Small-Molecule Allosteric Inhibitors of Human Aspartate Transcarbamoylase Suppress Proliferation of Bone Osteosarcoma Epithelial Cells
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
Chinese Scholarship Council
91217002
ZonMw - Netherlands
CRSII5_189952
SNSF Sinergia
2021/ENW/01188386
NWO Veni
0066384
Novo Nordisk Foundation
91217002
ZonMw - Netherlands
- Keywords
- Aspartate Transcarbamoylase, Molecular Docking, Non-competitive Inhibition, Osteosarcoma, Pyrimidine Biosynthesis,
- MeSH
- Allosteric Regulation drug effects MeSH
- Aspartate Carbamoyltransferase * antagonists & inhibitors metabolism chemistry MeSH
- Epithelial Cells drug effects metabolism MeSH
- Enzyme Inhibitors * pharmacology chemistry chemical synthesis MeSH
- Small Molecule Libraries chemistry pharmacology chemical synthesis MeSH
- Humans MeSH
- Molecular Structure MeSH
- Cell Line, Tumor MeSH
- Bone Neoplasms drug therapy pathology metabolism MeSH
- Osteosarcoma * drug therapy pathology metabolism MeSH
- Cell Proliferation * drug effects MeSH
- Antineoplastic Agents pharmacology chemistry chemical synthesis MeSH
- Drug Screening Assays, Antitumor MeSH
- Molecular Docking Simulation MeSH
- Dose-Response Relationship, Drug MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Aspartate Carbamoyltransferase * MeSH
- Enzyme Inhibitors * MeSH
- Small Molecule Libraries MeSH
- Antineoplastic Agents MeSH
Aspartate transcarbamoylase (ATC) is the first committed step in de novo pyrimidine biosynthesis in eukaryotes and plants. A potent transition state analog of human ATCase (PALA) has previously been assessed in clinical trials for the treatment of cancer, but was ultimately unsuccessful. Additionally, inhibition of this pathway has been proposed to be a target to suppress cell proliferation in E. coli, the malarial parasite and tuberculosis. In this manuscript we screened a 70-member library of ATC inhibitors developed against the malarial and tubercular ATCases for inhibitors of the human ATC. Four compounds showed low nanomolar inhibition (IC50 30-120 nM) in an in vitro activity assay. These compounds significantly outperform PALA, which has a triphasic inhibition response under identical conditions, in which significant activity remains at PALA concentrations above 10 μM. Evidence for a druggable allosteric pocket in human ATC is provided by both in vitro enzyme kinetic, homology modeling and in silico docking. These compounds also suppress the proliferation of U2OS osteoblastoma cells by promoting cell cycle arrest in G0/G1 phase. This report provides the first evidence for an allosteric pocket in human ATC, which greatly enhances its druggability and demonstrates the potential of this series in cancer therapy.
CATRIN Department of Innovative Chemistry Palack University 779 00 Olomouc Holice Czech Republic
Department of Biomedicine Aarhus University Ole Worms Alle' 4 8000 Aarhus C Denmark
See more in PubMed
T. Aoki, G. Weber, Science 1981, 212, 463–465;
K. A. Smith, M. L. Agarwal, M. V. Chernov, O. B. Chernova, Y. Deguchi, Y. Ishizaka, T. E. Patterson, M.-F. Poupon, G. R. Stark, Phil. Trans. R. Soc. B 1995, 347, 49–56;
A. N. Lane, T. W. Fan, Nucleic Acids Res. 2015, 43, 2466–2485;
X. Tong, F. Zhao, C. B. Thompson, Curr. Opin. Genet. Dev. 2009, 19, 32–37;
F. D. Sigoillot, S. M. Sigoillot, H. I. Guy, Int. J. Cancer 2004, 109, 491–498.
G. Peters, J. Veerkamp, in Purine Metabolism in Man-IV, Springer, 1984, pp. 531–534;
S. Madani, J. Baillon, J. Fries, O. Belhadj, A. Bettaieb, M. B. Hamida, G. Hervé, Eur. J. Cancer Clin. Oncol. 1987, 23, 1485–1490.
W. N. Lipscomb, E. R. Kantrowitz, Acc. Chem. Res. 2012, 45, 444–453.
K. D. Collins, G. R. Stark, J. Biol. Chem. 1971, 246, 6599–6605.
T. C. Chan, M. Markman, S. Cleary, S. B. Howell, Cancer Res. 1986, 46, 3168–3172;
A. Leyva, H. Appel, P. Smith, J. Lankelma, H. M. Pinedo, Cancer Lett. 1981, 12, 169–173;
E. A. Swyryd, S. S. Seaver, G. R. Stark, J. Biol. Chem. 1974, 249, 6945–6950;
K. K. Tsuboi, H. N. Edmunds, L. K. Kwong, Cancer Res. 1977, 37, 3080–3087;
J. L. Grem, S. A. King, P. J. O′Dwyer, B. Leyland-Jones, Cancer Res. 1988, 48, 4441–4454.
M. K. Agarwal, K. Hastak, M. W. Jackson, S. N. Breit, G. R. Stark, M. L. Agarwal, Proc. Natl. Acad. Sci. USA 2006, 103, 16278–16283;
M. L. Agarwal, A. Agarwal, W. R. Taylor, O. Chernova, Y. Sharma, G. R. Stark, Proc. Natl. Acad. Sci. USA 1998, 95, 14775–14780.
C. Wang, B. Zhang, A. Krüger, X. Du, L. Visser, A. S. Dömling, C. Wrenger, M. R. Groves J. Am. Chem. Soc. 2022, 144(41), 19070–19077.
X. Du, V. Sonawane, B. Zhang, C. Wang, B. de Ruijter, A. S. S. Domling, N. Reiling, M. R. Groves, ChemMedChem 2023, 18, e202300279.
A. Ruiz-Ramos, A. Velázquez-Campoy, A. Grande-García, M. Moreno-Morcillo, S. Ramón-Maiques, Structure 2016, 24, 1081–1094.
S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, J. Mol. Biol. 1990, 215, 403–410.
C. Macol, M. Dutta, B. Stec, H. Tsuruta, E. R. Kantrowitz, Protein Sci. 1999, 8, 1305–1313;
E. A. Robey, H. Schachman, Proc. Natl. Acad. Sci. USA 1985, 82, 361–365.
D. R. Koes, M. P. Baumgartner, C. J. Camacho, J. Chem. Inf. Model. 2013, 53, 1893–1904.
G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, A. J. Olson, J. Comput. Chem. 2009, 30, 2785–2791.
P. Pozarowski, Z. Darzynkiewicz, Methods Mol. Biol. 2004, 281, 301–311.
M. Walter, P. Herr, Cells 2022, 11.