Neural crest origin of sympathetic neurons at the dawn of vertebrates

. 2024 May ; 629 (8010) : 121-126. [epub] 20240417

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid38632395

Grantová podpora
F31 DE031154 NIDCR NIH HHS - United States
F32 HD106627 NICHD NIH HHS - United States
R35 NS111564 NINDS NIH HHS - United States

Odkazy

PubMed 38632395
PubMed Central PMC11391089
DOI 10.1038/s41586-024-07297-0
PII: 10.1038/s41586-024-07297-0
Knihovny.cz E-zdroje

The neural crest is an embryonic stem cell population unique to vertebrates1 whose expansion and diversification are thought to have promoted vertebrate evolution by enabling emergence of new cell types and structures such as jaws and peripheral ganglia2. Although jawless vertebrates have sensory ganglia, convention has it that trunk sympathetic chain ganglia arose only in jawed vertebrates3-8. Here, by contrast, we report the presence of trunk sympathetic neurons in the sea lamprey, Petromyzon marinus, an extant jawless vertebrate. These neurons arise from sympathoblasts near the dorsal aorta that undergo noradrenergic specification through a transcriptional program homologous to that described in gnathostomes. Lamprey sympathoblasts populate the extracardiac space and extend along the length of the trunk in bilateral streams, expressing the catecholamine biosynthetic pathway enzymes tyrosine hydroxylase and dopamine β-hydroxylase. CM-DiI lineage tracing analysis further confirmed that these cells derive from the trunk neural crest. RNA sequencing of isolated ammocoete trunk sympathoblasts revealed gene profiles characteristic of sympathetic neuron function. Our findings challenge the prevailing dogma that posits that sympathetic ganglia are a gnathostome innovation, instead suggesting that a late-developing rudimentary sympathetic nervous system may have been characteristic of the earliest vertebrates.

Zobrazit více v PubMed

Le Douarin N The Neural Crest. (Cambridge Univ. Press, 1982).

Martik ML et al. Evolution of the new head by gradual acquisition of neural crest regulatory circuits. Nature 574, 675–678 (2019). 10.1038/s41586-019-1691-4 PubMed DOI PMC

Botar J Evolution and general anatomy of the autonomic nervous system. Gegenbaurs Morphol Jahrb 120, 271–279 (1974). PubMed

Burnstock G Evolution of the autonomic innervation of visceral and cardiovascular systems in vertebrates. Pharmacol Rev 21, 247–324 (1969). PubMed

Haming D et al. Expression of sympathetic nervous system genes in Lamprey suggests their recruitment for specification of a new vertebrate feature. PLoS One 6, e26543 (2011). 10.1371/journal.pone.0026543 PubMed DOI PMC

JOHNELS AG On the peripheral autonomic nervous system of the trunk region of Lampetra planeri. Acta Zoologica 37, 251–286 (1956).

Nicol JC Autonomic nervous systems in lower chordates. Biological Reviews 27, 1–48 (1952).

Rovainen CM Neurobiology of lampreys. Physiological reviews 59, 1007–1077 (1979). PubMed

Shu DG et al. Head and backbone of the Early Cambrian vertebrate Haikouichthys. Nature 421, 526–529 (2003). 10.1038/nature01264 PubMed DOI

Green SA, Simoes-Costa M & Bronner ME Evolution of vertebrates as viewed from the crest. Nature 520, 474–482 (2015). PubMed PMC

Green SA & Bronner ME The lamprey: a jawless vertebrate model system for examining origin of the neural crest and other vertebrate traits. Differentiation 87, 44–51 (2014). 10.1016/j.diff.2014.02.001 PubMed DOI PMC

Anderson DJ & Axel R A bipotential neuroendocrine precursor whose choice of cell fate is determined by NGF and glucocorticoids. Cell 47, 1079–1090 (1986). 10.1016/0092-8674(86)90823-8 PubMed DOI

Anderson DJ, Carnahan JF, Michelsohn A & Patterson PH Antibody markers identify a common progenitor to sympathetic neurons and chromaffin cells in vivo and reveal the timing of commitment to neuronal differentiation in the sympathoadrenal lineage. J Neurosci 11, 3507–3519 (1991). PubMed PMC

Shtukmaster S et al. Sympathetic neurons and chromaffin cells share a common progenitor in the neural crest in vivo. Neural Dev 8, 12 (2013). 10.1186/1749-8104-8-12 PubMed DOI PMC

Le Douarin NM & Smith J Development of the peripheral nervous system from the neural crest. Annu Rev Cell Biol 4, 375–404 (1988). 10.1146/annurev.cb.04.110188.002111 PubMed DOI

Loring JF & Erickson CA Neural crest cell migratory pathways in the trunk of the chick embryo. Dev Biol 121, 220–236 (1987). 10.1016/0012-1606(87)90154-0 PubMed DOI

Reissmann E et al. Involvement of bone morphogenetic protein-4 and bone morphogenetic protein-7 in the differentiation of the adrenergic phenotype in developing sympathetic neurons. Development 122, 2079–2088 (1996). 10.1242/dev.122.7.2079 PubMed DOI

Schneider C, Wicht H, Enderich J, Wegner M & Rohrer H Bone morphogenetic proteins are required in vivo for the generation of sympathetic neurons. Neuron 24, 861–870 (1999). 10.1016/s0896-6273(00)81033-8 PubMed DOI

Ernsberger U, Reissmann E, Mason I & Rohrer H The expression of dopamine beta-hydroxylase, tyrosine hydroxylase, and Phox2 transcription factors in sympathetic neurons: evidence for common regulation during noradrenergic induction and diverging regulation later in development. Mech Dev 92, 169–177 (2000). 10.1016/s0925-4773(99)00336-6 PubMed DOI

Furlan A et al. Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science 357 (2017). 10.1126/science.aal3753 PubMed DOI PMC

Kastriti ME, Kameneva P & Adameyko I Stem cells, evolutionary aspects and pathology of the adrenal medulla: A new developmental paradigm. Mol Cell Endocrinol 518, 110998 (2020). 10.1016/j.mce.2020.110998 PubMed DOI

Augustinsson KB, Fange R, Johnels A & Ostlund E Histological, physiological and biochemical studies on the heart of two cyclostomes, hagfish (Myxine) and lamprey (Lampetra). J Physiol 131, 257–276 (1956). 10.1113/jphysiol.1956.sp005461 PubMed DOI PMC

Paiement JM & McMillan DB The extracardiac chromaffin cells of larval lampreys. Gen Comp Endocrinol 27, 495–508 (1975). 10.1016/0016-6480(75)90070-2 PubMed DOI

Butler DG Structure and function of the adrenal gland of fishes. American Zoologist 13, 839–879 (1973).

Reid SG, Bernier NJ & Perry SF The adrenergic stress response in fish: control of catecholamine storage and release. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 120, 1–27 (1998). 10.1016/s0742-8413(98)00037-1 PubMed DOI

Kirby M & Gilmore S A correlative histofluorescence and light microscopic study of the formation of the sympathetic trunks in chick embryos. The Anatomical Record 186, 437–449 (1976). PubMed

Kastriti ME et al. Schwann Cell Precursors Generate the Majority of Chromaffin Cells in Zuckerkandl Organ and Some Sympathetic Neurons in Paraganglia. Front Mol Neurosci 12, 6 (2019). 10.3389/fnmol.2019.00006 PubMed DOI PMC

Thomsen ER et al. Fixed single-cell transcriptomic characterization of human radial glial diversity. Nat Methods 13, 87–93 (2016). 10.1038/nmeth.3629 PubMed DOI PMC

Ernsberger U, Kramer M, Tsarovina K, Deller T & Rohrer H Coordinate expression of pan-neuronal and functional signature genes in sympathetic neurons. Cell Tissue Res 370, 227–241 (2017). 10.1007/s00441-017-2688-7 PubMed DOI

Friedman S & Kaufman S 3,4-Dihydroxyphenylethylamine Beta-Hydroxylase: A Copper Protein. J Biol Chem 240, PC552–554 (1965). PubMed

Beesley PW, Herrera-Molina R, Smalla KH & Seidenbecher C The Neuroplastin adhesion molecules: key regulators of neuronal plasticity and synaptic function. J Neurochem 131, 268–283 (2014). 10.1111/jnc.12816 PubMed DOI

Poea-Guyon S et al. The V-ATPase membrane domain is a sensor of granular pH that controls the exocytotic machinery. J Cell Biol 203, 283–298 (2013). 10.1083/jcb.201303104 PubMed DOI PMC

Coughlin MD, Boyer DM & Black IB Embryologic development of a mouse sympathetic ganglion in vivo and in vitro. Proc Natl Acad Sci U S A 74, 3438–3442 (1977). 10.1073/pnas.74.8.3438 PubMed DOI PMC

Kuntz A The development of the sympathetic nervous system in man. The Journal of Comparative Neurology 32, 173–229 (1920).

An M, Luo R & Henion PD Differentiation and maturation of zebrafish dorsal root and sympathetic ganglion neurons. J Comp Neurol 446, 267–275 (2002). 10.1002/cne.10214 PubMed DOI

Young JZ Memoirs: the autonomic nervous system of Selachians. Journal of Cell Science 2, 571–624 (1933).

Nicol JA The autonomic nervous system of the chimaeroid fish Hydrolagus colliei. Q J Microsc Sci 91, 379–399 (1950). PubMed

Colin Nicol JA Autonomic nervous system of the ratfish. Nature 165, 854 (1950). 10.1038/165854b0 PubMed DOI

Romer AS in Evolutionary biology 121–156 (Springer, 1972).

Young JZ Memoirs: On the autonomic nervous system of the Teleostean Fish Uranoscopus scaber. Journal of Cell Science 2, 491–536 (1931).

Furlan A et al. Visceral motor neuron diversity delineates a cellular basis for nipple- and pilo-erection muscle control. Nat Neurosci 19, 1331–1340 (2016). 10.1038/nn.4376 PubMed DOI

Han S et al. Direct evidence for the role of neuropeptide Y in sympathetic nerve stimulation-induced vasoconstriction. Am J Physiol 274, H290–294 (1998). 10.1152/ajpheart.1998.274.1.H290 PubMed DOI

Brazeau MD & Friedman M The origin and early phylogenetic history of jawed vertebrates. Nature 520, 490–497 (2015). 10.1038/nature14438 PubMed DOI PMC

Gans C & Northcutt RG Neural crest and the origin of vertebrates: a new head. Science 220, 268–273 (1983). 10.1126/science.220.4594.268 PubMed DOI

Eklov P & Svanback R Predation risk influences adaptive morphological variation in fish populations. Am Nat 167, 440–452 (2006). 10.1086/499544 PubMed DOI

Vinterstare J et al. Predation risk and the evolution of a vertebrate stress response: Parallel evolution of stress reactivity and sexual dimorphism. J Evol Biol 34, 1554–1567 (2021). 10.1111/jeb.13918 PubMed DOI

Charmandari E, Tsigos C & Chrousos G Endocrinology of the stress response. Annu Rev Physiol 67, 259–284 (2005). 10.1146/annurev.physiol.67.040403.120816 PubMed DOI

Pierre J, Mahouche M, Suderevskaya EI, Reperant J & Ward R Immunocytochemical localization of dopamine and its synthetic enzymes in the central nervous system of the lamprey Lampetra fluviatilis. J Comp Neurol 380, 119–135 (1997). PubMed

Chen EY et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013). 10.1186/1471-2105-14-128 PubMed DOI PMC

Nikitina N, Bronner-Fraser M & Sauka-Spengler T Culturing lamprey embryos. Cold Spring Harb Protoc 2009, pdb prot5122 (2009). 10.1101/pdb.prot5122 PubMed DOI

Tahara Y Normal Stages of Development in the Lamprey, Lampetra reissued (Dybowski). Zool. Sci 5, 109–118 (1988).

Choi HM et al. Programmable in situ amplification for multiplexed imaging of mRNA expression. Nat Biotechnol 28, 1208–1212 (2010). 10.1038/nbt.1692 PubMed DOI PMC

Nikitina N, Bronner-Fraser M & Sauka-Spengler T DiI cell labeling in lamprey embryos. Cold Spring Harb Protoc 2009, pdb prot5124 (2009). 10.1101/pdb.prot5124 PubMed DOI

Kim KM, Son K & Palmore GT Neuron Image Analyzer: Automated and Accurate Extraction of Neuronal Data from Low Quality Images. Sci Rep 5, 17062 (2015). 10.1038/srep17062 PubMed DOI PMC

Hempel CM, Sugino K & Nelson SB A manual method for the purification of fluorescently labeled neurons from the mammalian brain. Nat Protoc 2, 2924–2929 (2007). 10.1038/nprot.2007.416 PubMed DOI

Bray NL, Pimentel H, Melsted P & Pachter L Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34, 525–527 (2016). 10.1038/nbt.3519 PubMed DOI

Love MI, Huber W & Anders S Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550 (2014). 10.1186/s13059-014-0550-8 PubMed DOI PMC

Kuleshov MV et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44, W90–97 (2016). 10.1093/nar/gkw377 PubMed DOI PMC

Xie Z et al. Gene Set Knowledge Discovery with Enrichr. Curr Protoc 1, e90 (2021). 10.1002/cpz1.90 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...