Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr(VI) removal from aqueous solution
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23959249
DOI
10.1016/j.jhazmat.2013.07.046
PII: S0304-3894(13)00525-6
Knihovny.cz E-zdroje
- Klíčová slova
- Characterization, Cr(VI) remediation, Kinetics, Mesoporous silica, Nanoscale zero-valent iron,
- MeSH
- chemické látky znečišťující vodu chemie MeSH
- chrom chemie MeSH
- čištění vody metody MeSH
- oxid křemičitý chemie MeSH
- poréznost MeSH
- roztoky MeSH
- železo chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chemické látky znečišťující vodu MeSH
- chrom MeSH
- chromium hexavalent ion MeSH Prohlížeč
- MCM-41 MeSH Prohlížeč
- oxid křemičitý MeSH
- roztoky MeSH
- železo MeSH
MCM-41-supported nanoscale zero-valent iron (nZVI) was sytnhesized by impregnating the mesoporous silica martix with ferric chloride, followed by chemical reduction with NaHB4. The samples were studied with a combination of characterization techniques such as powder X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) and Mössbauer spectroscopy, N2 adsorption measurements, transmission electron microscopy (TEM), magnetization measurements, and thermal analysis methods. The experimental data revealed development of nanoscale zero-valent iron particles with an elliptical shape and a maximum size of ∼80 nm, which were randomly distributed and immobilized on the mesoporous silica surface. Surface area measurements showed that the porous MCM-41 host matrix maintains its hexagonal mesoporous order structure and exhibits a considerable high surface area (609 m(2)/g). Mössbauer and magnetization measurements confirmed the presence of core-shell iron nanoparticles composed of a ferromagnetic metallic core and an oxide/hydroxide shell. The kinetic studies demonstrated a rapid removal of Cr(VI) ions from the aqueous solutions in the presence of these stabilized nZVI particles on MCM-41, and a considerably increased reduction capacity per unit mass of material in comparison to that of unsupported nZVI. The results also indicate a highly pH-dependent reduction efficiency of the material, whereas their kinetics was described by a pseudo-first order kinetic model.
Citace poskytuje Crossref.org