Evaluation of viscoelastic parameters and photo-based assessment of newly developed dermal substitutes modified with thermostabilized fibroblast growth factor 2
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38641499
DOI
10.1016/j.burns.2024.03.020
PII: S0305-4179(24)00092-5
Knihovny.cz E-zdroje
- Klíčová slova
- Animal experiment, Cutometry, Dermal substitute, Fibroblast grow factor 2, Scar, Visual assessment,
- MeSH
- chitosan * MeSH
- fibroblastový růstový faktor 2 * MeSH
- hojení ran účinky léků MeSH
- jizva hypertrofická MeSH
- kolagen MeSH
- kůže MeSH
- modely nemocí na zvířatech MeSH
- nanovlákna terapeutické užití MeSH
- popálení MeSH
- prasata MeSH
- pružnost * MeSH
- tkáňové podpůrné struktury MeSH
- umělá kůže * MeSH
- viskozita MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chitosan * MeSH
- fibroblastový růstový faktor 2 * MeSH
- kolagen MeSH
BACKGROUND: The purpose of dermal substitutes is to mimic the basic properties of the extracellular matrix of human skin. The application of dermal substitutes to the defect reduces the formation of hypertrophic scars and improves the scar quality. This study aims to develop an original dermal substitute enriched with stable fibroblast growth factor 2 (FGF2-STAB®) and test it in an animal model. METHODS: Dermal substitutes based on collagen/chitosan scaffolds or collagen/chitosan scaffolds with nanofibrous layer were prepared and enriched with FGF2-STAB® at concentrations of 0, 0.1, 1.0, and 10.0 µg ‧ cm-2. The performance of these dermal substitutes was tested in vivo on artificially formed skin defects in female swine. The outcomes were evaluated using cutometry at 3 and 6 months. In addition, visual appearance was assessed based on photos of the scars at 1-month, 3-month and 6-month follow-ups using Yeong scale and Visual Analog Scale. RESULTS: The dermal substitute was fully integrated into all defects and all wounds healed successfully. FGF2-STAB®-enriched matrices yielded better results in cutometry compared to scaffolds without FGF2. Visual evaluation at 1, 3, and 6 months follow-ups detected no significant differences among groups. The FGF2-STAB® effectiveness in improving the elasticity of scar tissues was confirmed in the swine model. This effect was independently observed in the scaffolds with nanofibres as well as in the scaffolds without nanofibres. CONCLUSION: The formation of scars with the best elasticity was exhibited by addition 1.0 µg ‧ cm-2of FGF2-STAB® into the scaffolds, although it had no significant effect on visual appearance at longer follow-ups. This study creates the basis for further translational studies of the developed product and its progression into the clinical phase of the research.
Enantis s r o Kamenice 771 34 625 00 Brno Czech Republic
Veterinary Research Institute Hudcova 296 70 621 00 Brno Czech Republic
Citace poskytuje Crossref.org