Patient preferences in genetic newborn screening for rare diseases: study protocol
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38643010
PubMed Central
PMC11056621
DOI
10.1136/bmjopen-2023-081835
PII: bmjopen-2023-081835
Knihovny.cz E-zdroje
- Klíčová slova
- GENETICS, Patient Participation, Patient Reported Outcome Measures, Patient-Centered Care, QUALITATIVE RESEARCH,
- MeSH
- lidé MeSH
- novorozenec MeSH
- novorozenecký screening * MeSH
- pacientova volba * MeSH
- umělá inteligence MeSH
- vzácné nemoci diagnóza genetika MeSH
- zjišťování skupinových postojů MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
INTRODUCTION: Rare diseases (RDs) collectively impact over 30 million people in Europe. Most individual conditions have a low prevalence which has resulted in a lack of research and expertise in this field, especially regarding genetic newborn screening (gNBS). There is increasing recognition of the importance of incorporating patients' needs and general public perspectives into the shared decision-making process regarding gNBS. This study is part of the Innovative Medicine Initiative project Screen4Care which aims at shortening the diagnostic journey for RDs by accelerating diagnosis for patients living with RDs through gNBS and the use of digital technologies, such as artificial intelligence and machine learning. Our objective will be to assess expecting parent's perspectives, attitudes and preferences regarding gNBS for RDs in Italy and Germany. METHODS AND ANALYSIS: A mixed method approach will assess perspectives, attitudes and preferences of (1) expecting parents seeking genetic consultation and (2) 'healthy' expecting parents from the general population in two countries (Germany and Italy). Focus groups and interviews using the nominal group technique and ranking exercises will be performed (qualitative phase). The results will inform the treatment of attributes to be assessed via a survey and a discrete choice experiment (DCE). The total recruitment sample will be 2084 participants (approximatively 1000 participants in each country for the online survey). A combination of thematic qualitative and logit-based quantitative approaches will be used to analyse the results of the study. ETHICS AND DISSEMINATION: This study has been approved by the Erlangen University Ethics Committee (22-246_1-B), the Freiburg University Ethics Committee (23-1005 S1-AV) and clinical centres in Italy (University of FerraraCE: 357/2023/Oss/AOUFe and Hospedale Bambino Gesu: No.2997 of 2 November 2023, Prot. No. _902) and approved for data storage and handling at the Uppsala University (2022-05806-01). The dissemination of the results will be ensured via scientific journal publication (open access).
Bulgarian Association for Personalised Medicine Sofia Bulgaria
Center for Research and Bioethics Uppsala Universitet Uppsala Sweden
Department of Neuropediatrics and Muscle Disorders Faculty of Medicine Freiburg Germany
Erasmus Universiteit Rotterdam Rotterdam Netherlands
Erlangen University Hospital Erlangen Bayern Germany
EURORDIS Paris Ile de France France
Institute for Medical Humanities 1st Faculty of Medicine Charles University Prague Czech Republic
Medical Genetics Unit Department of Medical Sciences University of Ferrara Ferrara Italy
Medical Genetics University of Siena Siena Italy
Pfizer Inc New York New York USA
Sanofi Aventis SA Diegem Belgium
Takeda Pharmaceuticals International AG Opfikon Zürich Switzerland
Telethon Institute of Genetics and Medicine Napoli Campania Italy
Zobrazit více v PubMed
Nguengang Wakap S, Lambert DM, Olry A, et al. . Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur J Hum Genet 2020;28:165–73. 10.1038/s41431-019-0508-0 PubMed DOI PMC
Hay E, Elmslie F, Lanyon P, et al. . The diagnostic Odyssey in rare diseases; a task and finish group report for the Department of health and social care. NIHR Open Res 2022. 10.3310/nihropenres.1115171.1 DOI
Marwaha S, Knowles JW, Ashley EA. A guide for the diagnosis of rare and Undiagnosed disease: beyond the Exome. Genome Med 2022;14. 10.1186/s13073-022-01026-w PubMed DOI PMC
Ferreira CR. The burden of rare diseases. American J of Med Genetics Pt A 2019;179:885–92. 10.1002/ajmg.a.61124 PubMed DOI
Gokdemir Y, Eyuboglu TS, Emiralioglu N, et al. . Geographical barriers to timely diagnosis of cystic fibrosis and anxiety level of parents during newborn screening in Turkey. Pediatr Pulmonol 2021;56:3223–31. 10.1002/ppul.25586 PubMed DOI
Grob R, Roberts S, Timmermans S. Families’ experiences with newborn screening: A critical source of evidence. Hastings Cent Rep 2018;48 Suppl 2:S29–31. 10.1002/hast.881 PubMed DOI
Bailey DB, Bishop E, Raspa M, et al. . Caregiver opinions about fragile X population screening. Genetics in Medicine 2012;14:115–21. 10.1038/gim.0b013e31822ebaa6 PubMed DOI PMC
van Dijk T, Kater A, Jansen M, et al. . Expanding neonatal Bloodspot screening: A multi-Stakeholder perspective. Front Pediatr 2021;9. 10.3389/fped.2021.706394 PubMed DOI PMC
Chavez-Yenter D, Vagher J, Clayton MF, et al. . Being Proactive, not reactive”: exploring perceptions of genetic testing among white, Latinx, and Pacific Islander populations. J Community Genet 2021;12:617–30. 10.1007/s12687-021-00542-3 PubMed DOI PMC
Perobelli S, Zanolla L, Tamanini A, et al. . Inconclusive cystic fibrosis neonatal screening results: Long‐Term Psychosocial effects on parents. Acta Paediatr 2009;98:1927–34. 10.1111/j.1651-2227.2009.01485.x PubMed DOI
Pruniski B, Lisi E, Ali N. Newborn screening for pompe disease: impact on families. J Inherit Metab Dis 2018;41:1189–203. 10.1007/s10545-018-0159-2 PubMed DOI
Bailey DB, Berry-Kravis E, Gane LW, et al. . Fragile X newborn screening: lessons learned from a Multisite screening study. Pediatrics 2017;139:S216–25. 10.1542/peds.2016-1159H PubMed DOI
Reinstein E. Challenges of using next generation sequencing in newborn screening. Genet Res (Camb) 2015;97:e21. 10.1017/S0016672315000178 PubMed DOI PMC
Grob R. Qualitative research on expanded Prenatal and newborn screening: robust but marginalized. Hastings Cent Rep 2019;49 Suppl 1:S72–81. 10.1002/hast.1019 PubMed DOI PMC
Friedman JM, Cornel MC, Goldenberg AJ, et al. . Genomic newborn screening: public health policy considerations and recommendations. BMC Med Genomics 2017;10:9. 10.1186/s12920-017-0247-4 PubMed DOI PMC
Knoppers BM, Sénécal K, Borry P, et al. . Whole-genome sequencing in newborn screening programs. Sci Transl Med 2014. 10.1126/scitranslmed.3008494 PubMed DOI
Ozdemir S, Finkelstein E, Lee JJ, et al. . Understanding patient preferences in anti-VEGF treatment options for age-related macular degeneration. PLoS One 2022;17:e0272301. 10.1371/journal.pone.0272301 PubMed DOI PMC
Moultrie RR, Paquin R, Rini C, et al. . Parental views on newborn next generation sequencing: implications for decision support. Matern Child Health J 2020;24:856–64. 10.1007/s10995-020-02953-z PubMed DOI
Bombard Y, Miller FA, Hayeems RZ, et al. . Public views on participating in newborn screening using genome sequencing. Eur J Hum Genet 2014;22:1248–54. 10.1038/ejhg.2014.22 PubMed DOI PMC
Plass AMC, van El CG, Pieters T, et al. . Neonatal screening for treatable and Untreatable disorders: prospective parents’ opinions. Pediatrics 2010;125:e99–106. 10.1542/peds.2009-0269 PubMed DOI
Bailey DB, Lewis MA, Harris SL, et al. . Design and evaluation of a decision aid for inviting parents to participate in a fragile X newborn screening pilot study. J Genet Couns 2013;22:108–17. 10.1007/s10897-012-9511-0 PubMed DOI
Miller FA, Hayeems RZ, Bombard Y, et al. . Public perceptions of the benefits and risks of newborn screening. Pediatrics 2015;136:e413–23. 10.1542/peds.2015-0518 PubMed DOI
Wright SJ, Ulph F, Lavender T, et al. . Understanding midwives’ preferences for providing information about newborn Bloodspot screening. MDM Policy Pract 2018;3. 10.1177/2381468317746170 PubMed DOI PMC
Loeber JG, Platis D, Zetterström RH, et al. . Neonatal screening in Europe Revisited: an ISNS perspective on the current state and developments since 2010. Int J Neonatal Screen 2021;7. 10.3390/ijns7010015 PubMed DOI PMC
Gray JAM, Patnick J, Blanks RG. Maximising benefit and minimising harm of screening. BMJ 2008;336:480–3. 10.1136/bmj.39470.643218.94 PubMed DOI PMC
la Marca G, Carling RS, Moat SJ, et al. . Current state and innovations in newborn screening: continuing to do good and avoid harm. Int J Neonatal Screen 2023;9. 10.3390/ijns9010015 PubMed DOI PMC
Hammond J, Klapwijk JE, Riedijk S, et al. . Assessing women’s preferences towards tests that may reveal uncertain results from prenatal Genomic testing: development of attributes for a discrete choice experiment, using a mixed-methods design. PLoS One 2022;17:e0261898. 10.1371/journal.pone.0261898 PubMed DOI PMC
Buchanan J, Hill M, Vass CM, et al. . Factors that impact on women’s Decision‐Making around Prenatal Genomic tests: an international discrete choice survey. Prenat Diagn 2022;42:934–46. 10.1002/pd.6159 PubMed DOI PMC
Hensher DA, Rose JM, Greene WH. In: Applied choice analysis. Cambridge, UK: Cambridge University Press, Available: https://www.cambridge.org/core/product/identifier/9781316136232/type/book [accessed 30 Apr 2015].
Hiligsmann M, van Durme C, Geusens P, et al. . Nominal group technique to select attributes for discrete choice experiments: an example for drug treatment choice in osteoporosis. Patient Prefer Adherence 2013;7:133–9. 10.2147/PPA.S38408 PubMed DOI PMC
Reed Johnson F, Lancsar E, Marshall D, et al. . Constructing experimental designs for discrete-choice experiments: report of the ISPOR conjoint analysis experimental design good research practices task force. Value Health 2013;16:3–13. 10.1016/j.jval.2012.08.2223 PubMed DOI
Bridges JFP, Hauber AB, Marshall D, et al. . Conjoint analysis applications in health--a checklist: a report of the ISPOR good research practices for conjoint analysis task force. Value Health 2011;14:403–13. 10.1016/j.jval.2010.11.013 PubMed DOI
Kessels R, Jones B, Goos P, et al. . An efficient algorithm for constructing Bayesian optimal choice designs. Journal of Business & Economic Statistics 2009;27:279–91. 10.1198/jbes.2009.0026 DOI
Louviere JJ, Islam T, Wasi N, et al. . Designing discrete choice experiments: do optimal designs come at a price J Consum Res 2008;35:360–75. 10.1086/586913 DOI
Marshall D, Bridges JFP, Hauber B, et al. . Conjoint analysis applications in health - how are studies being designed and reported?: an update on current practice in the published literature between 2005 and 2008. Patient 2010;3:249–56. 10.2165/11539650-000000000-00000 PubMed DOI
Louviere JJ, Hensher DA, Swait JD. In: Stated Choice Methods; analysis and application. Cambridge: Cambridge University Press, Available: https://www.cambridge.org/core/product/identifier/9780511753831/type/book
de Bekker-Grob EW, Donkers B, Jonker MF, et al. . Sample size requirements for discrete-choice experiments in Healthcare: a practical guide. Patient 2015;8:373–84. 10.1007/s40271-015-0118-z PubMed DOI PMC
de Bekker-Grob EW, Donkers B, Bliemer MCJ, et al. . Can Healthcare choice be predicted using stated preference data? Social Science & Medicine 2020;246. 10.1016/j.socscimed.2019.112736 PubMed DOI
Rose JM, Bliemer MJC. Constructing efficient stated choice experimental Desings. Transp Rev 2009;9:1–31.
Merlo G, van Driel M, Hall L. Systematic review and validity assessment of methods used in discrete choice experiments of primary Healthcare professionals. Health Econ Rev 2020;10. 10.1186/s13561-020-00295-8 PubMed DOI PMC
Annunziata MA, Muzzatti B, Altoè G. Defining hospital anxiety and depression scale (HADS) structure by Confirmatory factor analysis: a contribution to validation for Oncological settings. Ann Oncol 2011;22:2330–3. 10.1093/annonc/mdq750 PubMed DOI
Hinz A, Brähler E. Normative values for the hospital anxiety and depression scale (HADS) in the general German population. J Psychosom Res 2011;71:74–8. 10.1016/j.jpsychores.2011.01.005 PubMed DOI