• This record comes from PubMed

Current knowledge about FLT3 gene mutations, exploring the isoforms, and protein importance in AML

. 2024 Apr 16 ; 51 (1) : 521. [epub] 20240416

Language English Country Netherlands Media electronic

Document type Journal Article, Review

Links

PubMed 38625438
DOI 10.1007/s11033-024-09452-2
PII: 10.1007/s11033-024-09452-2
Knihovny.cz E-resources

Acute myeloid leukaemia (AML) is a complex haematological malignancy characterised by diverse genetic alterations leading to abnormal proliferation of myeloid precursor cells. One of the most significant genetic alterations in AML involves mutations in the FLT3 gene, which plays a critical role in haematopoiesis and haematopoietic homeostasis. This review explores the current understanding of FLT3 gene mutations and isoforms and the importance of the FLT3 protein in AML. FLT3 mutations, including internal tandem duplications (FLT3-ITD) and point mutations in the tyrosine kinase domain (FLT3-TKD), occur in 25-30% in AML and are associated with poor prognosis. FLT3-ITD mutations lead to constitutive activation of the FLT3 signalling pathway, promoting cell survival and proliferation. FLT3-TKD mutations affect the tyrosine kinase domain and affect AML prognosis in various ways. Furthermore, FLT3 isoforms, including shorter variants, contribute to the complexity of FLT3 biology. Additionally, nonpathological polymorphisms in FLT3 are being explored for their potential impact on AML prognosis and treatment response. This review also discusses the development of molecular treatments targeting FLT3, including first-generation and next-generation tyrosine kinase inhibitors, highlighting the challenges of resistance that often arise during therapy. The final chapter describes FLT3 protein domain rearrangements and their relevance to AML pathogenesis.

See more in PubMed

Saultz JN, Garzon R (2016) Acute myeloid leukemia: a concise review. J Clin Med 5(3):33. https://doi.org/10.3390/jcm5030033 PubMed DOI PMC

Assi SA, Bonifer C, Cockerill PN (2019) Rewiring of the Transcription Factor Network in Acute myeloid leukemia. Cancer Inf 18:1176935119859863. https://doi.org/10.1177/1176935119859863 DOI

Döhner H, Weisdorf DJ, Bloomfield CD (2015) Acute myeloid leukemia. N Engl J Med 373(12):1136–1152. https://doi.org/10.1056/NEJMra1406184 PubMed DOI

Tey SK, Lane SW (2022) Better the cure you know: why patients with AML ≥ 60 years of age should be offered early allogeneic stem cell transplantation. Blood Adv 6(5):1619–1622. https://doi.org/10.1182/bloodadvances.2021004829 PubMed DOI PMC

Jaime-Pérez JC, Padilla-Medina JR, Fernández LT et al (2018) Outcomes of adolescents and young adults with Acute myeloid leukemia treated in a single latin American Center. Clin Lymphoma Myeloma Leuk 18(4):286–292. https://doi.org/10.1016/j.clml.2018.02.002 PubMed DOI

Hossain MJ, Xie L, Caywood EH (2015) Prognostic factors of childhood and adolescent acute myeloid leukemia (AML) survival: evidence from four decades of US population data. Cancer Epidemiol 39(5):720–726. https://doi.org/10.1016/j.canep.2015.06.009 PubMed DOI PMC

Lalayanni C, Demosthenous C, Iskas M et al (2022) Adolescents and young adults (AYA) with acute myeloid leukemia (AML): real-world long-term results and age-specific outcomes. Leuk Lymphoma 63(13):3128–3137. https://doi.org/10.1080/10428194.2022.2113527 PubMed DOI

Huber S, Baer C, Hutter S et al (2023) AML classification in the year 2023: how to avoid a babylonian confusion of languages. Leukemia 37(7):1413–1420. https://doi.org/10.1038/s41375-023-01909-w PubMed DOI PMC

DiNardo CD, Cortes JE (2016) Mutations in AML: prognostic and therapeutic implications. Hematol Am Soc Hematol Educ Program 2016(1):348–355. https://doi.org/10.1182/asheducation-2016.1.348 DOI

Johansson B, Harrison CJ (2010) Acute myeloid leukemia. Cancer Cytogenetics, 1st edn. Wiley, New York, pp 45–139. https://doi.org/10.1002/9781118010136.ch5 . DOI

Döhner H, Wei AH, Appelbaum R et al (2022) Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 22(12):1345–1377. https://doi.org/10.1182/blood.2022016867 DOI

Patnaik MM (2018) The importance of FLT3 mutational analysis in acute myeloid leukemia. Leuk Lymphoma 59(10):2273–2286. https://doi.org/10.1080/10428194.2017.1399312 PubMed DOI

Lim SH, Dubielecka PM, Raghunathan VM (2017) Molecular targeting in acute myeloid leukemia. J Transl Med 15(1):183. https://doi.org/10.1186/s12967-017-1281-x PubMed DOI PMC

Zhao JC, Agarwal S, Ahmad H et al (2022) A review of FLT3 inhibitors in acute myeloid leukemia. Blood Rev 52:100905. https://doi.org/10.1016/j.blre.2021.100905 PubMed DOI

Meraj F, Jamal S, Javed O et al (2023) Cytogenetic profiling in paediatric Acute Leukaemia; a Report on 746 newly diagnosed paediatric cases analyzing the spectrum of recurring chromosomal rearrangements in B cell lymphoblastic and acute myeloid leukaemia. J Ayub Med Coll Abbottabad 35(2):196–202. https://doi.org/10.55519/JAMC-02-11634 PubMed DOI

Yu J, Li Y, Zhang D, Wan D, Jiang Z (2020) Clinical implications of recurrent gene mutations in acute myeloid leukemia. Exp Hematol Oncol 9:4. https://doi.org/10.1186/s40164-020-00161-7 PubMed DOI PMC

Kikushige Y, Yoshimoto G, Miyamoto T et al (2008) Human Flt3 is expressed at the hematopoietic stem cell and the granulocyte/macrophage progenitor stages to maintain cell survival. J Immunol 180(11):7358–7367. https://doi.org/10.4049/jimmunol.180.11.7358 PubMed DOI

Blom B, Spits H (2006) Development of human lymphoid cells. Annu Rev Immunol 24:287–320. https://doi.org/10.1146/annurev.immunol.24.021605.090612 PubMed DOI

Hernández-Barrientos D, Pelayo R, Mayani H (2023) The hematopoietic microenvironment: a network of niches for the development of all blood cell lineages. J Leukoc Biol 114(5):404–420. https://doi.org/10.1093/jleuko/qiad075 PubMed DOI

Fenski R, Flesch K, Serve S et al (2000) Constitutive activation of FLT3 in acute myeloid leukaemia and its consequences for growth of 32D cells. Br J Haematol 108(2):322–330. https://doi.org/10.1046/j.1365-2141.2000.01831.x PubMed DOI

Okabe A, Guirales F, Zhao D, Tirado CA (2021) FLT3 gene involvement in B-cell Acute Lymphoblastic Leukemia (B-ALL). J Assoc Genet Technol 47(1):6–14 PubMed

Rosnet O, Bühring HJ, deLapeyrière O et al (1996) Expression and signal transduction of the FLT3 tyrosine kinase receptor. Acta Haematol 95(3–4):218–223. https://doi.org/10.1159/000203881 PubMed DOI

Sakaguchi M, Yamaguchi H, Kuboyama M et al (2019) Significance of FLT3-tyrosine kinase domain mutation as a prognostic factor for acute myeloid leukemia. Int J Hematol 110(5):566–574. https://doi.org/10.1007/s12185-019-02720-z PubMed DOI

Yamamoto Y, Kiyoi H, Nakano Y et al (2001) Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 97(8):2434–2439. https://doi.org/10.1182/blood.v97.8.2434 PubMed DOI

Rosnet O, Schiff C, Pébusque MJ et al (1993) Human FLT3/FLK2 gene: cDNA cloning and expression in hematopoietic cells. Blood 82(4):1110–1119 PubMed DOI

Smith CC, Wang Q, Chin CS et al (2012) Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature 485(7397):260–263. https://doi.org/10.1038/nature11016 PubMed DOI PMC

Lejman M, Dziatkiewicz I, Jurek M (2022) Straight to the point-the novel strategies to Cure Pediatric AML. Int J Mol Sci 23(4):1968. https://doi.org/10.3390/ijms23041968 PubMed DOI PMC

Kazi JU, Rönnstrand L (2019) FMS-like tyrosine kinase 3/FLT3: from Basic Science to Clinical implications. Physiol Rev 99(3):1433–1466. https://doi.org/10.1152/physrev.00029.2018 PubMed DOI

Cumbo C, Tarantini F, Anelli L et al (2022) FLT3 mutational analysis in acute myeloid leukemia: advantages and pitfalls with different approaches. Blood Rev 54:100928. https://doi.org/10.1016/j.blre.2022.100928 PubMed DOI

Fukuda S, Broxmeyer HE, Pelus LM (2005) Flt3 ligand and the Flt3 receptor regulate hematopoietic cell migration by modulating the SDF-1alpha(CXCL12)/CXCR4 axis. Blood 105(8):3117–3126. https://doi.org/10.1182/blood-2004-04-1440 PubMed DOI

Gebru MT, Wang HG (2020) Therapeutic targeting of FLT3 and associated drug resistance in acute myeloid leukemia. J Hematol Oncol 13(1):155. https://doi.org/10.1186/s13045-020-00992-1 PubMed DOI PMC

Heiss E, Masson K, Sundberg C et al (2006) Identification of Y589 and Y599 in the juxtamembrane domain of Flt3 as ligand-induced autophosphorylation sites involved in binding of src family kinases and the protein tyrosine phosphatase SHP2. Blood 108(5):1542–1550. https://doi.org/10.1182/blood-2005-07-008896 PubMed DOI

Steelman LS, Franklin RA, Abrams SL et al (2011) Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy. Leukemia 25(7):1080–1094. https://doi.org/10.1038/leu.2011.66 PubMed DOI

Gilliland DG, Griffin JD (2002) The roles of FLT3 in hematopoiesis and leukemia. Blood 100(5):1532–1542. https://doi.org/10.1182/blood-2002-02-0492 PubMed DOI

Griffith J, Black J, Faerman C et al (2004) The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol Cell 13(2):169–178. https://doi.org/10.1016/s1097-2765(03)00505-7 PubMed DOI

Du Z, Lovly CM (2018) Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer 17(1):58. https://doi.org/10.1186/s12943-018-0782-4 PubMed DOI PMC

Levis M, Small D (2003) FLT3: ITDoes matter in leukemia. Leukemia 17(9):1738–1752. https://doi.org/10.1038/sj.leu.2403099 PubMed DOI

Small D (2006) FLT3 mutations: biology and treatment. Hematol Am Soc Hematol Educ Program 178 – 84. https://doi.org/10.1182/asheducation-2006.1.178 DOI

Kiyoi H, Kawashima N, Ishikawa Y (2020) FLT3 mutations in acute myeloid leukemia: therapeutic paradigm beyond inhibitor development. Cancer Sci 111(2):312–322. https://doi.org/10.1111/cas.14274 PubMed DOI

Ambinder AJ, Levis M (2021) Potential targeting of FLT3 acute myeloid leukemia. Haematologica 106(3):671–681. https://doi.org/10.3324/haematol.2019.240754 PubMed DOI

Jahn N, Terzer T, Sträng E et al (2020) Genomic heterogeneity in core-binding factor acute myeloid leukemia and its clinical implication. Blood Adv 4(24):6342–6352. https://doi.org/10.1182/bloodadvances.2020002673 PubMed DOI PMC

Lo Iudice G, De Bellis E, Savi A et al (2022) Molecular dissection of a hyper-aggressive CBFB-MYH11/FLT3-ITD-positive acute myeloid leukemia. J Transl Med 20(1):311. https://doi.org/10.1186/s12967-022-03486-5 PubMed DOI PMC

Todde G, Friedman R (2019) Conformational modifications induced by internal tandem duplications on the FLT3 kinase and juxtamembrane domains. Phys Chem Chem Phys 21(34):18467–18476. https://doi.org/10.1039/c9cp02938a PubMed DOI

Kellner F, Keil A, Schindler K et al (2020) Wild-type FLT3 and FLT3 ITD exhibit similar ligand-induced internalization characteristics. J Cell Mol Med 24(8):4668–4676. https://doi.org/10.1111/jcmm.15132 PubMed DOI PMC

Niswander LM, Graff ZT, Chien CD et al (2023) Potent preclinical activity of FLT3-directed chimeric antigen receptor T-cell immunotherapy against FLT3- mutant acute myeloid leukemia and KMT2A-rearranged acute lymphoblastic leukemia. Haematologica 108(2):457–471. https://doi.org/10.3324/haematol.2022.281456 PubMed DOI

Tao S, Wang C, Chen Y et al (2019) Prognosis and outcome of patients with acute myeloid leukemia based on FLT3-ITD mutation with or without additional abnormal cytogenetics. Oncol Lett 18(6):6766–6774. https://doi.org/10.3892/ol.2019.11051 PubMed DOI PMC

Kim Y, Lee GD, Park J et al (2015) Quantitative fragment analysis of FLT3-ITD efficiently identifying poor prognostic group with high mutant allele burden or long ITD length. Blood Cancer J 5(8):e336. https://doi.org/10.1038/bcj.2015.61 PubMed DOI PMC

Castaño-Bonilla T, Alonso-Dominguez JM, Barragán E et al (2021) Prognostic significance of FLT3-ITD length in AML patients treated with intensive regimens. Sci Rep 11(1):20745. https://doi.org/10.1038/s41598-021-00050-x PubMed DOI PMC

Lagunas-Rangel FA, Chávez-Valencia V (2017) FLT3-ITD and its current role in acute myeloid leukaemia. Med Oncol 34(6):114. https://doi.org/10.1007/s12032-017-0970-x PubMed DOI

Tamburini J, Mouche S, Larrue C et al (2023) Very short insertions in the FLT3 gene are of therapeutic significance in acute myeloid leukemia. Blood Adv 7(24):7576–7580. https://doi.org/10.1182/bloodadvances.2023011916 PubMed DOI PMC

Zalpoor H, Rezaei M, Yahyazadeh S, Ganjalikhani-Hakemi M (2022) Flt3-ITD mutated acute myeloid leukemia patients and COVID-19: potential roles of autophagy and HIF-1α in leukemia progression and mortality. Hum Cell 35(4):1304–1305. https://doi.org/10.1007/s13577-022-00718-0 PubMed DOI PMC

Tien FM, Tsai CH, Huang SC et al (2022) Distinct clinico-biological features in AML patients with low allelic ratio FLT3-ITD: role of allogeneic stem cell transplantation in first remission. Bone Marrow Transpl 57(1):95–105. https://doi.org/10.1038/s41409-021-01454-z DOI

Aitken MJL, Ravandi F, Patel KP, Short NJ (2021) Prognostic and therapeutic implications of measurable residual disease in acute myeloid leukemia. J Hematol Oncol 14(1):137. https://doi.org/10.1186/s13045-021-01148-5 PubMed DOI PMC

Marhäll A, Heidel F, Fischer T, Rönnstrand L (2018) Internal tandem duplication mutations in the tyrosine kinase domain of FLT3 display a higher oncogenic potential than the activation loop D835Y mutation. Ann Hematol 97(5):773–780. https://doi.org/10.1007/s00277-018-3245-5 PubMed DOI PMC

Mer AS, Heath EM, Madani Tonekaboni SA et al (2021) Biological and therapeutic implications of a unique subtype of NPM1 mutated AML. Nat Commun 12(1):1054. https://doi.org/10.1038/s41467-021-21233-0 PubMed DOI PMC

Lachowiez CA, Reville PK, Kantarjian H et al (2022) Contemporary outcomes in IDH-mutated acute myeloid leukemia: the impact of co-occurring NPM1 mutations and venetoclax-based treatment. Am J Hematol 97(11):1443–1452. https://doi.org/10.1002/ajh.26694 PubMed DOI

Reikvam H (2023) Revisiting the prognostic role of FLT3 mutations in acute myelogenous leukemia. Expert Rev Hematol 16(5):317–323. https://doi.org/10.1080/17474086.2023.2202849 PubMed DOI

Döhner K, Thiede C, Jahn N et al (2020) Impact of NPM1/FLT3-ITD genotypes defined by the 2017 European LeukemiaNet in patients with acute myeloid leukemia. Blood 135(5):371–380. https://doi.org/10.1182/blood.2019002697 PubMed DOI PMC

Varelas C, Papalexandri A, Iskas M et al (2023) PB1894: NPM1 mutated Acute myeloid leukemia: the co-mutation patterns may be Associated with Prognosis. Hemasphere 7(Suppl):e756808d. https://doi.org/10.1097/01.HS9.0000974400.75680.8d DOI PMC

Hammer ASB, Juul-Dam KL, Sandahl JD et al (2023) Hypodiploidy has unfavorable impact on survival in pediatric acute myeloid leukemia: an I-BFM Study Group collaboration. Blood Adv 7(6):1045–1055. https://doi.org/10.1182/bloodadvances.2022008251 PubMed DOI

Stasik S, Kramer M, Zukunft S et al (2022) Point mutations in the FLT3-ITD region are rare but recurrent alterations in adult AML and Associated with concomitant KMT2A-PTD. Front Oncol 12:862991. https://doi.org/10.3389/fonc.2022.862991 PubMed DOI PMC

Mahmoudi A, Moradabadi A, Noroozi-Aghideh A (2021) Comparison of high-resolution melting analysis with direct sequencing for detection of FLT3-TKD, FLT3-ITD and WT1 mutations in acute myeloid leukemia. Cancer Treat Res Commun 28:100432. https://doi.org/10.1016/j.ctarc.2021.100432 PubMed DOI

Whitman SP, Ruppert AS, Radmacher MD et al (2008) FLT3 D835/I836 mutations are associated with poor disease-free survival and a distinct gene-expression signature among younger adults with de novo cytogenetically normal acute myeloid leukemia lacking FLT3 internal tandem duplications. Blood 111(3):1552–1559. https://doi.org/10.1182/blood-2007-08-107946 PubMed DOI PMC

Shimony S, Stahl M, Stone RM (2023) Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol 98(3):502–526. https://doi.org/10.1002/ajh.26822 PubMed DOI

Short NJ, Kantarjian H, Ravandi F, Daver N (2019) Emerging treatment paradigms with FLT3 inhibitors in acute myeloid leukemia. Ther Adv Hematol 10:2040620719827310. https://doi.org/10.1177/2040620719827310 PubMed DOI PMC

Carter JL, Hege K, Yang J et al (2020) Targeting multiple signaling pathways: the new approach to acute myeloid leukemia therapy. Signal Transduct Target Ther 5(1):288. https://doi.org/10.1038/s41392-020-00361-x PubMed DOI PMC

Stirewalt DL, Radich JP (2003) The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 3(9):650–665. https://doi.org/10.1038/nrc1169 PubMed DOI

Fatemeh S (2023) Early fate decissions in hematopoietic stem and progenitor cells. Through the lens of genomic and functional assays. Dissertation, Lund University

Lu PCW, Shahbaz S, Winn LM (2020) Benzene and its effects on cell signaling pathways related to hematopoiesis and leukemia. J Appl Toxicol 40(8):1018–1032. https://doi.org/10.1002/jat.3961 PubMed DOI

Dlamini Z, Shoba B, Hull R (2020) Splicing machinery genomics events in acute myeloid leukaemia (AML): in search for therapeutic targets, diagnostic and prognostic biomarkers. Am J Cancer Res 10(9):2690–2704 PubMed PMC

https:// databases.lovd.nl/shared/variants/FLT3/unique - last updated June 15th 2021

Marrero RJ, Cao X, Wu H et al (2023) SAMHD1 single nucleotide polymorphisms impact outcome in children with newly diagnosed acute myeloid leukemia. Blood Adv 7(11):2538–2550. https://doi.org/10.1182/bloodadvances.2022009088 PubMed DOI PMC

Alsheikh T, Ameer T, NjmEldin A et al (2023) June Twenty novel nsSNPs may affect FLT3 gene leading to Acute Myeloid Leukemia (AML) using in silico analysis. Biorxiv - The Preprint server for biology. https://www.biorxiv.org/content/ https://doi.org/10.1101/2023.06.24.546344v1.full Accessed 26

Rasekh EO, Amin EA, Yassa ME et al (2022) The Prognostic Significance of Genetic Polymorphisms of Deoxycytidine Kinase and Cytidine Deaminase on the outcome of adult Acute myeloid leukemia patients with Cytarabine Based Chemotherapy. Int J Hematol 33(1):081–092

Kolonen A, Sinisalo M, Huhtala H et al (2022) Efficacy of conventional-dose cytarabine, idarubicin and thioguanine versus intermediate-dose cytarabine and idarubicin in the induction treatment of acute myeloid leukemia: long-term results of the prospective randomized nationwide AML-2003 study by the Finnish Leukemia Group. Eur J Haematol 109(3):257–270. https://doi.org/10.1111/ejh.13805 PubMed DOI

Alarcón-Payer C, Sánchez Suárez MDM, Martín Roldán A et al (2022) Impact of genetic polymorphisms and biomarkers on the effectiveness and toxicity of treatment of chronic myeloid leukemia and Acute Myeloid Leukemia. J Pers Med 12(10):1607. https://doi.org/10.3390/jpm12101607 PubMed DOI PMC

Razumovskaya E, Masson K, Khan R, Bengtsson S, Rönnstrand L (2009) Oncogenic Flt3 receptors display different specificity and kinetics of autophosphorylation. Exp Hematol 37(8):979–989. https://doi.org/10.1016/j.exphem.2009.05.008 PubMed DOI

Georgoulia PS, Bjelic S, Friedman R (2020) Deciphering the molecular mechanism of FLT3 resistance mutations. FEBS J 287(15):3200–3220. https://doi.org/10.1111/febs.15209 PubMed DOI

Verstraete K, Vandriessche G, Januar M et al (2011) Structural insights into the extracellular assembly of the hematopoietic Flt3 signaling complex. Blood 118(1):60–68. https://doi.org/10.1182/blood-2011-01-329532 PubMed DOI

Morrison P, Takishima K, Rosner MR (1993) Role of threonine residues in regulation of the epidermal growth factor receptor by protein kinase C and mitogen-activated protein kinase. J Biol Chem 268(21):15536–15543 PubMed DOI

Ali AM, Salih GF (2023) Molecular and clinical significance of FLT3, NPM1, DNMT3A and TP53 mutations in acute myeloid leukemia patients. Mol Biol Rep 50(10):8035–8048. https://doi.org/10.1007/s11033-023-08680-2 PubMed DOI

Ding Y, Smith GH, Deeb K, Schneider T, Campbell A, Zhang L (2022) Revealing molecular architecture of FLT3 internal tandem duplication: development and clinical validation of a web-based application to generate accurate nomenclature. Int J Lab Hematol 44(5):918–927. https://doi.org/10.1111/ijlh.13930 PubMed DOI

Guijarro F, López-Guerra M, Morata J et al (2023) Germ line variants in patients with acute myeloid leukemia without a suspicion of hereditary hematologic malignancy syndrome. Blood Adv 7(19):5799–5811. https://doi.org/10.1182/bloodadvances.2023009742 PubMed DOI PMC

Eckardt JN, Bornhäuser M, Wendt K, Middeke JM (2020) Application of machine learning in the management of acute myeloid leukemia: current practice and future prospects. Blood Adv 4(23):6077–6085. https://doi.org/10.1182/bloodadvances.2020002997 PubMed DOI PMC

Papaemmanuil E, Gerstung M, Bullinger L et al (2016) Genomic classification and prognosis in Acute myeloid leukemia. N Engl J Med 374(23):2209–2221. https://doi.org/10.1056/NEJMoa1516192 PubMed DOI PMC

Antar AI, Otrock ZK, Jabbour E, Mohty M, Bazarbachi A (2020) FLT3 inhibitors in acute myeloid leukemia: ten frequently asked questions. Leukemia 34(3):682–696. https://doi.org/10.1038/s41375-019-0694-3 PubMed DOI

Weisberg E, Roesel J, Furet P et al (2010) Antileukemic effects of Novel First- and second-generation FLT3 inhibitors: structure-Affinity comparison. Genes Cancer 1(10):1021–1032. https://doi.org/10.1177/1947601910396505 PubMed DOI PMC

Ran F, Xie X, Wu Q et al (2023) Development of novel hydrazidoarylaminopyrimidine-based BTK/FLT3 dual inhibitors with potent in vivo anti-hematological malignancies effects. Eur J Med Chem 245(Pt 1):114913. https://doi.org/10.1016/j.ejmech.2022.114913 PubMed DOI

Grimwade D, Ivey A, Huntly BJ (2016) Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. Blood 127(1):29–41. https://doi.org/10.1182/blood-2015-07-604496 PubMed DOI PMC

Ke YY, Singh VK, Coumar MS et al (2015) Homology modeling of DFG-in FMS-like tyrosine kinase 3 (FLT3) and structure-based virtual screening for inhibitor identification. Sci Rep 5:11702. https://doi.org/10.1038/srep11702 PubMed DOI PMC

Jahn N, Jahn E, Saadati M et al (2022) Genomic landscape of patients with FLT3-mutated acute myeloid leukemia (AML) treated within the CALGB 10603/RATIFY trial. Leukemia 36(9):2218–2227. https://doi.org/10.1038/s41375-022-01650-w PubMed DOI PMC

Fiskus W, Sharma S, Saha S et al (2015) Pre-clinical efficacy of combined therapy with novel β-catenin antagonist BC2059 and histone deacetylase inhibitor against AML cells. Leukemia 29(6):1267–1278. https://doi.org/10.1038/leu.2014.340 PubMed DOI

Daver N, Cortes J, Ravandi F et al (2015) Secondary mutations as mediators of resistance to targeted therapy in leukemia. Blood 125(21):3236–3245. https://doi.org/10.1182/blood-2014-10-605808 PubMed DOI PMC

Larrosa-Garcia M, Baer MR (2017) FLT3 inhibitors in Acute myeloid leukemia: current status and future directions. Mol Cancer Ther 16(6):991–1001. https://doi.org/10.1158/1535-7163.MCT-16-0876 PubMed DOI PMC

Rodrigues ACBDC, Costa RGA, Silva SLR et al (2021) Cell signaling pathways as molecular targets to eliminate AML stem cells. Crit Rev Oncol Hematol 160:103277. https://doi.org/10.1016/j.critrevonc.2021.103277 PubMed DOI

Lagunas-Rangel FA (2023) DNA damage accumulation and repair defects in FLT3-ITD acute myeloid leukemia: implications for clonal evolution and disease progression. Hematol Oncol 41(1):26–38. https://doi.org/10.1002/hon.3076 PubMed DOI

Kishtagari A, Levine RL (2021) The role of somatic mutations in Acute myeloid leukemia pathogenesis. Cold Spring Harb Perspect Med 11(4):a034975. https://doi.org/10.1101/cshperspect.a034975 PubMed DOI PMC

Beitinjaneh A, Jang S, Roukoz H, Majhail NS (2010) Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations in acute promyelocytic leukemia: a systematic review. Leuk Res 34(7):831–836. https://doi.org/10.1016/j.leukres.2010.01.001 PubMed DOI

Zheng R, Levis M, Piloto O et al (2004) FLT3 ligand causes autocrine signaling in acute myeloid leukemia cells. Blood 103(1):267–274. https://doi.org/10.1182/blood-2003-06-1969 PubMed DOI

Kuchenbauer F, Kern W, Schoch C et al (2005) Detailed analysis of FLT3 expression levels in acute myeloid leukemia. Haematologica 90(12):1617–1625 PubMed

Rovatti PE, Gambacorta V, Lorentino F, Ciceri F, Vago L (2020) Mechanisms of Leukemia Immune Evasion and their role in Relapse after Haploidentical hematopoietic cell transplantation. Front Immunol 11:147. https://doi.org/10.3389/fimmu.2020.00147 PubMed DOI PMC

Arai Y, Chi S, Minami Y, Yanada M (2022) FLT3-targeted treatment for acute myeloid leukemia. Int J Hematol 116(3):351–363. https://doi.org/10.1007/s12185-022-03374-0 PubMed DOI

Ferng TT, Terada D, Ando M et al (2022) The irreversible FLT3 inhibitor FF-10101 is active against a diversity of FLT3 inhibitor resistance mechanisms. Mol Cancer Ther 21(5):844–854. https://doi.org/10.1158/1535-7163.MCT-21-0317 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...