Iron Nitride Nanoparticles for Enhanced Reductive Dechlorination of Trichloroethylene
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35263088
PubMed Central
PMC8988298
DOI
10.1021/acs.est.1c08282
Knihovny.cz E-zdroje
- Klíčová slova
- Dechlorination, Groundwater remediation, Iron nitride, Molecular modeling, Nanoparticles, Selectivity, Trichloroethylene, Zerovalent iron,
- MeSH
- chemické látky znečišťující vodu * MeSH
- nanočástice * MeSH
- podzemní voda * MeSH
- trichlorethylen * MeSH
- železo MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
- trichlorethylen * MeSH
- železo MeSH
Nitriding has been used for decades to improve the corrosion resistance of iron and steel materials. Moreover, iron nitrides (FexN) have been shown to give an outstanding catalytic performance in a wide range of applications. We demonstrate that nitriding also substantially enhances the reactivity of zerovalent iron nanoparticles (nZVI) used for groundwater remediation, alongside reducing particle corrosion. Two different types of FexN nanoparticles were synthesized by passing gaseous NH3/N2 mixtures over pristine nZVI at elevated temperatures. The resulting particles were composed mostly of face-centered cubic (γ'-Fe4N) and hexagonal close-packed (ε-Fe2-3N) arrangements. Nitriding was found to increase the particles' water contact angle and surface availability of iron in reduced forms. The two types of FexN nanoparticles showed a 20- and 5-fold increase in the trichloroethylene (TCE) dechlorination rate, compared to pristine nZVI, and about a 3-fold reduction in the hydrogen evolution rate. This was related to a low energy barrier of 27.0 kJ mol-1 for the first dechlorination step of TCE on the γ'-Fe4N(001) surface, as revealed by density functional theory calculations with an implicit solvation model. TCE dechlorination experiments with aged particles showed that the γ'-Fe4N nanoparticles retained high reactivity even after three months of aging. This combined theoretical-experimental study shows that FexN nanoparticles represent a new and potentially important tool for TCE dechlorination.
Department of Physics Faculty of Science University of Ostrava 701 03 Ostrava Czech Republic
School of Pharmaceutical Science and Technology Tianjin University 300072 Tianjin P R China
Zobrazit více v PubMed
Panagos P.; Van Liedekerke M.; Yigini Y.; Montanarella L. Contaminated Sites in Europe: Review of the Current Situation Based on Data Collected through a European Network. J. Environ. Public Health 2013, 2013, 1–11. 10.1155/2013/158764. PubMed DOI PMC
McCarty P. L.Groundwater Contamination by Chlorinated Solvents: History, Remediation Technologies and Strategies. In In Situ Remediation of Chlorinated Solvent Plumes; Stroo H., Ward C., Eds.; SERDP/ESTCP Environmental Remediation Technology; Springer: New York, 2010; pp 1–28.
Stroo H. F.; Leeson A.; Marqusee J. A.; Johnson P. C.; Ward C. H.; Kavanaugh M. C.; Sale T. C.; Newell C. J.; Pennell K. D.; Lebrón C. A.; Unger M. Chlorinated Ethene Source Remediation: Lessons Learned. Environ. Sci. Technol. 2012, 46 (12), 6438–6447. 10.1021/es204714w. PubMed DOI
Bennett P.; He F.; Zhao D.; Aiken B.; Feldman L. In Situ Testing of Metallic Iron Nanoparticle Mobility and Reactivity in a Shallow Granular Aquifer. J. Contam. Hydrol. 2010, 116 (1–4), 35–46. 10.1016/j.jconhyd.2010.05.006. PubMed DOI
Kocur C. M.; Chowdhury A. I.; Sakulchaicharoen N.; Boparai H. K.; Weber K. P.; Sharma P.; Krol M. M.; Austrins L.; Peace C.; Sleep B. E.; O’Carroll D. M. Characterization of NZVI Mobility in a Field Scale Test. Environ. Sci. Technol. 2014, 48 (5), 2862–2869. 10.1021/es4044209. PubMed DOI
Zhang W.; Elliott D. W. Applications of Iron Nanoparticles for Groundwater Remediation. Remediat. J. 2006, 16 (2), 7–21. 10.1002/rem.20078. DOI
Bardos P.; Merly C.; Kvapil P.; Koschitzky H.-P. Status of Nanoremediation and Its Potential for Future Deployment: Risk-Benefit and Benchmarking Appraisals. Remediat. J. 2018, 28 (3), 43–56. 10.1002/rem.21559. DOI
Schöftner P.; Waldner G.; Lottermoser W.; Stöger-Pollach M.; Freitag P.; Reichenauer T. G. Electron Efficiency of NZVI Does Not Change with Variation of Environmental Parameters. Sci. Total Environ. 2015, 535, 69–78. 10.1016/j.scitotenv.2015.05.033. PubMed DOI
Reinsch B. C.; Forsberg B.; Penn R. L.; Kim C. S.; Lowry G. V. Chemical Transformations during Aging of Zerovalent Iron Nanoparticles in the Presence of Common Groundwater Dissolved Constituents. Environ. Sci. Technol. 2010, 44 (9), 3455–3461. 10.1021/es902924h. PubMed DOI
Liu H.; Wang Q.; Wang C.; Li X. Electron Efficiency of Zero-Valent Iron for Groundwater Remediation and Wastewater Treatment. Chem. Eng. J. 2013, 215–216, 90–95. 10.1016/j.cej.2012.11.010. DOI
Micić V.; Bossa N.; Schmid D.; Wiesner M. R.; Hofmann T. Groundwater Chemistry Has a Greater Influence on the Mobility of Nanoparticles Used for Remediation than the Chemical Heterogeneity of Aquifer Media. Environ. Sci. Technol. 2020, 54 (2), 1250–1257. 10.1021/acs.est.9b06135. PubMed DOI
Micić V.; Schmid D.; Bossa N.; Gondikas A.; Velimirovic M.; von der Kammer F.; Wiesner M. R.; Hofmann T. Impact of Sodium Humate Coating on Collector Surfaces on Deposition of Polymer-Coated Nanoiron Particles. Environ. Sci. Technol. 2017, 51 (16), 9202–9209. 10.1021/acs.est.7b01224. PubMed DOI PMC
Phenrat T.; Saleh N.; Sirk K.; Tilton R. D.; Lowry G. V. Aggregation and Sedimentation of Aqueous Nanoscale Zerovalent Iron Dispersions. Environ. Sci. Technol. 2007, 41 (1), 284–290. 10.1021/es061349a. PubMed DOI
Mueller N. C.; Braun J.; Bruns J.; Černík M.; Rissing P.; Rickerby D.; Nowack B. Application of Nanoscale Zero Valent Iron (NZVI) for Groundwater Remediation in Europe. Environ. Sci. Pollut. Res. 2012, 19 (2), 550–558. 10.1007/s11356-011-0576-3. PubMed DOI
Keane E.Fate, Transport and Toxicity of Nanoscale Zero-Valent Iron (NZVI) Used during Superfund Remediation; Duke University: Durham, NC, 2009.
Guan X.; Sun Y.; Qin H.; Li J.; Lo I. M. C.; He D.; Dong H. The Limitations of Applying Zero-Valent Iron Technology in Contaminants Sequestration and the Corresponding Countermeasures: The Development in Zero-Valent Iron Technology in the Last Two Decades (1994–2014). Water Res. 2015, 75, 224–248. 10.1016/j.watres.2015.02.034. PubMed DOI
Stefaniuk M.; Oleszczuk P.; Ok Y. S. Review on Nano Zerovalent Iron (NZVI): From Synthesis to Environmental Applications. Chem. Eng. J. 2016, 287, 618–632. 10.1016/j.cej.2015.11.046. DOI
Fan D.; Lan Y.; Tratnyek P. G.; Johnson R. L.; Filip J.; O’Carroll D. M.; Nunez Garcia A.; Agrawal A. Sulfidation of Iron-Based Materials: A Review of Processes and Implications for Water Treatment and Remediation. Environ. Sci. Technol. 2017, 51, 13070.10.1021/acs.est.7b04177. PubMed DOI
Yan W.; Herzing A. A.; Li X.; Kiely C. J.; Zhang W. Structural Evolution of Pd-Doped Nanoscale Zero-Valent Iron (NZVI) in Aqueous Media and Implications for Particle Aging and Reactivity. Environ. Sci. Technol. 2010, 44 (11), 4288–4294. 10.1021/es100051q. PubMed DOI
Liu W.-J.; Qian T.-T.; Jiang H. Bimetallic Fe Nanoparticles: Recent Advances in Synthesis and Application in Catalytic Elimination of Environmental Pollutants. Chem. Eng. J. 2014, 236, 448–463. 10.1016/j.cej.2013.10.062. DOI
Kunze J.Nitrogen and Carbon in Iron and Steel Thermodynamics (Physical Research); Akademie Verlag: Berlin, 1990.
Fry A. Stickstoff in Eisen, Stahl Und Sonderstahl. Ein Neues Oberflachenhartungsverfahren. Stahl und Eisen 1923, 43, 1271.
Bhattacharyya S. Iron Nitride Family at Reduced Dimensions: A Review of Their Synthesis Protocols and Structural and Magnetic Properties. J. Phys. Chem. C 2015, 119 (4), 1601–1622. 10.1021/jp510606z. DOI
Yasavol N.; Mahboubi F. The Effect of Duplex Plasma Nitriding-Oxidizing Treatment on the Corrosion Resistance of AISI 4130 Steel. Mater. Des. 2012, 38, 59–63. 10.1016/j.matdes.2012.01.047. DOI
Moszyński D. Nitriding of Nanocrystalline Iron in the Atmospheres with Variable Nitriding Potential. J. Phys. Chem. C 2014, 118 (28), 15440–15447. 10.1021/jp500349d. DOI
Arabczyk W.; Zamłynny J.; Moszyński D. Kinetics of Nanocrystalline Iron Nitriding. Polish J. Chem. Technol. 2010, 12 (1), 38–43. 10.2478/v10026-010-0008-z. DOI
Mittemeijer E. J.; Slycke J. T. Chemical potentials and activities of nitrogen and carbon imposed by gaseous nitriding and carburising atmospheres. Surf. Eng. 1996, 12 (2), 152–162. 10.1179/sur.1996.12.2.152. DOI
Mittemeijer E. J.; Somers M. A. J. Thermodynamics, Kinetics, and Process Control of Nitriding. Surf. Eng. 1997, 13 (6), 483–497. 10.1179/sur.1997.13.6.483. DOI
Bouanis F. Z.; Bentiss F.; Traisnel M.; Jama C. Enhanced Corrosion Resistance Properties of Radiofrequency Cold Plasma Nitrided Carbon Steel: Gravimetric and Electrochemical Results. Electrochim. Acta 2009, 54 (8), 2371–2378. 10.1016/j.electacta.2008.10.068. DOI
Bouanis F. Z.; Jama C.; Traisnel M.; Bentiss F. Study of Corrosion Resistance Properties of Nitrided Carbon Steel Using Radiofrequency N2/H2 Cold Plasma Process. Corros. Sci. 2010, 52 (10), 3180–3190. 10.1016/j.corsci.2010.05.021. DOI
Cocke D. L.; Jurčik-Rajman M.; Vepřek S. The Surface Properties and Reactivities of Plasma-Nitrided Iron and Their Relation to Corrosion Passivation. J. Electrochem. Soc. 1989, 136 (12), 3655–3662. 10.1149/1.2096526. DOI
Weber T.; de Wit L.; Saris F. W.; Königer A.; Rauschenbach B.; Wolf G. K.; Krauss S. Hardness and Corrosion Resistance of Single-Phase Nitride and Carbide on Iron. Mater. Sci. Eng., A 1995, 199 (2), 205–210. 10.1016/0921-5093(94)09729-1. DOI
Anderson R. B. Nitrided Iron Catalysts for the Fischer–Tropsch Synthesis in the Eighties. Catal. Rev. 1980, 21 (1), 53–71. 10.1080/03602458008068060. DOI
Zheng M.; Chen X.; Cheng R.; Li N.; Sun J.; Wang X.; Zhang T. Catalytic Decomposition of Hydrazine on Iron Nitride Catalysts. Catal. Commun. 2006, 7 (3), 187–191. 10.1016/j.catcom.2005.10.009. DOI
Pelka R.; Moszyńska I.; Arabczyk W. Catalytic Ammonia Decomposition Over Fe/Fe4N. Catal. Lett. 2009, 128 (1–2), 72–76. 10.1007/s10562-008-9758-0. DOI
Wang L.; Xin Q.; Zhao Y.; Zhang G.; Dong J.; Gong W.; Guo H. In Situ FT-IR Studies on Catalytic Nature of Iron Nitride: Identification of the N Active Site. ChemCatChem. 2012, 4 (5), 624–627. 10.1002/cctc.201100311. DOI
Wang J.; Wang C.; Tong S. A Novel Composite Fe-N/O Catalyst for the Effective Enhancement of Oxidative Capacity of Persulfate at Ambient Temperature. Catal. Commun. 2018, 103, 105–109. 10.1016/j.catcom.2017.09.029. DOI
Yu F.; Zhou H.; Zhu Z.; Sun J.; He R.; Bao J.; Chen S.; Ren Z. Three-Dimensional Nanoporous Iron Nitride Film as an Efficient Electrocatalyst for Water Oxidation. ACS Catal. 2017, 7 (3), 2052–2057. 10.1021/acscatal.6b03132. DOI
Li J.; Yu F.; Wang M.; Lai Y.; Wang H.; Lei X.; Fang J. Highly Dispersed Iron Nitride Nanoparticles Embedded in N Doped Carbon as a High Performance Electrocatalyst for Oxygen Reduction Reaction. Int. J. Hydrogen Energy 2017, 42 (5), 2996–3005. 10.1016/j.ijhydene.2016.12.148. DOI
Wang M.; Yang Y.; Liu X.; Pu Z.; Kou Z.; Zhu P.; Mu S. The Role of Iron Nitrides in the Fe-N-C Catalysis System towards the Oxygen Reduction Reaction. Nanoscale 2017, 9 (22), 7641–7649. 10.1039/C7NR01925D. PubMed DOI
Zhang F.; Xi S.; Lin G.; Hu X.; Lou X. W. D.; Xie K. Metallic Porous Iron Nitride and Tantalum Nitride Single Crystals with Enhanced Electrocatalysis Performance. Adv. Mater. 2019, 31 (7), 1806552.10.1002/adma.201806552. PubMed DOI
Gong L.; Qiu X.; Tratnyek P. G.; Liu C.; He F. FeN X (C)-Coated Microscale Zero-Valent Iron for Fast and Stable Trichloroethylene Dechlorination in Both Acidic and Basic PH Conditions. Environ. Sci. Technol. 2021, 55 (8), 5393–5402. 10.1021/acs.est.0c08176. PubMed DOI
Kašlík J.; Kolařík J.; Filip J.; Medřík I.; Tomanec O.; Petr M.; Malina O.; Zbořil R.; Tratnyek P. G. Nanoarchitecture of Advanced Core-Shell Zero-Valent Iron Particles with Controlled Reactivity for Contaminant Removal. Chem. Eng. J. 2018, 354, 335–345. 10.1016/j.cej.2018.08.015. DOI
US EPA . Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, 5th ed.; Washington, DC, 2002.
Brumovský M.; Filip J.; Malina O.; Oborná J.; Sracek O.; Reichenauer T. G.; Andrýsková P.; Zbořil R. Core-Shell Fe/FeS Nanoparticles with Controlled Shell Thickness for Enhanced Trichloroethylene Removal. ACS Appl. Mater. Interfaces 2020, 12 (31), 35424–35434. 10.1021/acsami.0c08626. PubMed DOI PMC
Kuhnen C. A.; de Figueiredo R. S.; Drago V.; da Silva E. Z. Mössbauer Studies and Electronic Structure of Γ•-Fe4N. J. Magn. Magn. Mater. 1992, 111 (1–2), 95–104. 10.1016/0304-8853(92)91062-X. DOI
Kurian S.; Gajbhiye N. S.. Mössbauer and Magnetic Studies of Nanocrystalline γ′-Fe4N. In ICAME 2007; Gajbhiye N. S., Date S. K.; Springer: Berlin, Heidelberg, 2008; pp 319–325.
Gorski C. A.; Scherer M. M. Determination of Nanoparticulate Magnetite Stoichiometry by Mossbauer Spectroscopy, Acidic Dissolution, and Powder X-Ray Diffraction: A Critical Review. Am. Mineral. 2010, 95 (7), 1017–1026. 10.2138/am.2010.3435. DOI
Kurian S.; Gajbhiye N. S. Magnetic and Mössbauer Study of δ-Fe y N (2 < y < 3) Nanoparticles. J. Nanoparticle Res. 2010, 12 (4), 1197–1209. 10.1007/s11051-009-9793-9. DOI
Ningthoujam R. S.; Gajbhiye N. S. Magnetic Study of Single Domain ε-Fe3N Nanoparticles Synthesized by Precursor Technique. Mater. Res. Bull. 2008, 43 (5), 1079–1085. 10.1016/j.materresbull.2007.06.011. DOI
Panda R. N.; Gajbhiye N. S. Magnetic Properties of Single Domain δ-Fe 3 N Synthesized by Borohydride Reduction Route. J. Appl. Phys. 1997, 81 (1), 335–339. 10.1063/1.364115. DOI
Bhattacharyya S.; Shivaprasad S. M.; Gajbhiye N. S. Variation of Magnetic Ordering in δ-Fe3N Nanoparticles. Chem. Phys. Lett. 2010, 496 (1–3), 122–127. 10.1016/j.cplett.2010.07.030. DOI
Sato S.; Omori K.; Araki S.; Takahashi Y.; Wagatsuma K. Surface Analysis of Nitride Layers Formed on Fe-Based Alloys through Plasma Nitride Process. Surf. Interface Anal. 2009, 41 (6), 496–501. 10.1002/sia.3053. DOI
Li D.; Choi C. J.; Kim B. K.; Zhang Z. D. Characterization of Fe/N Nanoparticles Synthesized by the Chemical Vapor Condensation Process. J. Magn. Magn. Mater. 2004, 277 (1–2), 64–70. 10.1016/j.jmmm.2003.10.011. DOI
Gontijo L. C.; Machado R.; Miola E. J.; Casteletti L. C.; Nascente P. A. P. Characterization of Plasma-Nitrided Iron by XRD, SEM and XPS. Surf. Coat. Technol. 2004, 183 (1), 10–17. 10.1016/j.surfcoat.2003.06.026. DOI
Sifkovits M.; Smolinski H.; Hellwig S.; Weber W. Interplay of Chemical Bonding and Magnetism in Fe4N, Fe3N and ζ-Fe2N. J. Magn. Magn. Mater. 1999, 204 (3), 191–198. 10.1016/S0304-8853(99)00296-6. DOI
Rohith Vinod K.; Saravanan P.; Sakar M.; Balakumar S. Insights into the Nitridation of Zero-Valent Iron Nanoparticles for the Facile Synthesis of Iron Nitride Nanoparticles. RSC Adv. 2016, 6 (51), 45850–45857. 10.1039/C6RA04935D. DOI
Wang X.; Zheng W. T.; Tian H. W.; Yu S. S.; Wang L. L. Effect of Substrate Temperature and Bias Voltage on DC Magnetron Sputtered Fe-N Thin Films. J. Magn. Magn. Mater. 2004, 283 (2–3), 282–290. 10.1016/j.jmmm.2004.06.002. DOI
Xu J.; Wang Y.; Weng C.; Bai W.; Jiao Y.; Kaegi R.; Lowry G. V. Reactivity, Selectivity, and Long-Term Performance of Sulfidized Nanoscale Zerovalent Iron with Different Properties. Environ. Sci. Technol. 2019, 53 (10), 5936–5945. 10.1021/acs.est.9b00511. PubMed DOI
Roh Y.; Lee S. Y.; Elless M. P. Characterization of Corrosion Products in the Permeable Reactive Barriers. Environ. Geol. 2000, 40 (1–2), 184–194. 10.1007/s002540000178. DOI
Génin J.-M. R.; Christy A.; Kuzmann E.; Mills S.; Ruby C. Structure and Occurrences of ≪ Green Rust ≫ Related New Minerals of the ≪ Fougérite ≫ Group, Trébeurdenite and Mössbauerite, Belonging to the ≪ Hydrotalcite ≫ Supergroup; How Mössbauer Spectroscopy Helps XRD. Hyperfine Interact. 2014, 226 (1–3), 459–482. 10.1007/s10751-014-1045-4. DOI
Hwang Y.; Shin H.-S. Effects on Nano Zero-Valent Iron Reactivity of Interactions between Hardness, Alkalinity, and Natural Organic Matter in Reverse Osmosis Concentrate. J. Environ. Sci. 2013, 25 (11), 2177–2184. 10.1016/S1001-0742(12)60323-4. PubMed DOI
Bae S.; Collins R. N.; Waite T. D.; Hanna K. Advances in Surface Passivation of Nanoscale Zerovalent Iron: A Critical Review. Environ. Sci. Technol. 2018, 52 (21), 12010–12025. 10.1021/acs.est.8b01734. PubMed DOI
Kaya D.; Kjellerup B. V.; Chourey K.; Hettich R. L.; Taggart D. M.; Löffler F. E. Impact of Fixed Nitrogen Availability on Dehalococcoides Mccartyi Reductive Dechlorination Activity. Environ. Sci. Technol. 2019, 53 (24), 14548–14558. 10.1021/acs.est.9b04463. PubMed DOI
He F.; Li Z.; Shi S.; Xu W.; Sheng H.; Gu Y.; Jiang Y.; Xi B. Dechlorination of Excess Trichloroethene by Bimetallic and Sulfidated Nanoscale Zero-Valent Iron. Environ. Sci. Technol. 2018, 52 (15), 8627–8637. 10.1021/acs.est.8b01735. PubMed DOI
Fan D.; O’Carroll D. M.; Elliott D. W.; Xiong Z.; Tratnyek P. G.; Johnson R. L.; Garcia A. N. Selectivity of Nano Zerovalent Iron in In Situ Chemical Reduction: Challenges and Improvements. Remediat. J. 2016, 26 (4), 27–40. 10.1002/rem.21481. DOI
Mangayayam M. C.; Perez J. P. H.; Dideriksen K.; Freeman H. M.; Bovet N.; Benning L. G.; Tobler D. J. Structural Transformation of Sulfidized Zerovalent Iron and Its Impact on Long-Term Reactivity. Environ. Sci. Nano 2019, 6 (11), 3422–3430. 10.1039/C9EN00876D. DOI
Schöftner P.; Waldner G.; Lottermoser W.; Stöger-Pollach M.; Freitag P.; Reichenauer T. G. Electron Efficiency of NZVI Does Not Change with Variation of Environmental Parameters. Sci. Total Environ. 2015, 535, 69–78. 10.1016/j.scitotenv.2015.05.033. PubMed DOI
Arnold W. A.; Roberts A. L. Pathways and Kinetics of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Fe(0) Particles. Environ. Sci. Technol. 2000, 34 (9), 1794–1805. 10.1021/es990884q. DOI
Liu Y.; Majetich S. A.; Tilton R. D.; Sholl D. S.; Lowry G. V. TCE Dechlorination Rates, Pathways, and Efficiency of Nanoscale Iron Particles with Different Properties. Environ. Sci. Technol. 2005, 39 (5), 1338–1345. 10.1021/es049195r. PubMed DOI
Deng B.; Campbell T. J.; Burris D. R. Hydrocarbon Formation in Metallic Iron/Water Systems. Environ. Sci. Technol. 1997, 31 (4), 1185–1190. 10.1021/es960698+. DOI
Schulz H. Short History and Present Trends of Fischer–Tropsch Synthesis. Appl. Catal. A Gen. 1999, 186 (1–2), 3–12. 10.1016/S0926-860X(99)00160-X. DOI
Liu Y.; Phenrat T.; Lowry G. V. Effect of TCE Concentration and Dissolved Groundwater Solutes on NZVI-Promoted TCE Dechlorination and H 2 Evolution. Environ. Sci. Technol. 2007, 41 (22), 7881–7887. 10.1021/es0711967. PubMed DOI
Letchworth-Weaver K.; Arias T. A. Joint Density Functional Theory of the Electrode-Electrolyte Interface: Application to Fixed Electrode Potentials, Interfacial Capacitances, and Potentials of Zero Charge. Phys. Rev. B 2012, 86 (7), 075140.10.1103/PhysRevB.86.075140. DOI
Mathew K.; Sundararaman R.; Letchworth-Weaver K.; Arias T. A.; Hennig R. G. Implicit Solvation Model for Density-Functional Study of Nanocrystal Surfaces and Reaction Pathways. J. Chem. Phys. 2014, 140 (8), 084106.10.1063/1.4865107. PubMed DOI
Shi Y. J.; Du Y. L.; Chen G. Ab Initio Study of Structural and Magnetic Properties of Cubic Fe4N(001) Surface. Solid State Commun. 2012, 152 (16), 1581–1584. 10.1016/j.ssc.2012.05.017. DOI
Lim D.-H.; Lastoskie C. M.; Soon A.; Becker U. Density Functional Theory Studies of Chloroethene Adsorption on Zerovalent Iron. Environ. Sci. Technol. 2009, 43 (4), 1192–1198. 10.1021/es802523a. PubMed DOI
Lim D.-H.; Lastoskie C. M. Density Functional Theory Studies on the Relative Reactivity of Chloroethenes on Zerovalent Iron. Environ. Sci. Technol. 2009, 43 (14), 5443–5448. 10.1021/es9003203. PubMed DOI
Kolos M.; Tunega D.; Karlický F. A Theoretical Study of Adsorption on Iron Sulfides towards Nanoparticle Modeling. Phys. Chem. Chem. Phys. 2020, 22 (40), 23258–23267. 10.1039/D0CP02988B. PubMed DOI
Zhang N.; Luo J.; Blowers P.; Farrell J. Understanding Trichloroethylene Chemisorption to Iron Surfaces Using Density Functional Theory. Environ. Sci. Technol. 2008, 42 (6), 2015–2020. 10.1021/es0717663. PubMed DOI PMC
Filip J.; Karlický F.; Marušák Z.; Lazar P.; Černík M.; Otyepka M.; Zbořil R. Anaerobic Reaction of Nanoscale Zerovalent Iron with Water: Mechanism and Kinetics. J. Phys. Chem. C 2014, 118 (25), 13817–13825. 10.1021/jp501846f. DOI
Li H.; Yang W.; Wu C.; Xu J. Origin of the Hydrophobicity of Sulfur-Containing Iron Surfaces. Phys. Chem. Chem. Phys. 2021, 23 (25), 13971–13976. 10.1039/D1CP00588J. PubMed DOI
Schneidewind U.; Haest P. J.; Atashgahi S.; Maphosa F.; Hamonts K.; Maesen M.; Calderer M.; Seuntjens P.; Smidt H.; Springael D.; Dejonghe W. Kinetics of Dechlorination by Dehalococcoides Mccartyi Using Different Carbon Sources. J. Contam. Hydrol. 2014, 157, 25–36. 10.1016/j.jconhyd.2013.10.006. PubMed DOI