Robustness of radiomic features in 123I-ioflupane-dopamine transporter single-photon emission computer tomography scan
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38603674
PubMed Central
PMC11008844
DOI
10.1371/journal.pone.0301978
PII: PONE-D-23-31910
Knihovny.cz E-zdroje
- MeSH
- jednofotonová emisní výpočetní tomografie * MeSH
- lidé MeSH
- nortropany * MeSH
- počítačové zpracování obrazu * metody MeSH
- radiomika MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ioflupane MeSH Prohlížeč
- nortropany * MeSH
Radiomic features are usually used to predict target variables such as the absence or presence of a disease, treatment response, or time to symptom progression. One of the potential clinical applications is in patients with Parkinson's disease. Robust radiomic features for this specific imaging method have not yet been identified, which is necessary for proper feature selection. Thus, we are assessing the robustness of radiomic features in dopamine transporter imaging (DaT). For this study, we made an anthropomorphic head phantom with tissue heterogeneity using a personal 3D printer (polylactide 82% infill); the bone was subsequently reproduced with plaster. A surgical cotton ball with radiotracer (123I-ioflupane) was inserted. Scans were performed on the two-detector hybrid camera with acquisition parameters corresponding to international guidelines for DaT single photon emission tomography (SPECT). Reconstruction of SPECT was performed on a clinical workstation with iterative algorithms. Open-source LifeX software was used to extract 134 radiomic features. Statistical analysis was made in RStudio using the intraclass correlation coefficient (ICC) and coefficient of variation (COV). Overall, radiomic features in different reconstruction parameters showed a moderate reproducibility rate (ICC = 0.636, p <0.01). Assessment of ICC and COV within CT attenuation correction (CTAC) and non-attenuation correction (NAC) groups and within particular feature classes showed an excellent reproducibility rate (ICC > 0.9, p < 0.01), except for an intensity-based NAC group, where radiomic features showed a good repeatability rate (ICC = 0.893, p <0.01). By our results, CTAC becomes the main threat to feature stability. However, many radiomic features were sensitive to the selected reconstruction algorithm irrespectively to the attenuation correction. Radiomic features extracted from DaT-SPECT showed moderate to excellent reproducibility rates. These results make them suitable for clinical practice and human studies, but awareness of feature selection should be held, as some radiomic features are more robust than others.
Zobrazit více v PubMed
Mayerhoefer ME, Materka A, Langs G, Häggström I, Szczypiński P, Gibbs P, et al.. Introduction to radiomics. J Nucl Med. 2020;61(4):488–95. doi: 10.2967/jnumed.118.222893 PubMed DOI PMC
Brooks DJ, Ibanez V, Sawle GV, Quinn N, Lees AJ, Mathias CJ, et al.. Differing patterns of striatal 18F-dopa uptake in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol. 1990. Oct;28(4):547–55. doi: 10.1002/ana.410280412 PubMed DOI
Rahmim A, Huang P, Shenkov N, Fotouhi S, Davoodi-Bojd E, Lu L, et al.. Improved prediction of outcome in Parkinson’s disease using radiomics analysis of longitudinal DAT SPECT images. NeuroImage Clin. 2017;16:539–44. doi: 10.1016/j.nicl.2017.08.021 PubMed DOI PMC
Group PS. A Randomized Controlled Trial Comparing Pramipexole with Levodopa in Early Parkinson’s Disease: Design and Methods of the CALM-PD Study. Clin Neuropharmacol. 2000. Feb;23(1):34. PubMed
Fahn S, Parkinson Study Group. Does levodopa slow or hasten the rate of progression of Parkinson’s disease? J Neurol. 2005. Oct;252 Suppl 4:IV37–42. doi: 10.1007/s00415-005-4008-5 PubMed DOI
Whone AL, Watts RL, Stoessl AJ, Davis M, Reske S, Nahmias C, et al.. Slower progression of Parkinson’s disease with ropinirole versus levodopa: The REAL-PET study. Ann Neurol. 2003. Jul;54(1):93–101. doi: 10.1002/ana.10609 PubMed DOI
Morbelli S, Esposito G, Arbizu J, Barthel H, Boellaard R, Bohnen NI, et al.. EANM practice guideline/SNMMI procedure standard for dopaminergic imaging in Parkinsonian syndromes 1.0. Eur J Nucl Med Mol Imaging. 2020. Jul 1;47(8):1885–912. doi: 10.1007/s00259-020-04817-8 PubMed DOI PMC
Benamer HTS, Patterson J, Grosset DG, Booij J, de Bruin K, van Royen E, et al.. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123 I]-FP-CIT SPECT imaging: The [123 I]-FP-CIT study group. Mov Disord Off J Mov Disord Soc. 2000. May;15(3):503–10. PubMed
McKeith I, O’Brien J, Walker Z, Tatsch K, Booij J, Darcourt J, et al.. Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol. 2007. Apr;6(4):305–13. doi: 10.1016/S1474-4422(07)70057-1 PubMed DOI
Armstrong MJ, Okun MS. Diagnosis and Treatment of Parkinson Disease: A Review. JAMA. 2020. Feb 11;323(6):548–60. doi: 10.1001/jama.2019.22360 PubMed DOI
Albert NL, Unterrainer M, Diemling M, Xiong G, Bartenstein P, Koch W, et al.. Implementation of the European multicentre database of healthy controls for [123I]FP-CIT SPECT increases diagnostic accuracy in patients with clinically uncertain parkinsonian syndromes. Eur J Nucl Med Mol Imaging. 2016. Jul 1;43(7):1315–22. doi: 10.1007/s00259-015-3304-2 PubMed DOI
Dickson JC, Armstrong IS, Gabiña PM, Denis-Bacelar AM, Krizsan AK, Gear JM, et al.. EANM practice guideline for quantitative SPECT-CT. Eur J Nucl Med Mol Imaging. 2023. Mar;50(4):980–95. doi: 10.1007/s00259-022-06028-9 PubMed DOI PMC
Rahmim A, Salimpour Y, Jain S, Blinder SAL, Klyuzhin IS, Smith GS, et al.. Application of texture analysis to DAT SPECT imaging: Relationship to clinical assessments. NeuroImage Clin. 2016. Feb;12:e1–9. doi: 10.1016/j.nicl.2016.02.012 PubMed DOI PMC
Huang EP, O’Connor JPB, McShane LM, Giger ML, Lambin P, Kinahan PE, et al.. Criteria for the translation of radiomics into clinically useful tests. Nat Rev Clin Oncol. 2023. Feb;20(2):69–82. doi: 10.1038/s41571-022-00707-0 PubMed DOI PMC
Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, et al.. Radiomics: the process and the challenges. Magn Reson Imaging. 2012. Nov;30(9):1234–48. doi: 10.1016/j.mri.2012.06.010 PubMed DOI PMC
van Velden FHP, Kramer GM, Frings V, Nissen IA, Mulder ER, de Langen AJ, et al.. Repeatability of Radiomic Features in Non-Small-Cell Lung Cancer [18F]FDG-PET/CT Studies: Impact of Reconstruction and Delineation. Mol Imaging Biol. 2016. Oct;18(5):788–95. doi: 10.1007/s11307-016-0940-2 PubMed DOI PMC
Hatt M, Tixier F, Cheze Le Rest C, Pradier O, Visvikis D. Robustness of intratumour 18F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma. Eur J Nucl Med Mol Imaging. 2013. Oct;40(11):1662–71. PubMed
Lu L, Lv W, Jiang J, Ma J, Feng Q, Rahmim A, et al.. Robustness of Radiomic Features in [11C]Choline and [18F]FDG PET/CT Imaging of Nasopharyngeal Carcinoma: Impact of Segmentation and Discretization. Mol Imaging Biol. 2016. Dec;18(6):935–45. doi: 10.1007/s11307-016-0973-6 PubMed DOI
Leijenaar RTH, Carvalho S, Velazquez ER, van Elmpt WJC, Parmar C, Hoekstra OS, et al.. Stability of FDG-PET Radiomics features: An integrated analysis of test-retest and inter-observer variability. Acta Oncol. 2013. Oct;52(7):1391–7. doi: 10.3109/0284186X.2013.812798 PubMed DOI PMC
Shiri I, Rahmim A, Ghaffarian P, Geramifar P, Abdollahi H, Bitarafan-Rajabi A. The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies. Eur Radiol. 2017. Nov;27(11):4498–509. doi: 10.1007/s00330-017-4859-z PubMed DOI
Doumou G, Siddique M, Tsoumpas C, Goh V, Cook GJ. The precision of textural analysis in 18F-FDG-PET scans of oesophageal cancer. Eur Radiol. 2015. Sep;25(9):2805–12. doi: 10.1007/s00330-015-3681-8 PubMed DOI
Galavis PE, Hollensen C, Jallow N, Paliwal B, Jeraj R. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol. 2010. Oct;49(7):1012–6. doi: 10.3109/0284186X.2010.498437 PubMed DOI PMC
Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, et al.. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012. Nov;30(9):1323–41. doi: 10.1016/j.mri.2012.05.001 PubMed DOI PMC
Alssabbagh M, Tajuddin AA, Abdulmanap M, Zainon R. Evaluation of 3D printing materials for fabrication of a novel multi-functional 3D thyroid phantom for medical dosimetry and image quality. Radiat Phys Chem. 2017. Jun 1;135:106–12.
Kim SY, Park JW, Park J, Yea JW, Oh SA. Fabrication of 3D printed head phantom using plaster mixed with polylactic acid powder for patient-specific QA in intensity-modulated radiotherapy. Sci Rep. 2022. Oct 19;12(1):17500. doi: 10.1038/s41598-022-22520-6 PubMed DOI PMC
Kadoya N, Abe K, Nemoto H, Sato K, Ieko Y, Ito K, et al.. Evaluation of a 3D-printed heterogeneous anthropomorphic head and neck phantom for patient-specific quality assurance in intensity-modulated radiation therapy. Radiol Phys Technol. 2019. Sep;12(3):351–6. doi: 10.1007/s12194-019-00527-5 PubMed DOI
Dickson JC, Tossici-Bolt L, Sera T, Erlandsson K, Varrone A, Tatsch K, et al.. The impact of reconstruction method on the quantification of DaTSCAN images. Eur J Nucl Med Mol Imaging. 2010. Jan 1;37(1):23–35. doi: 10.1007/s00259-009-1212-z PubMed DOI
Bagher-Ebadian H, Siddiqui F, Liu C, Movsas B, Chetty IJ. On the impact of smoothing and noise on robustness of CT and CBCT radiomics features for patients with head and neck cancers. Med Phys. 2017;44(5):1755–70. doi: 10.1002/mp.12188 PubMed DOI
Ding J, Chen S, Serrano Sosa M, Cattell R, Lei L, Sun J, et al.. Optimizing the Peritumoral Region Size in Radiomics Analysis for Sentinel Lymph Node Status Prediction in Breast Cancer. Acad Radiol. 2022. Jan 1;29:S223–8. doi: 10.1016/j.acra.2020.10.015 PubMed DOI PMC
Kim C, Han SA, Won KY, Hong IK, Kim DY. Early Prediction of Tumor Response to Neoadjuvant Chemotherapy and Clinical Outcome in Breast Cancer Using a Novel FDG-PET Parameter for Cancer Stem Cell Metabolism. J Pers Med. 2020. Sep 17;10(3):132. doi: 10.3390/jpm10030132 PubMed DOI PMC
R Core Team (2023). _R: A Language and Environment for Statistical Computing_. R Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.
Makowski D. The psycho Package: an Efficient and Publishing-Oriented Workflow for Psychological Science. J Open Source Softw. 2018. Feb 5;3(22):470.
Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med. 2016. Jun 1;15(2):155–63. doi: 10.1016/j.jcm.2016.02.012 PubMed DOI PMC
Hutton BF, Nuyts J, Zaidi H. Iterative Reconstruction Methods. In: Zaidi H, editor. Quantitative Analysis in Nuclear Medicine Imaging [Internet]. Boston, MA: Springer US; 2006. [cited 2023 Aug 14]. p. 107–40. Available from: 10.1007/0-387-25444-7_4 DOI
Cui Y, Yin FF. Impact of image quality on radiomics applications. Phys Med Biol. 2022. Jul;67(15):15TR03. doi: 10.1088/1361-6560/ac7fd7 PubMed DOI
Oliver JA, Budzevich M, Hunt D, Moros EG, Latifi K, Dilling TJ, et al.. Sensitivity of Image Features to Noise in Conventional and Respiratory-Gated PET/CT Images of Lung Cancer: Uncorrelated Noise Effects. Technol Cancer Res Treat. 2017. Oct 1;16(5):595–608. doi: 10.1177/1533034616661852 PubMed DOI PMC
Tong S, Alessio AM, Kinahan PE. Image reconstruction for PET/CT scanners: past achievements and future challenges. Imaging Med. 2010. Oct 1;2(5):529–45. doi: 10.2217/iim.10.49 PubMed DOI PMC
Caribé PRRV, Koole M, D’Asseler Y, Van Den Broeck B, Vandenberghe S. Noise reduction using a Bayesian penalized-likelihood reconstruction algorithm on a time-of-flight PET-CT scanner. EJNMMI Phys. 2019. Dec 10;6:22. doi: 10.1186/s40658-019-0264-9 PubMed DOI PMC
Bailly C, Bodet-Milin C, Couespel S, Necib H, Kraeber-Bodéré F, Ansquer C, et al.. Revisiting the Robustness of PET-Based Textural Features in the Context of Multi-Centric Trials. PLOS ONE. 2016. Jul 28;11(7):e0159984. doi: 10.1371/journal.pone.0159984 PubMed DOI PMC
Pednekar GV, Udupa JK, McLaughlin DJ, Wu X, Tong Y, Ii CBS, et al.. Image quality and segmentation. In: Medical Imaging 2018: Image-Guided Procedures, Robotic Interventions, and Modeling [Internet]. SPIE; 2018. [cited 2024 Mar 10]. p. 622–8. Available from: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10576/105762N/Image-quality-and-segmentation/10.1117/12.2293622.full DOI
Altazi BA, Zhang GG, Fernandez DC, Montejo ME, Hunt D, Werner J, et al.. Reproducibility of F18-FDG PET radiomic features for different cervical tumor segmentation methods, gray-level discretization, and reconstruction algorithms. J Appl Clin Med Phys. 2017;18(6):32–48. doi: 10.1002/acm2.12170 PubMed DOI PMC
Hatt M, Laurent B, Fayad H, Jaouen V, Visvikis D, Le Rest CC. Tumour functional sphericity from PET images: prognostic value in NSCLC and impact of delineation method. Eur J Nucl Med Mol Imaging. 2018. Apr 1;45(4):630–41. doi: 10.1007/s00259-017-3865-3 PubMed DOI
Yang F, Simpson G, Young L, Ford J, Dogan N, Wang L. Impact of contouring variability on oncological PET radiomics features in the lung. Sci Rep. 2020. Jan 15;10(1):369. doi: 10.1038/s41598-019-57171-7 PubMed DOI PMC
Blinder SAL, Klyuzhin I, Gonzalez ME, Rahmim A, Sossi V. Texture and shape analysis on high and low spatial resolution emission images. In: 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). 2014. p. 1–6.
Jarritt PH, Whalley DR, Skrypniuk JV, Houston AS, Fleming JS, Cosgriff PS. UK audit of single photon emission computed tomography reconstruction software using software generated phantoms. Nucl Med Commun. 2002. May;23(5):483. doi: 10.1097/00006231-200205000-00009 PubMed DOI