Exploring Aspartate Transcarbamoylase: A Promising Broad-Spectrum Target for Drug Development

. 2025 Apr 01 ; 26 (7) : e202401009. [epub] 20250327

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39937588

Grantová podpora
Chinese Scholarship Council
National Research Foundation
FAPESP 2023/07746-0 Fundação de Amparo à Pesquisa do Estado da Bahia
101087318 ERA Chair
101098001 ERC CEP - Centrální evidence projektů
872195 VIDEC
LX22NPO5102 National Institute for Cancer Research-Programme EXCELES
14712 KWF Kankerbestrijding

Pyrimidine nucleotides are essential for a wide variety of cellular processes and are synthesized either via a salvage pathway or through de novo biosynthesis. The latter is particularly important in proliferating cells, such as infectious diseases and cancer cells. Aspartate transcarbamoylase (ATCase) catalyzes the first committed and rate-limiting step in the de novo pyrimidine biosynthesis pathway, making it an attractive therapeutic target for various diseases. This review summarizes the development of a series of allosteric ATCase inhibitors, advancing them as potential candidates for malarial, tuberculosis and cancer therapies. Furthermore, it explores the potential for these compounds to be expanded into drugs targeting neglected tropical diseases, antimicrobial-resistant infections caused by the ESKAPE pathogens, and their possible application as herbicides. We identify the likely equivalent allosteric pocket in these systems and perform a structure and sequence-based analysis of the residues comprising it, providing a rationale for continued exploration of this compound series as both specific and broad-range inhibitors. The review concludes by emphasizing the importance of continued research into ATCase inhibitors, given their potential broad applicability in treating diverse diseases to enhance both human health and agricultural practices.

Zobrazit více v PubMed

Wang W., Frontiers in Oncol 2021, 11.

Wang C., J. Am. Chem. Soc. 2022, 144(41), 19070–19077. PubMed PMC

Du X., ChemMedChem 2023, 18(17), e202300279. PubMed

So J., EMBO Mol. Med. 2022, 14(7), e15203. PubMed PMC

Lolli M. L., Recent Pat. Anti-Cancer Drug Discovery 2018, 13(1), 86–105. PubMed

Grande-García A., Structure 2014, 22(2), 185–98. PubMed

Reis R. A. G., Arch. Biochem. Biophys. 2017, 632, 175–191. PubMed

Bellin L., Nat. Commun. 2021, 12(1), 947. PubMed PMC

Lipscomb W. N., Kantrowitz E. R., Acc. Chem. Res. 2012, 45(3), 444–53. PubMed PMC

Wang J., Proc. Natl. Acad. Sci. USA 2005, 102(25), 8881–6. PubMed PMC

Collins K. D., Stark G. R., J. Biol. Chem. 1971, 246(21), 6599–605. PubMed

Jayaram H. N., Cancer Treat. Rep. 1979, 63(8), 1291–302. PubMed

Mollick T., Laín S., Cancer Metab 2020, 8(1), 12. PubMed PMC

Grison C., Eur. J. Med. Chem. 2004, 39(4), 333–344. PubMed

Wang C., ChemMedChem 2024, 19(13), e202300688. PubMed

Du X., Zhang R., Groves M. R., Crystals 2023, 13(12), 1610.

Venkatesan P., Lancet Microbe 2024, 5(3), e214. PubMed

El-Moamly A. A., El-Sweify M. A., Trop. Med. Int. Health 2023, 51(1), 29. PubMed PMC

Datoo M. S., Lancet 2024, 403(10426), 533–544. PubMed

Sharp P. M., Plenderleith L. J., Hahn B. H., Annu. Rev. Microbiol. 2020, 74, 39–63. PubMed PMC

Lunev S., Acta Crystallogr. Sect. F 2016, 72(7), 523–33. PubMed PMC

Lunev S., Biochem. Biophys. Res. Commun. 2018, 497(3), 835–842. PubMed

Bagcchi S., Lancet Microbe 2023, 4(1), e20. PubMed

Colditz G. A., Pediatrics 1995, 96(1), 29–35. PubMed

Villela A. D., Curr. Med. Chem. 2011, 18(9), 1286–98. PubMed

Wolucka B. A., de Hoffmann E., J. Biol. Chem. 1995, 270(34), 20151–5. PubMed

Vilchèze C., Antimicrob. Agents Chemother. 2011, 55(8), 3889–98. PubMed PMC

Takayama K., Kilburn J. O., Antimicrob. Agents Chemother. 1989, 33(9), 1493–9. PubMed PMC

Hasan S., PLoS Comput. Biol. 2006, 2(6), e61. PubMed PMC

Boshoff H. I., Barry C. E., Nat. Rev. Microbiol. 2005, 3(1), 70–80. PubMed

Cole S. T., Nature 1998, 393, 537–544. PubMed

Breda A., Eur. J. Med. Chem. 2012, 54, 113–22. PubMed

Donini S., Sci. Rep. 2017, 7(1), 1180. PubMed PMC

Zhang H., bioRxiv 2024, 2024.05.17.594738.

Cox J. A., Int. J. Dev. Neurosci. 2014, 33, 41–8. PubMed PMC

Fairbanks L. D., J. Biol. Chem. 1995, 270(50), 29682–9. PubMed

Lei Z., FEBS J 2020, 287(16), 3579–3599. PubMed

Altamura F., Drug Dev. Res. 2022, 83(2), 225–252. PubMed

Biagiotti M., Clin Transl Med 2017, 6(1), 27. PubMed PMC

Hofer A., FEMS Microbiol. Rev. 2023, 47(3). PubMed PMC

Hammond D. J., Gutteridge W. E., FEBS Lett. 1980,118(2), 259–62. PubMed

Hashimoto M., Biochem. Biophys. Res. Commun. 2012, 417(3), 1002–6. PubMed

Matoba K., Acta Crystallogr. Sect. F 2009, 65(9), 933–6. PubMed PMC

Ali J. A., PLoS One 2013, 8(3), e58034. PubMed PMC

Marr J. J., Berens R. L., Nelson D. J., Biochim. Biophys. Acta 1978, 544(2), 360–71. PubMed

LaFon S. W., Biochem. Pharmacol. 1982, 31(2), 231–8. PubMed

Ritt J. F., PLoS Neglected Trop. Dis. 2013, 7(11), e2564. PubMed PMC

Wilson Z. N., J. Biol. Chem. 2012, 287(16), 12759–70. PubMed PMC

Rice L. B., J. Infect. Dis. 2008, 197(8), 1079–81. PubMed

Mahmood H. Y., Curr. Med. Chem. 2016, 23, 1062–1081. PubMed PMC

Singh A., Int. J. Biol. Macromol. 2024, 279, 135253. PubMed

Frost I., Lancet Microbe 2023, 4(2), e113–e125. PubMed PMC

Golkar Z., Bagasra O., Pace D. G., J Infect Dev Ctries 2014, 8(2), 129–36. PubMed

Jatana S., Sci. Rep. 2018, 8(1), 8708. PubMed PMC

Maisch T., Mini-Rev. Med. Chem. 2009, 9(8), 974–83. PubMed

Mulani M. S., et al., Front. Microbiol. 2019, 10, 539. PubMed PMC

Goncheva M. I., Chin D., Heinrichs D. E., Trends Microbiol. 2022, 30(8), 793–804. PubMed

Ondusko D. S., Nolt D., Pediatr Rev 2018, 39(6), 287–298. PubMed

Bouras D., J. Med. Microbiol. 2018, 67(12), 1753–1760. PubMed

Chickering H. T., J. H. Park  Jr. , JAMA 1919, 72(9), 617–626.

Cosgrove S. E., Clin. Infect. Dis. 2003, 36(1), 53–9. PubMed

Shanmuganathan V. A., Eye (Lond) 2005, 19(3), 284–91. PubMed

Saeed K., Int. J. Antimicrob. Agents 2019, 53(1), 9–15. PubMed

Rehm S. J., Tice A., Clin. Infect. Dis. 2010, 51(2), S176–82. PubMed

Otto M., Curr. Opin. Microbiol. 2014, 17, 32–7. PubMed PMC

Parsonnet J., J. Clin. Microbiol. 2005, 43(9), 4628–34. PubMed PMC

Copin R., Proc. Natl. Acad. Sci. USA 2019, 116(5), 1745–1754. PubMed PMC

Sousa F. M., Biochim Biophys Acta Bioenerg 2023, 1864(2), 148948. PubMed

El Kolli M., Curr. Microbiol. 1998, 36(4), 245–7. PubMed

Rice A. J., Int. J. Mol. Sci. 2021, 22(18).

Hershberg R., PLoS Biol. 2008, 6(12), e311. PubMed PMC

Poirel L., Nordmann P., Clin. Microbiol. Infect. 2006, 12(9), 826–36. PubMed

Tacconelli E., Lancet Infect. Dis. 2018, 18(3), e99–e106. PubMed

Pogue J. M., Cohen D. A., Marchaim D., Clin. Infect. Dis. 2015, 60(9), 1304–7. PubMed PMC

Park S., Osong Public Health Res Perspect 2011, 2(3), 164–70. PubMed PMC

Peleg A. Y., Seifert H., Paterson D. L., Clin. Microbiol. Rev. 2008, 21(3), 538–82. PubMed PMC

Russo T. A., Proc. Natl. Acad. Sci. USA 2022, 119(51), e2213116119. PubMed PMC

Ohler L., Plant Physiol. 2019, 180(4), 1816–1828. PubMed PMC

Lovatt C. J., Cheng A. H., Plant Physiol. 1984, 75(3), 511–5. PubMed PMC

Yon R. J., Biochem. J. 1972, 128(2), 311–20. PubMed PMC

Bassett E. V., Plant Physiol Biochem 2003, 41(8), 695–703.

O′Dwyer P., Pharmacol. Ther. 1990, 48(3), 371–380. PubMed

Paridaens R., Eur. J. Cancer Clin. Oncol. 1982, 18(1), 67–70. PubMed

Phillips M. A., Sci. Transl. Med. 2015, 7(296), 296ra111. PubMed PMC

White J., ACS Infect. Dis. 2019, 5(1), 90–101. PubMed PMC

Pei J., Grishin N. V., Methods Mol. Biol. 2014, 1079, 263–71. PubMed PMC

Robert X., Gouet P., Nucleic Acids Res. 2014, 42(Web Server issue), W320–4. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...