Egg vs. Oil in the Cookbook of Plasters: Differentiation of Lipid Binders in Wall Paintings Using Gas Chromatography-Mass Spectrometry and Principal Component Analysis
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
23-07284K
Czech Science Foundation
IGA_PrF_2023_027
Palacký University, Olomouc
IGA_PrF_2024_026
Palacký University, Olomouc
CZ.02.1.01/0.0/0.0/17_048/0007378
Ministry of Education, Youth, and Sports of the Czech Republic
PubMed
38611799
PubMed Central
PMC11013410
DOI
10.3390/molecules29071520
PII: molecules29071520
Knihovny.cz E-resources
- Keywords
- P/S ratio, binding media, cholesta-3,5-dien-7-one, dicarboxylic acids, egg, gas chromatography–mass spectrometry, linseed oil, principal component analysis,
- MeSH
- Principal Component Analysis MeSH
- Fatty Acids * MeSH
- Gas Chromatography-Mass Spectrometry MeSH
- Reproducibility of Results MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Fatty Acids * MeSH
Wall paintings are integral to cultural heritage and offer rich insights into historical and religious beliefs. There exist various wall painting techniques that pose challenges in binder and pigment identification, especially in the case of egg/oil-based binders. GC-MS identification of lipidic binders relies routinely on parameters like the ratios of fatty acids within the plaster. However, the reliability of these ratios for binder identification is severely limited, as demonstrated in this manuscript. Therefore, a more reliable tool for effective differentiation between egg and oil binders based on a combination of diagnostic values, specific markers (cholesterol oxidation products), and PCA is presented in this study. Reference samples of wall paintings with egg and linseed oil binders with six different pigments were subjected to modern artificial ageing methods and subsequently analysed using two GC-MS instruments. A statistically significant difference (at a 95% confidence level) between the egg and oil binders and between the results from two GC-MS instruments was observed. These discrepancies between the results from the two GC-MS instruments are likely attributed to the heterogeneity of the samples with egg and oil binders. This study highlights the complexities in identifying wall painting binders and the need for innovative and revised analytical methods in conservation efforts.
See more in PubMed
Sotiropoulou S., Sciutto G., Tenorio A.L., Mazurek J., Bonaduce I., Prati S., Mazzeo R., Schilling M., Colombini M.P. Advanced Analytical Investigation on Degradation Markers in Wall Paintings. Microchem. J. 2018;139:278–294. doi: 10.1016/j.microc.2018.03.007. DOI
Geddes Da Filicaia E., Evershed R.P., Peggie D.A. Review of Recent Advances on the Use of Mass Spectrometry Techniques for the Study of Organic Materials in Painted Artworks. Anal. Chim. Acta. 2023;1246:340575. doi: 10.1016/j.aca.2022.340575. PubMed DOI
Holclajtner-Antunović I., Stojanović-Marić M., Bajuk-Bogdanović D., Žikić R., Uskoković-Marković S. Multi-Analytical Study of Techniques and Palettes of Wall Paintings of the Monastery of Žiča, Serbia. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016;156:78–88. doi: 10.1016/j.saa.2015.11.031. PubMed DOI
Sfarra S., Ibarra-Castanedo C., Tortora M., Arrizza L., Cerichelli G., Nardi I., Maldague X. Diagnostics of Wall Paintings: A Smart and Reliable Approach. J. Cult. Herit. 2016;18:229–241. doi: 10.1016/j.culher.2015.07.011. DOI
Daffara C., Ambrosini D., Pezzati L., Paoletti D. Thermal Quasi-Reflectography: A New Imaging Tool in Art Conservation. Opt. Express. 2012;20:14746. doi: 10.1364/OE.20.014746. PubMed DOI
Stout S., Cosentino A., Scandurra C. Non-Invasive Materials Analysis Using Portable X-ray Fluorescence (XRF) in the Examination of Two Mural Paintings in the Catacombs of San Giovanni, Syracuse. In: Ioannides M., Magnenat-Thalmann N., Fink E., Žarnić R., Yen A.-Y., Quak E., editors. Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection. Volume 8740. Springer International Publishing; Cham, Switzerland: 2014. pp. 697–705. Lecture Notes in Computer Science. DOI
Piqué F., Verri G. Organic Materials in Wall Paintings: Project Report. The Getty Conservation Institute; Los Angeles, CA, USA: 2015.
Borg B., Dunn M., Ang A., Villis C. The Application of State-of-the-Art Technologies to Support Artwork Conservation: Literature Review. J. Cult. Herit. 2020;44:239–259. doi: 10.1016/j.culher.2020.02.010. DOI
Mora P., Mora L., Philippot P. La Conservazione Delle Pitture Murali. 2nd ed. Compositori; Bologna, Italy: 2001.
Cennini C. In: Il Libro Dell’arte. 7th ed. Frezzato F., editor. Neri Pozza; Vicenza, Italy: 2012.
Cennini C., Broecke L. Cennino Cennini’s ‘Il Libro Dell’Arte’: A New English Translation and Commentary with Italian Transcription. Archetype; London, UK: 2015.
Mills J.S., White R. The Organic Chemistry of Museum Objects. 2nd ed. Butterworth-Heinemann Ltd.; Oxford, UK: 1994.
Schilling M., Khanjian H. Gas Chromatographic Determination of the Fatty Acid and Glycerol Content of Lipids. I. The Effects of Pigments and Aging on the Composition of Oil Paints; Proceedings of the ICOM Committee for Conservation Preprints, 11th Triennial Meeting; Edinburgh, UK. 1–6 September 1996; pp. 220–227.
Vallance S.L. Critical Review Applications of Chromatography in Art Conservation: Techniques Used for the Analysis and Identification of Proteinaceous and Gum Binding Media. Analyst. 1997;122:75R–81R. doi: 10.1039/a606219i. DOI
Regazzoni L., Cavallo G., Biondelli D., Gilardi J. Microscopic Analysis of Wall Painting Techniques: Laboratory Replicas and Romanesque Case Studies in Southern Switzerland. Stud. Conserv. 2018;63:326–341. doi: 10.1080/00393630.2017.1422891. DOI
Colombini M.P., Modugno F., Fuoco R., Tognazzi A. A GC-MS Study on the Deterioration of Lipidic Paint Binders. Microchem. J. 2002;73:175–185. doi: 10.1016/S0026-265X(02)00062-0. DOI
Chiavari G., Gandini N., Russo P., Fabbri D. Characterisation of Standard Tempera Painting Layers Containing Proteinaceous Binders by Pyrolysis (/Methylation)-Gas Chromatography-Mass Spectrometry. Chromatographia. 1998;47:420–426. doi: 10.1007/BF02466473. DOI
Silva R.H.D. The Problem of The Binding Medium Particularly in Wall Painting. Archaeometry. 1963;6:56–64. doi: 10.1111/j.1475-4754.1963.tb00580.x. DOI
Casadio F., Giangualano I., Piqué F. Organic Materials in Wall Paintings: The Historical and Analytical Literature. Stud. Conserv. 2004;49((Suppl. S1)):63–80. doi: 10.1179/sic.2004.49.Supplement-1.63. DOI
Kouloumpi E., Lawson G., Pavlidis V. The Contribution of Gas Chromatography to the Resynthesis of the Post-Byzantine Artist’s Technique. Anal. Bioanal. Chem. 2007;387:803–812. doi: 10.1007/s00216-006-0802-x. PubMed DOI
Mills J.S. The Gas Chromatographic Examination of Paint Media. Part I. Fatty Acid Composition and Identification of Dried Oil Films. Stud. Conserv. 1966;11:92–107. doi: 10.1179/sic.1966.011. DOI
Laurie A.P. The Painter’s Methods. Dover Publications, Inc.; Mineola, NY, USA: 1988.
Theophilus . On Divers Arts—The Foremost Medieval Treatise on Painting, Glassmaking and Metalwork. Dover Publications, Inc.; New York, NY, USA: 1979.
van den Berg J.D.J. Analytical Chemical Studies on Traditional Linseed Oil Paints. Molart; Amsterdam, The Netherlands: 2002.
White R., Pilc J. Analyses of Paint Media. Natl. Gallery Technol. Bull. 1996;17:91–103.
Bensi P., Danti C., Matteini M., Moles A. Le Pitture Murali: Tecniche, Problemi, Conservazione. Centro Di; Firenze, Italy: 1990. La Pellicola Pittorica Nella Pittura Murale in Italia: Materiali e Tecniche Esecutive Dall’alto Medioevo al XIX Secolo; pp. 73–102.
Hess M. Hess’s Paint Film Defects, Their Causes and Cure. 3rd ed. Chapman and Hall; London, UK: 1979.
Levison H.W. Yellowing and Bleaching of Paint Films. J. Am. Inst. Conserv. 1985;24:69–76. doi: 10.1179/019713685806028123. DOI
Mills J., White R. Organic Mass-Spectrometry of Art Materials: Work in Progress. Natl. Gallery Technol. Bull. 1982;6:3–18.
Manzano E., Rodriguez-Simón L.R., Navas N., Checa-Moreno R., Romero-Gámez M., Capitan-Vallvey L.F. Study of the GC–MS Determination of the Palmitic–Stearic Acid Ratio for the Characterisation of Drying Oil in Painting: La Encarnación by Alonso Cano as a Case Study. Talanta. 2011;84:1148–1154. doi: 10.1016/j.talanta.2011.03.012. PubMed DOI
Schilling M., Khanjian H., Carson D. Fatty Acid and Glycerol Content of Lipids; Effects of Ageing and Solvent Extraction on the Composition of Oil Paints. J. Technol. Archit. Environ. 1997;5:71–78.
Manzano E., Rodríguez-Simón L.R., Navas N., Capitán-Vallvey L.F. Non-Invasive and Spectroscopic Techniques for the Study of Alonso Cano’s Visitation from the Golden Age of Spain. Stud. Conserv. 2021;66:298–312. doi: 10.1080/00393630.2020.1830528. DOI
Colombini M.P., Modugno F., editors. Organic Mass Spectrometry in Art and Archaeology. Wiley; Hoboken, NJ, USA: 2009. Organic Materials in Art and Archaeology; pp. 1–36. DOI
Colombini M.P., Andreotti A., Bonaduce I., Modugno F., Ribechini E. Analytical Strategies for Characterizing Organic Paint Media Using Gas Chromatography/Mass Spectrometry. Acc. Chem. Res. 2010;43:715–727. doi: 10.1021/ar900185f. PubMed DOI
Bonaduce I., Carlyle L., Colombini M.P., Duce C., Ferrari C., Ribechini E., Selleri P., Tiné M.R. New Insights into the Ageing of Linseed Oil Paint Binder: A Qualitative and Quantitative Analytical Study. PLoS ONE. 2012;7:e49333. doi: 10.1371/journal.pone.0049333. PubMed DOI PMC
Schilling M., Carson D., Khanjian H. Gas Chromatographic Determination of the Fatty Acid and Glycerol Content of Lipids. IV. Evaporation of Fatty Acids and the Formation of Ghost Images by Framed Oil Paintings; Proceedings of the ICOM Committee for Conservation Preprints, 12th Triennial Meeting; Lyon, France. 29 August–3 September 1999; pp. 242–247.
Tsakalof A.K., Bairachtari K.A., Chryssoulakis I.D. Pitfalls in Drying Oils Identification in Art Objects by Gas Chromatography. J. Sep. Sci. 2006;29:1642–1646. doi: 10.1002/jssc.200500411. PubMed DOI
Rampazzi L., Cariati F., Tanda G., Colombini M.P. Characterisation of Wall Paintings in the Sos Furrighesos Necropolis (Anela, Italy) J. Cult. Herit. 2002;3:237–240. doi: 10.1016/S1296-2074(02)01180-9. DOI
Tammekivi E., Vahur S., Vilbaste M., Leito I. Quantitative GC–MS Analysis of Artificially Aged Paints with Variable Pigment and Linseed Oil Ratios. Molecules. 2021;26:2218. doi: 10.3390/molecules26082218. PubMed DOI PMC
Pitthard V., Griesser M., Stanek S. Methodology and Application of GC-MS to Study Altered Organic Binding Media from Objects of the Kunsthistorisches Museum, Vienna. Ann. Chim. 2006;96:561–573. doi: 10.1002/adic.200690058. PubMed DOI
Wei S. Ph.D. Thesis. Vienna University of Technology; Vienna, Austria: 2007. A Study of Natural Organic Binding Media Used in Artworks and of Their Ageing Behaviour by GC/FID and GC/MS.
Pitthard V., Finch P., Bayerová T. Direct Chemolysis-Gas Chromatography-Mass Spectrometry for Analysis of Paint Materials. J. Sep. Sci. 2004;27:200–208. doi: 10.1002/jssc.200301617. PubMed DOI
Colombini M.P., Modugno F., Giacomelli M., Francesconi S. Characterisation of Proteinaceous Binders and Drying Oils in Wall Painting Samples by Gas Chromatography–Mass Spectrometry. J. Chromatogr. A. 1999;846:113–124. doi: 10.1016/S0021-9673(99)00344-1. DOI
Schlenk H., Gellerman J.L. Esterification of Fatty Acids with Diazomethane on a Small Scale. Anal. Chem. 1960;32:1412–1414. doi: 10.1021/ac60167a011. DOI
Glastrup J. A Note on the Analysis of the Binding Medium from a Phoenician Shipwreck. Stud. Conserv. 1995;40:65–68. doi: 10.1179/sic.1995.40.1.65. DOI
Blau K., Halket M.J. Handbook of Derivatives for Chromatography. 2nd ed. John Wiley & Sons; Chichester, UK: 1993.
Seppänen-Laakso T., Laakso I., Hiltunen R. Analysis of Fatty Acids by Gas Chromatography, and Its Relevance to Research on Health and Nutrition. Anal. Chim. Acta. 2002;465:39–62. doi: 10.1016/S0003-2670(02)00397-5. DOI
Eder K. Gas Chromatographic Analysis of Fatty Acid Methyl Esters. J. Chromatogr. B Biomed. Sci. App. 1995;671:113–131. doi: 10.1016/0378-4347(95)00142-6. PubMed DOI
Pitthard V., Stanek S., Griesser M., Muxeneder T. Gas Chromatography—Mass Spectrometry of Binding Media from Early 20th Century Paint Samples from Arnold Schönberg’s Palette. Chromatographia. 2005;62:175–182. doi: 10.1365/s10337-005-0595-7. DOI
Challinor J.M. Review: The Development and Applications of Thermally Assisted Hydrolysis and Methylation Reactions. J. Anal. Appl. Pyrolysis. 2001;61:3–34. doi: 10.1016/S0165-2370(01)00146-2. DOI
MACHEREY-NAGEL GmbH & Co., KG [(accessed on 14 February 2024)]. Available online: https://www.mn-net.com/gc-column-nonpolar-low-polar-optima-5-ms-30-m-l-0.25-mm-id-0.25-m-df-726220.30.
Agilent Technologies. [(accessed on 14 February 2024)]. Available online: https://www.agilent.com/en/product/gc-columns/low-bleed-gc-ms-columns/db-5ms-columns.
Izzo F.C. Ph.D. Thesis. Ca’ Foscari University; Venice, Italy: 2011. 20th Century Artist’s Oil Paints: A Chemical-Physical Survey.
Colombini M.P., Modugno F., Menicagli E., Fuoco R., Giacomelli A. GC-MS Characterization of Proteinaceous and Lipid Binders in UV Aged Polychrome Artifacts. Microchem. J. 2000;67:291–300. doi: 10.1016/S0026-265X(00)00075-8. DOI
Degano I., La Nasa J., Ghelardi E., Modugno F., Colombini M.P. Model Study of Modern Oil-Based Paint Media by Triacylglycerol Profiling in Positive and Negative Ionization Modes. Talanta. 2016;161:62–70. doi: 10.1016/j.talanta.2016.08.017. PubMed DOI
Pitthard V., Griesser M., Stanek S., Bayerova T. Study of Complex Organic Binding Media Systems on Artworks Applying GC-MS Analysis: Selected Examples from the Kunsthistorisches Museum, Vienna. Macromol. Symp. 2006;238:37–45. doi: 10.1002/masy.200650606. DOI
Antova G.A., Gerzilov V.T., Petkova Z.Y., Boncheva V.N., Bozhichkova I.N., St Penkov D., Petrov P.B. Comparative Analysis of Nutrient Content and Energy of Eggs from Different Chicken Genotypes. J. Sci. Food Agric. 2019;99:5890–5898. doi: 10.1002/jsfa.9863. PubMed DOI
Andreotti A., Bonaduce I., Colombini M.P., Gautier G., Modugno F., Ribechini E. Combined GC/MS Analytical Procedure for the Characterization of Glycerolipid, Waxy, Resinous, and Proteinaceous Materials in a Unique Paint Microsample. Anal. Chem. 2006;78:4490–4500. doi: 10.1021/ac0519615. PubMed DOI
Serefidou M., Bracci S., Tapete D., Andreotti A., Biondi L., Colombini M.P., Giannini C., Parenti D. Microchemical and Microscopic Characterization of the Pictorial Quality of Egg-Tempera Polyptych, Late 14th Century, Florence, Italy. Microchem. J. 2016;127:187–198. doi: 10.1016/j.microc.2016.03.001. DOI
Mills J.S., White R. The Identification of Paint Media from the Analysis of Their Sterol Composition: A Critical View. Stud. Conserv. 1975;20:176. doi: 10.2307/1505737. DOI
Van Den Brink O.F., Ferreira E.S.B., Van Der Horst J., Boon J.J. A Direct Temperature-Resolved Tandem Mass Spectrometry Study of Cholesterol Oxidation Products in Light-Aged Egg Tempera Paints with Examples from Works of Art. Int. J. Mass. Spectrom. 2009;284:12–21. doi: 10.1016/j.ijms.2008.11.005. DOI
Boon J.J., Peulvé S., Van Den Brink O.F., Duursma M., Rainford D. Molecular Aspects of Mobile and Stationary Phases in Ageing Tempera and Oil Paint Films. In: Bakkenist T., Hoppenbrouwers R., Dubois H., editors. Early Italian Paintings—Techniques and Analysis. Limburg Conservation Institute; Maastricht, The Netherlands: 1997. pp. 35–56.
Buckley S.A., Stott A.W., Evershed R.P. Studies of Organic Residues from Ancient Egyptian Mummies Using High Temperature-Gas Chromatography-Mass Spectrometry and Sequential Thermal Desorption-Gas Chromatography-Mass Spectrometry and Pyrolysis-Gas Chromatography-Mass Spectrometry. Analys. 1999;124:443–452. doi: 10.1039/a809022j. PubMed DOI
Herchi W., Harrabi S., Sebei K., Rochut S., Boukhchina S., Pepe C., Kallel H. Phytosterols Accumulation in the Seeds of Linum usitatissimum L. Plant Physiol. Biochem. 2009;47:880–885. doi: 10.1016/j.plaphy.2009.07.001. PubMed DOI
Rubner-Institut M. Fatty Acid Composition, Tocopherol and Sterol Contents in Linseed (Linum usitatissimum L.) Varieties. Iran. J. Chem. Chem. Eng. 2017;36:147–152.
Colombini M.P., Modugno F., Giacomelli A. Two Procedures for Suppressing Interference from Inorganic Pigments in the Analysis by Gas Chromatography–Mass Spectrometry of Proteinaceous Binders in Paintings. J. Chromatogr. A. 1999;846:101–111. doi: 10.1016/S0021-9673(99)00192-2. DOI
Cennini d’Andrea C., Thompson D.V. The Craftman’s Handbook: The Italian “Il Libro Dell’Arte”. Dover Publications, Inc.; New York, NY, USA: 1954.
Jarque C.M., Bera A.K. Efficient Tests for Normality, Homoscedasticity and Serial Independence of Regression Residuals. Econ. Lett. 1980;6:255–259. doi: 10.1016/0165-1765(80)90024-5. DOI
Jarque C.M., Bera A.K. A Test for Normality of Observations and Regression Residuals. Int. Stat. Rev./Rev. Int. Stat. 1987;55:163. doi: 10.2307/1403192. DOI
Kolmogorov A. Sulla Determinazione Empirica Di Una Legge Di Distribuzione. G. Dell’ist. Ital. Degli Attuari. 1933;4:83–91.
Smirnov N. Sur Les Ecarts de La Courbe de Distribution Empirique. Recl. Mathématique (Mat. Sb.) 1939;6:3–26.
Poulin J. A New Methodology for the Characterisation of Natural Dyes on Museum Objects Using Gas Chromatography–Mass Spectrometry. Stud. Conserv. 2018;63:36–61. doi: 10.1080/00393630.2016.1271097. DOI