Core-Shell Fe/FeS Nanoparticles with Controlled Shell Thickness for Enhanced Trichloroethylene Removal
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32640155
PubMed Central
PMC7404211
DOI
10.1021/acsami.0c08626
Knihovny.cz E-zdroje
- Klíčová slova
- dechlorination, nanoparticles, selectivity, sulfidation, trichloroethylene, zero-valent iron,
- Publikační typ
- časopisecké články MeSH
Zero-valent iron nanoparticles (nZVI) treated by reduced sulfur compounds (i.e., sulfidated nZVI, S-nZVI) have attracted increased attention as promising materials for environmental remediation. While the preparation of S-nZVI and its reactions with various groundwater contaminants such as trichloroethylene (TCE) were already a subject of several studies, nanoparticle synthesis procedures investigated so far were suited mainly for laboratory-scale preparation with only a limited possibility of easy and cost-effective large-scale production and FeS shell property control. This study presents a novel approach for synthesizing S-nZVI using commercially available nZVI particles that are treated with sodium sulfide in a concentrated slurry. This leads to S-nZVI particles that do not contain hazardous boron residues and can be easily prepared off-site. The resulting S-nZVI exhibits a core-shell structure where zero-valent iron is the dominant phase in the core, while the shell contains mostly amorphous iron sulfides. The average FeS shell thickness can be controlled by the applied sulfide concentration. Up to a 12-fold increase in the TCE removal and a 7-fold increase in the electron efficiency were observed upon amending nZVI with sulfide. Although the FeS shell thickness correlated with surface-area-normalized TCE removal rates, sulfidation negatively impacted the particle surface area, resulting in an optimal FeS shell thickness of approximately 7.3 nm. This corresponded to a particle S/Fe mass ratio of 0.0195. At all sulfide doses, the TCE degradation products were only fully dechlorinated hydrocarbons. Moreover, a nearly 100% chlorine balance was found at the end of the experiments, further confirming complete TCE degradation and the absence of chlorinated transformation products. The newly synthesized S-nZVI particles thus represent a promising remedial agent applicable at sites contaminated with TCE.
Zobrazit více v PubMed
Stefaniuk M.; Oleszczuk P.; Ok Y. S. Review on Nano Zerovalent Iron (NZVI): From Synthesis to Environmental Applications. Chem. Eng. J. 2016, 287, 618–632. 10.1016/j.cej.2015.11.046. DOI
Schöftner P.; Waldner G.; Lottermoser W.; Stöger-Pollach M.; Freitag P.; Reichenauer T. G. Electron Efficiency of NZVI Does Not Change with Variation of Environmental Parameters. Sci. Total Environ. 2015, 535, 69–78. 10.1016/j.scitotenv.2015.05.033. PubMed DOI
Reinsch B. C.; Forsberg B.; Penn R. L.; Kim C. S.; Lowry G. V. Chemical Transformations during Aging of Zerovalent Iron Nanoparticles in the Presence of Common Groundwater Dissolved Constituents. Environ. Sci. Technol. 2010, 44 (9), 3455–3461. 10.1021/es902924h. PubMed DOI
Liu H.; Wang Q.; Wang C.; Li X. Electron Efficiency of Zero-Valent Iron for Groundwater Remediation and Wastewater Treatment. Chem. Eng. J. 2013, 215–216, 90–95. 10.1016/j.cej.2012.11.010. DOI
Liu Y.; Lowry G. V. Effect of Particle Age (Fe 0 Content) and Solution PH On NZVI Reactivity: H 2 Evolution and TCE Dechlorination. Environ. Sci. Technol. 2006, 40 (19), 6085–6090. 10.1021/es060685o. PubMed DOI
Mackenzie K.; Bleyl S.; Georgi A.; Kopinke F.-D. Carbo-Iron – An Fe/AC Composite – As Alternative to Nano-Iron for Groundwater Treatment. Water Res. 2012, 46 (12), 3817–3826. 10.1016/j.watres.2012.04.013. PubMed DOI
Petala E.; Dimos K.; Douvalis A.; Bakas T.; Tucek J.; Zbořil R.; Karakassides M. A. Nanoscale Zero-Valent Iron Supported on Mesoporous Silica: Characterization and Reactivity for Cr(VI) Removal from Aqueous Solution. J. Hazard. Mater. 2013, 261, 295–306. 10.1016/j.jhazmat.2013.07.046. PubMed DOI
Zhan J.; Zheng T.; Piringer G.; Day C.; McPherson G. L.; Lu Y.; Papadopoulos K.; John V. T. Transport Characteristics of Nanoscale Functional Zerovalent Iron/Silica Composites for in Situ Remediation of Trichloroethylene. Environ. Sci. Technol. 2008, 42 (23), 8871–8876. 10.1021/es800387p. PubMed DOI
Kim S. A.; Kamala-Kannan S.; Lee K.-J.; Park Y.-J.; Shea P. J.; Lee W.-H.; Kim H.-M.; Oh B.-T. Removal of Pb(II) from Aqueous Solution by a Zeolite–nanoscale Zero-Valent Iron Composite. Chem. Eng. J. 2013, 217, 54–60. 10.1016/j.cej.2012.11.097. DOI
Zhang M.; He F.; Zhao D.; Hao X. Transport of Stabilized Iron Nanoparticles in Porous Media: Effects of Surface and Solution Chemistry and Role of Adsorption. J. Hazard. Mater. 2017, 322, 284–291. 10.1016/j.jhazmat.2015.12.071. PubMed DOI
He F.; Zhao D.; Paul C. Field Assessment of Carboxymethyl Cellulose Stabilized Iron Nanoparticles for in Situ Destruction of Chlorinated Solvents in Source Zones. Water Res. 2010, 44 (7), 2360–2370. 10.1016/j.watres.2009.12.041. PubMed DOI
He F.; Zhao D. Manipulating the Size and Dispersibility of Zerovalent Iron Nanoparticles by Use of Carboxymethyl Cellulose Stabilizers. Environ. Sci. Technol. 2007, 41 (17), 6216–6221. 10.1021/es0705543. PubMed DOI
Zhang W.; Wang C.-B.; Lien H.-L. Treatment of Chlorinated Organic Contaminants with Nanoscale Bimetallic Particles. Catal. Today 1998, 40 (4), 387–395. 10.1016/S0920-5861(98)00067-4. DOI
Elliott D. W.; Zhang W. Field Assessment of Nanoscale Bimetallic Particles for Groundwater Treatment. Environ. Sci. Technol. 2001, 35 (24), 4922–4926. 10.1021/es0108584. PubMed DOI
Marková Z.; Šišková K. M.; Filip J.; Čuda J.; Kolář M.; Šafářová K.; Medřík I.; Zbořil R. Air Stable Magnetic Bimetallic Fe–Ag Nanoparticles for Advanced Antimicrobial Treatment and Phosphorus Removal. Environ. Sci. Technol. 2013, 47 (10), 5285–5293. 10.1021/es304693g. PubMed DOI
Yan W.; Herzing A. A.; Li X.; Kiely C. J.; Zhang W. Structural Evolution of Pd-Doped Nanoscale Zero-Valent Iron (NZVI) in Aqueous Media and Implications for Particle Aging and Reactivity. Environ. Sci. Technol. 2010, 44 (11), 4288–4294. 10.1021/es100051q. PubMed DOI
Liu W.-J.; Qian T.-T.; Jiang H. Bimetallic Fe Nanoparticles: Recent Advances in Synthesis and Application in Catalytic Elimination of Environmental Pollutants. Chem. Eng. J. 2014, 236, 448–463. 10.1016/j.cej.2013.10.062. DOI
He F.; Li Z.; Shi S.; Xu W.; Sheng H.; Gu Y.; Jiang Y.; Xi B. Dechlorination of Excess Trichloroethene by Bimetallic and Sulfidated Nanoscale Zero-Valent Iron. Environ. Sci. Technol. 2018, 52 (15), 8627–8637. 10.1021/acs.est.8b01735. PubMed DOI
Bhattacharjee S.; Ghoshal S. Optimal Design of Sulfidated Nanoscale Zerovalent Iron for Enhanced Trichloroethene Degradation. Environ. Sci. Technol. 2018, 52 (19), 11078–11086. 10.1021/acs.est.8b02399. PubMed DOI
Xu J.; Cao Z.; Zhou H.; Lou Z.; Wang Y.; Xu X.; Lowry G. V. Sulfur Dose and Sulfidation Time Affect Reactivity and Selectivity of Post-Sulfidized Nanoscale Zerovalent Iron. Environ. Sci. Technol. 2019, 53 (22), 13344–13352. 10.1021/acs.est.9b04210. PubMed DOI
Fan D.; O’Brien Johnson G.; Tratnyek P. G.; Johnson R. L. Sulfidation of Nano Zerovalent Iron (NZVI) for Improved Selectivity During In-Situ Chemical Reduction (ISCR). Environ. Sci. Technol. 2016, 50 (17), 9558–9565. 10.1021/acs.est.6b02170. PubMed DOI
Rajajayavel S. R. C.; Ghoshal S. Enhanced Reductive Dechlorination of Trichloroethylene by Sulfidated Nanoscale Zerovalent Iron. Water Res. 2015, 78, 144–153. 10.1016/j.watres.2015.04.009. PubMed DOI
Han Y.; Yan W. Reductive Dechlorination of Trichloroethene by Zero-Valent Iron Nanoparticles: Reactivity Enhancement through Sulfidation Treatment. Environ. Sci. Technol. 2016, 50 (23), 12992–13001. 10.1021/acs.est.6b03997. PubMed DOI
Fan D.; Lan Y.; Tratnyek P. G.; Johnson R. L.; Filip J.; O’Carroll D. M.; Nunez Garcia A.; Agrawal A. Sulfidation of Iron-Based Materials: A Review of Processes and Implications for Water Treatment and Remediation. Environ. Sci. Technol. 2017, 51, 13070.10.1021/acs.est.7b04177. PubMed DOI
Li J.; Zhang X.; Sun Y.; Liang L.; Pan B.; Zhang W.; Guan X. Advances in Sulfidation of Zerovalent Iron for Water Decontamination. Environ. Sci. Technol. 2017, 51 (23), 13533–13544. 10.1021/acs.est.7b02695. PubMed DOI
Kim E.-J.; Kim J.-H.; Azad A.-M.; Chang Y.-S. Facile Synthesis and Characterization of Fe/FeS Nanoparticles for Environmental Applications. ACS Appl. Mater. Interfaces 2011, 3 (5), 1457–1462. 10.1021/am200016v. PubMed DOI
Mangayayam M.; Dideriksen K.; Ceccato M.; Tobler D. J. The Structure of Sulfidized Zero-Valent Iron by One-Pot Synthesis: Impact on Contaminant Selectivity and Long-Term Performance. Environ. Sci. Technol. 2019, 53 (8), 4389–4396. 10.1021/acs.est.8b06480. PubMed DOI
Su Y.; Jassby D.; Song S.; Zhou X.; Zhao H.; Filip J.; Petala E.; Zhang Y. Enhanced Oxidative and Adsorptive Removal of Diclofenac in Heterogeneous Fenton-like Reaction with Sulfide Modified Nanoscale Zerovalent Iron. Environ. Sci. Technol. 2018, 52 (11), 6466–6475. 10.1021/acs.est.8b00231. PubMed DOI
Fan D.; Anitori R. P.; Tebo B. M.; Tratnyek P. G.; Lezama Pacheco J. S.; Kukkadapu R. K.; Engelhard M. H.; Bowden M. E.; Kovarik L.; Arey B. W. Reductive Sequestration of Pertechnetate (99 TcO 4 – ) by Nano Zerovalent Iron (NZVI) Transformed by Abiotic Sulfide. Environ. Sci. Technol. 2013, 47 (10), 5302–5310. 10.1021/es304829z. PubMed DOI
Du J.; Bao J.; Lu C.; Werner D. Reductive Sequestration of Chromate by Hierarchical FeS@Fe 0 Particles. Water Res. 2016, 102, 73–81. 10.1016/j.watres.2016.06.009. PubMed DOI
Filip J.; Slunský J.; Nosek J.; Semerád J.; Kašlík J.; Oborná J.; Bachořík J.; Medřík I.. Sulfidized NZVI Particles for Groundwater Treatment: Synthesis, Complex Characterization and Laboratory-Scale Testing. In ACS National Meeting, San Francisco, CA, April 3–7, 2017; Abstract No. 307; American Chemical Society, 2017.
Gu Y.; Wang B.; He F.; Bradley M. J.; Tratnyek P. G. Mechanochemically Sulfidated Microscale Zero Valent Iron: Pathways, Kinetics, Mechanism, and Efficiency of Trichloroethylene Dechlorination. Environ. Sci. Technol. 2017, 51 (21), 12653–12662. 10.1021/acs.est.7b03604. PubMed DOI
Tang J.; Tang L.; Feng H.; Zeng G.; Dong H.; Zhang C.; Huang B.; Deng Y.; Wang J.; Zhou Y. PH-Dependent Degradation of p -Nitrophenol by Sulfidated Nanoscale Zerovalent Iron under Aerobic or Anoxic Conditions. J. Hazard. Mater. 2016, 320, 581–590. 10.1016/j.jhazmat.2016.07.042. PubMed DOI
Li S.; Yan W.; Zhang W. Solvent-Free Production of Nanoscale Zero-Valent Iron (NZVI) with Precision Milling. Green Chem. 2009, 11 (10), 1618.10.1039/b913056j. DOI
Yan W.; Lien H.-L.; Koel B. E.; Zhang W. Iron Nanoparticles for Environmental Clean-up: Recent Developments and Future Outlook. Environ. Sci. Process. Impacts 2013, 15 (1), 63–77. 10.1039/C2EM30691C. PubMed DOI
El-Temsah Y. S.; Oughton D. H.; Joner E. J. Effects of Nano-Sized Zero-Valent Iron on DDT Degradation and Residual Toxicity in Soil: A Column Experiment. Plant Soil 2013, 368 (1–2), 189–200. 10.1007/s11104-012-1509-8. DOI
Cernik M.Nanoremediation in the EU – Impacts of NanoRem and Technology Combinations. In Practical Applications for Nanoremediation – Session 1. Nanorem, 2016. http://www.nanorem.eu/stream.aspx?p=/App_Data/docs/user14Gallery/1_Toolbox/8_Final_Conf_part2/NanoRem_TB_RemTech2016_Cernik_practical_applications_nanoremediation.pdf.
Chmielewská E.Environmental Zeolites and Aqueous Media: Examples of Practical Solutions; Bentham Science Publishers, 2018.
Kašlík J.; Kolařík J.; Filip J.; Medřík I.; Tomanec O.; Petr M.; Malina O.; Zbořil R.; Tratnyek P. G. Nanoarchitecture of Advanced Core-Shell Zero-Valent Iron Particles with Controlled Reactivity for Contaminant Removal. Chem. Eng. J. 2018, 354, 335–345. 10.1016/j.cej.2018.08.015. DOI
American Public Health Association; A.W.W. Association; W.E. Federation. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, D.C., 2012.
Pechousek J.; Jancik D.; Frydrych J.; Navarik J. N.; Novak P.. Setup of Mossbauer Spectrometers at RCPTM. In Mossbauer Spectroscopy in Materials Science – 2012; American Institute of Physics: Melville, NY, 2013; pp 186–194.
Pechousek J.; Prochazka R.; Jancik D.; Frydrych J.; Mashlan M.. Universal LabVIEW-Powered Mössbauer Spectrometer Based on USB, PCI or PXI DevicesI. In International Conference on the Applications of the Mössbauer Effect (ICAME 2009); Muller H., Reissner M., Steiner W., Wiesinger G., Eds.; IOP Publishing Ltd: Bristol, UK, 2010.
Klencsár Z.; Kuzmann E.; Vértes A. User-Friendly Software for Mössbauer Spectrum Analysis. J. Radioanal. Nucl. Chem. 1996, 210 (1), 105–118. 10.1007/BF02055410. DOI
Sander R. Compilation of Henry’s Law Constants (Version 4.0) for Water as Solvent. Atmos. Chem. Phys. 2015, 15 (8), 4399–4981. 10.5194/acp-15-4399-2015. DOI
Tratnyek P. G.; Scherer M. M.; Deng B.; Hu S. Effects of Natural Organic Matter, Anthropogenic Surfactants, and Model Quinones on the Reduction of Contaminants by Zero-Valent Iron. Water Res. 2001, 35 (18), 4435–4443. 10.1016/S0043-1354(01)00165-8. PubMed DOI
Fan D.; O’Carroll D. M.; Elliott D. W.; Xiong Z.; Tratnyek P. G.; Johnson R. L.; Garcia A. N. Selectivity of Nano Zerovalent Iron in In Situ Chemical Reduction: Challenges and Improvements. Remediat. J. 2016, 26 (4), 27–40. 10.1002/rem.21481. DOI
Kim E.-J.; Murugesan K.; Kim J.-H.; Tratnyek P. G.; Chang Y.-S. Remediation of Trichloroethylene by FeS-Coated Iron Nanoparticles in Simulated and Real Groundwater: Effects of Water Chemistry. Ind. Eng. Chem. Res. 2013, 52 (27), 9343–9350. 10.1021/ie400165a. DOI
Semerád J.; Filip J.; Ševců A.; Brumovský M.; Nguyen N. H. A.; Mikšíček J.; Lederer T.; Filipová A.; Boháčková J.; Cajthaml T. Environmental Fate of Sulfidated NZVI Particles: The Interplay of Nanoparticle Corrosion and Toxicity during Aging. Environ. Sci.: Nano 2020, 7, 1794.10.1039/D0EN00075B. DOI
Mangayayam M. C.; Perez J. P. H.; Dideriksen K.; Freeman H. M.; Bovet N.; Benning L. G.; Tobler D. J. Structural Transformation of Sulfidized Zerovalent Iron and Its Impact on Long-Term Reactivity. Environ. Sci.: Nano 2019, 6 (11), 3422–3430. 10.1039/C9EN00876D. DOI
Descostes M.; Mercier F.; Thromat N.; Beaucaire C.; Gautier-Soyer M. Use of XPS in the Determination of Chemical Environment and Oxidation State of Iron and Sulfur Samples: Constitution of a Data Basis in Binding Energies for Fe and S Reference Compounds and Applications to the Evidence of Surface Species of an Oxidized Py. Appl. Surf. Sci. 2000, 165 (4), 288–302. 10.1016/S0169-4332(00)00443-8. DOI
Mullet M.; Boursiquot S.; Abdelmoula M.; Génin J.-M.; Ehrhardt J.-J. Surface Chemistry and Structural Properties of Mackinawite Prepared by Reaction of Sulfide Ions with Metallic Iron. Geochim. Cosmochim. Acta 2002, 66 (5), 829–836. 10.1016/S0016-7037(01)00805-5. DOI
Klimkova S.; Cernik M.; Lacinova L.; Filip J.; Jancik D.; Zboril R. Zero-Valent Iron Nanoparticles in Treatment of Acid Mine Water from in Situ Uranium Leaching. Chemosphere 2011, 82 (8), 1178–1184. 10.1016/j.chemosphere.2010.11.075. PubMed DOI
Filip J.; Karlický F.; Marušák Z.; Lazar P.; Černík M.; Otyepka M.; Zbořil R. Anaerobic Reaction of Nanoscale Zerovalent Iron with Water: Mechanism and Kinetics. J. Phys. Chem. C 2014, 118 (25), 13817–13825. 10.1021/jp501846f. DOI
Hansson E. B.; Odziemkowski M. S.; Gillham R. W. Formation of Poorly Crystalline Iron Monosulfides: Surface Redox Reactions on High Purity Iron, Spectroelectrochemical Studies. Corros. Sci. 2006, 48 (11), 3767–3783. 10.1016/j.corsci.2006.03.010. DOI
Rickard D.; Luther G. W. Chemistry of Iron Sulfides. Chem. Rev. 2007, 107 (2), 514–562. 10.1021/cr0503658. PubMed DOI
Csákberényi-Malasics D.; Rodriguez-Blanco J. D.; Kis V. K.; Rečnik A.; Benning L. G.; Pósfai M. Structural Properties and Transformations of Precipitated FeS. Chem. Geol. 2012, 294–295, 249–258. 10.1016/j.chemgeo.2011.12.009. DOI
Matsuo M.; Kawakami M.; Sugimori K. Mössbauer Spectroscopic Study on Chemical Changes of Iron Compounds with the Aid of Sulfate-Reducing Bacteria. Hyperfine Interact. 2000, 126 (1/4), 53–58. 10.1023/A:1012680325493. DOI
Waanders F. B.; Silva L. F. O.; Saikia B. K. The Use of Mössbauer Spectroscopy in Environmental Research. Hyperfine Interact. 2017, 238 (1), 52.10.1007/s10751-017-1423-9. DOI
Baumgartner J.; Dey A.; Bomans P. H. H.; Le Coadou C.; Fratzl P.; Sommerdijk N. A. J. M.; Faivre D. Nucleation and Growth of Magnetite from Solution. Nat. Mater. 2013, 12 (4), 310–314. 10.1038/nmat3558. PubMed DOI
Rickard D.; Morse J. W. Acid Volatile Sulfide (AVS). Mar. Chem. 2005, 97 (3–4), 141–197. 10.1016/j.marchem.2005.08.004. DOI
Kraal P.; Burton E. D.; Bush R. T. Iron Monosulfide Accumulation and Pyrite Formation in Eutrophic Estuarine Sediments. Geochim. Cosmochim. Acta 2013, 122, 75–88. 10.1016/j.gca.2013.08.013. DOI
Xu J.; Wang Y.; Weng C.; Bai W.; Jiao Y.; Kaegi R.; Lowry G. V. Reactivity, Selectivity, and Long-Term Performance of Sulfidized Nanoscale Zerovalent Iron with Different Properties. Environ. Sci. Technol. 2019, 53 (10), 5936–5945. 10.1021/acs.est.9b00511. PubMed DOI
Bartholomew C. H.; Agrawal P. K.; Katzer J. R. Adv. Catal. 1982, 31, 135–242. 10.1016/S0360-0564(08)60454-X. DOI
Burke M. L.; Madix R. J. Hydrogen on Pd(100)-S: The Effect of Sulfur on Precursor Mediated Adsorption and Desorption. Surf. Sci. 1990, 237 (1–3), 1–19. 10.1016/0039-6028(90)90515-A. DOI
Arnold W. A.; Roberts A. L. Pathways and Kinetics of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Fe(0) Particles. Environ. Sci. Technol. 2000, 34 (9), 1794–1805. 10.1021/es990884q. DOI
Song H.; Carraway E. R. Catalytic Hydrodechlorination of Chlorinated Ethenes by Nanoscale Zero-Valent Iron. Appl. Catal., B 2008, 78 (1–2), 53–60. 10.1016/j.apcatb.2007.07.034. DOI
Butler E. C.; Hayes K. F. Effects of Solution Composition and PH on the Reductive Dechlorination of Hexachloroethane by Iron Sulfide. Environ. Sci. Technol. 1998, 32 (9), 1276–1284. 10.1021/es9706864. DOI
Butler E. C.; Hayes K. F. Factors Influencing Rates and Products in the Transformation of Trichloroethylene by Iron Sulfide and Iron Metal. Environ. Sci. Technol. 2001, 35 (19), 3884–3891. 10.1021/es010620f. PubMed DOI
Iron Nitride Nanoparticles for Enhanced Reductive Dechlorination of Trichloroethylene