Small-Molecule Allosteric Inhibitors of Human Aspartate Transcarbamoylase Suppress Proliferation of Bone Osteosarcoma Epithelial Cells
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Chinese Scholarship Council
91217002
ZonMw - Netherlands
CRSII5_189952
SNSF Sinergia
2021/ENW/01188386
NWO Veni
0066384
Novo Nordisk Foundation
91217002
ZonMw - Netherlands
PubMed
38602859
DOI
10.1002/cmdc.202300688
Knihovny.cz E-zdroje
- Klíčová slova
- Aspartate Transcarbamoylase, Molecular Docking, Non-competitive Inhibition, Osteosarcoma, Pyrimidine Biosynthesis,
- MeSH
- alosterická regulace účinky léků MeSH
- aspartátkarbamoyltransferasa * antagonisté a inhibitory metabolismus chemie MeSH
- epitelové buňky účinky léků metabolismus MeSH
- inhibitory enzymů * farmakologie chemie chemická syntéza MeSH
- knihovny malých molekul chemie farmakologie chemická syntéza MeSH
- lidé MeSH
- molekulární struktura MeSH
- nádorové buněčné linie MeSH
- nádory kostí farmakoterapie patologie metabolismus MeSH
- osteosarkom * farmakoterapie patologie metabolismus MeSH
- proliferace buněk * účinky léků MeSH
- protinádorové látky farmakologie chemie chemická syntéza MeSH
- screeningové testy protinádorových léčiv MeSH
- simulace molekulového dockingu MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aspartátkarbamoyltransferasa * MeSH
- inhibitory enzymů * MeSH
- knihovny malých molekul MeSH
- protinádorové látky MeSH
Aspartate transcarbamoylase (ATC) is the first committed step in de novo pyrimidine biosynthesis in eukaryotes and plants. A potent transition state analog of human ATCase (PALA) has previously been assessed in clinical trials for the treatment of cancer, but was ultimately unsuccessful. Additionally, inhibition of this pathway has been proposed to be a target to suppress cell proliferation in E. coli, the malarial parasite and tuberculosis. In this manuscript we screened a 70-member library of ATC inhibitors developed against the malarial and tubercular ATCases for inhibitors of the human ATC. Four compounds showed low nanomolar inhibition (IC50 30-120 nM) in an in vitro activity assay. These compounds significantly outperform PALA, which has a triphasic inhibition response under identical conditions, in which significant activity remains at PALA concentrations above 10 μM. Evidence for a druggable allosteric pocket in human ATC is provided by both in vitro enzyme kinetic, homology modeling and in silico docking. These compounds also suppress the proliferation of U2OS osteoblastoma cells by promoting cell cycle arrest in G0/G1 phase. This report provides the first evidence for an allosteric pocket in human ATC, which greatly enhances its druggability and demonstrates the potential of this series in cancer therapy.
CATRIN Department of Innovative Chemistry Palack University 779 00 Olomouc Holice Czech Republic
Department of Biomedicine Aarhus University Ole Worms Alle' 4 8000 Aarhus C Denmark
Zobrazit více v PubMed
T. Aoki, G. Weber, Science 1981, 212, 463–465;
K. A. Smith, M. L. Agarwal, M. V. Chernov, O. B. Chernova, Y. Deguchi, Y. Ishizaka, T. E. Patterson, M.-F. Poupon, G. R. Stark, Phil. Trans. R. Soc. B 1995, 347, 49–56;
A. N. Lane, T. W. Fan, Nucleic Acids Res. 2015, 43, 2466–2485;
X. Tong, F. Zhao, C. B. Thompson, Curr. Opin. Genet. Dev. 2009, 19, 32–37;
F. D. Sigoillot, S. M. Sigoillot, H. I. Guy, Int. J. Cancer 2004, 109, 491–498.
G. Peters, J. Veerkamp, in Purine Metabolism in Man-IV, Springer, 1984, pp. 531–534;
S. Madani, J. Baillon, J. Fries, O. Belhadj, A. Bettaieb, M. B. Hamida, G. Hervé, Eur. J. Cancer Clin. Oncol. 1987, 23, 1485–1490.
W. N. Lipscomb, E. R. Kantrowitz, Acc. Chem. Res. 2012, 45, 444–453.
K. D. Collins, G. R. Stark, J. Biol. Chem. 1971, 246, 6599–6605.
T. C. Chan, M. Markman, S. Cleary, S. B. Howell, Cancer Res. 1986, 46, 3168–3172;
A. Leyva, H. Appel, P. Smith, J. Lankelma, H. M. Pinedo, Cancer Lett. 1981, 12, 169–173;
E. A. Swyryd, S. S. Seaver, G. R. Stark, J. Biol. Chem. 1974, 249, 6945–6950;
K. K. Tsuboi, H. N. Edmunds, L. K. Kwong, Cancer Res. 1977, 37, 3080–3087;
J. L. Grem, S. A. King, P. J. O′Dwyer, B. Leyland-Jones, Cancer Res. 1988, 48, 4441–4454.
M. K. Agarwal, K. Hastak, M. W. Jackson, S. N. Breit, G. R. Stark, M. L. Agarwal, Proc. Natl. Acad. Sci. USA 2006, 103, 16278–16283;
M. L. Agarwal, A. Agarwal, W. R. Taylor, O. Chernova, Y. Sharma, G. R. Stark, Proc. Natl. Acad. Sci. USA 1998, 95, 14775–14780.
C. Wang, B. Zhang, A. Krüger, X. Du, L. Visser, A. S. Dömling, C. Wrenger, M. R. Groves J. Am. Chem. Soc. 2022, 144(41), 19070–19077.
X. Du, V. Sonawane, B. Zhang, C. Wang, B. de Ruijter, A. S. S. Domling, N. Reiling, M. R. Groves, ChemMedChem 2023, 18, e202300279.
A. Ruiz-Ramos, A. Velázquez-Campoy, A. Grande-García, M. Moreno-Morcillo, S. Ramón-Maiques, Structure 2016, 24, 1081–1094.
S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, J. Mol. Biol. 1990, 215, 403–410.
C. Macol, M. Dutta, B. Stec, H. Tsuruta, E. R. Kantrowitz, Protein Sci. 1999, 8, 1305–1313;
E. A. Robey, H. Schachman, Proc. Natl. Acad. Sci. USA 1985, 82, 361–365.
D. R. Koes, M. P. Baumgartner, C. J. Camacho, J. Chem. Inf. Model. 2013, 53, 1893–1904.
G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, A. J. Olson, J. Comput. Chem. 2009, 30, 2785–2791.
P. Pozarowski, Z. Darzynkiewicz, Methods Mol. Biol. 2004, 281, 301–311.
M. Walter, P. Herr, Cells 2022, 11.