid phase geochemistry under changing soil conditions. Chemosphere. 2020;242:125248. doi: 10.1016/j.chemosphere.2019.125248. PubMed DOI

Zhou YF, Haynes RJ. Sorption of heavy metals by inorganic and organic components of solid wastes: Significance to use of wastes as low-cost adsorbents and immobilizing agents. Crit. Rev. Environ. Sci. Technol. 2010;40:909–977. doi: 10.1080/10643380802586857. DOI

van Herwijnen R, et al. Remediation of metal contaminated soil with mineral-amended composts. Environ. Pollut. 2007;150:347–354. doi: 10.1016/j.envpol.2007.01.023. PubMed DOI

Bolan N, et al. Remediation of heavy metal(loid)s contaminated soils—To mobilize or to immobilize? J. Hazard. Mater. 2014;266:141–166. doi: 10.1016/j.jhazmat.2013.12.018. PubMed DOI

Schwab P, Zhu D, Banks MK. Heavy metal leaching from mine tailings as affected by organic amendments. Bioresour. Technol. 2007;98:2935–2941. doi: 10.1016/j.biortech.2006.10.012. PubMed DOI

Chen W-F, Wang W, Zhang X, Zhang J. Stabilization of heavy metals in contaminated river sediment by nanozero-valent iron/activated carbon composite. J. Environ. Eng. 2016;142:1–9. doi: 10.1061/(ASCE)EE.1943-7870.0001147. DOI

Xue W, et al. Immobilization of cadmium in river sediments using sulfidized nanoscale zero-valent iron synthesized with different iron precursors: Performance and mechanism. J. Soils Sedim. 2023;23:3550–3566. doi: 10.1007/s11368-023-03606-8. DOI

Dungan RS, Dees NH. The characterization of total and leachable metals in foundry molding sands. J. Environ. Manag. 2009;90:539–548. doi: 10.1016/j.jenvman.2007.12.004. PubMed DOI

Al-Abed SR, Hageman PL, Jegadeesan G, Madhavan N, Allen D. Comparative evaluation of short-term leach tests for heavy metal release from mineral processing waste. Sci. Total Environ. 2006;364:14–23. doi: 10.1016/j.scitotenv.2005.10.021. PubMed DOI

Li XQ, Zhang WX. Sequestration of metal cations with zerovalent iron nanoparticles—A study with high resolution X-ray photoelectron spectroscopy (HR-XPS) J. Phys. Chem. C. 2007;111:6939–6946. doi: 10.1021/jp0702189. DOI

Gil-Díaz M, et al. Immobilization and leaching of Pb and Zn in an acidic soil treated with zerovalent iron nanoparticles (nZVI): Physicochemical and toxicological analysis of leachates. Water Air Soil Pollut. 2014;225:1–13. doi: 10.1007/s11270-014-1990-1. DOI

Ashworth DJ, Alloway BJ. Soil mobility of sewage sludge-derived dissolved organic matter, copper, nickel and zinc. Environ. Pollut. 2004;127:137–144. doi: 10.1016/S0269-7491(03)00237-9. PubMed DOI

Liang L, et al. The removal of heavy metal cations by sulfidated nanoscale zero-valent iron (S-nZVI): The reaction mechanisms and the role of sulfur. J. Hazard. Mater. 2021;404:124057. doi: 10.1016/j.jhazmat.2020.124057. PubMed DOI

Liu N, et al. Sulfidated nanoscale zero valent iron for in situ immobilization of hexavalent chromium in soil and response of indigenous microbes. Chemosphere. 2023;344:140343. doi: 10.1016/j.chemosphere.2023.140343. PubMed DOI

Semerád J, et al. Environmental fate of sulfidated nZVI particles: The interplay of nanoparticle corrosion and toxicity during aging. Environ. Sci. Nano. 2020;7:1794–1806. doi: 10.1039/D0EN00075B. DOI

Hui C, et al. Transformation of sulfidized nanoscale zero-valent iron particles and its effects on microbial communities in soil ecosystems. Environ. Pollut. 2022;306:119363. doi: 10.1016/j.envpol.2022.119363. PubMed DOI

Cheng Y, et al. Elucidating the impact of sulfur precursors on the reactivity, toxicity, and colloidal stability of post-sulfidized nanoscale zerovalent iron. Sep. Purif. Technol. 2024;328:125132. doi: 10.1016/j.seppur.2023.125132. DOI

Nováková T, et al. Pollutant dispersal and stability in a severely polluted floodplain: A case study in the Litavka River, Czech Republic. J. Geochem. Explor. 2015;156:131–144. doi: 10.1016/j.gexplo.2015.05.006. DOI

Michálková Z, Komárek M, Vítková M, Řečínská M, Ettler V. Stability, transformations and stabilizing potential of an amorphous manganese oxide and its surface-modified form in contaminated soils. Appl. Geochem. 2016;75:125–136. doi: 10.1016/j.apgeochem.2016.10.020. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...