The overlooked evolutionary dynamics of 16S rRNA revises its role as the "gold standard" for bacterial species identification
Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
MO1012
Ministry of Defence, Czech Republic
PubMed
38643216
PubMed Central
PMC11032355
DOI
10.1038/s41598-024-59667-3
PII: 10.1038/s41598-024-59667-3
Knihovny.cz E-resources
- MeSH
- Biological Evolution * MeSH
- Phylogeny MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Sequence Analysis, DNA MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- RNA, Ribosomal, 16S MeSH
The role of 16S rRNA has been and largely remains crucial for the identification of microbial organisms. Although 16S rRNA could certainly be described as one of the most studied sequences ever, the current view of it remains somewhat ambiguous. While some consider 16S rRNA to be a variable marker with resolution power down to the strain level, others consider them to be living fossils that carry information about the origin of domains of cellular life. We show that 16S rRNA is clearly an evolutionarily very rigid sequence, making it a largely unique and irreplaceable marker, but its applicability beyond the genus level is highly limited. Interestingly, it seems that the evolutionary rigidity is not driven by functional constraints of the sequence (RNA-protein interactions), but rather results from the characteristics of the host organism. Our results suggest that, at least in some lineages, Horizontal Gene Transfer (HGT) within genera plays an important role for the evolutionary non-dynamics (stasis) of 16S rRNA. Such genera exhibit an apparent lack of diversification at the 16S rRNA level in comparison to the rest of a genome. However, why it is limited specifically and solely to 16S rRNA remains enigmatic.
See more in PubMed
Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci.74, 5463–5467 (1977). 10.1073/pnas.74.12.5463 PubMed DOI PMC
Heather, J. M. & Chain, B. The sequence of sequencers: The history of sequencing DNA. Genomics107, 1–8 (2016). 10.1016/j.ygeno.2015.11.003 PubMed DOI PMC
Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc. Natl. Acad. Sci.74, 5088–5090 (1977). 10.1073/pnas.74.11.5088 PubMed DOI PMC
Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: Proposal for the domains archaea, bacteria, and eucarya. Proc. Natl. Acad. Sci.87, 4576–4579 (1990). 10.1073/pnas.87.12.4576 PubMed DOI PMC
Anda, M. et al. Bacteria can maintain rRNA operons solely on plasmids for hundreds of millions of years. Nat. Commun.14(1), 7232 (2023). 10.1038/s41467-023-42681-w PubMed DOI PMC
Olsen, G. J. & Woese, C. R. Ribosomal RNA: A key to phylogeny. FASEB J.7, 113–123 (1993). 10.1096/fasebj.7.1.8422957 PubMed DOI
Teng, F. et al. Impact of DNA extraction method and targeted 16S-rRNA hypervariable region on oral microbiota profiling. Sci. Rep.8 (2018). PubMed PMC
Johnson, J. S. et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun.10 (2019). PubMed PMC
Jeong, J. et al. The effect of taxonomic classification by full-length 16S rRNA sequencing with a synthetic long-read technology. Sci. Rep. 11 (2021). PubMed PMC
Hugenholtz, P., Chuvochina, M., Oren, A., Parks, D. H. & Soo, R. M. Prokaryotic taxonomy and nomenclature in the age of big sequence data. ISME J.15, 1879–1892 (2021). 10.1038/s41396-021-00941-x PubMed DOI PMC
Dueholm, M. K. D. et al. MiDAS 4: A global catalogue of full-length 16S rRNA gene sequences and taxonomy for studies of bacterial communities in wastewater treatment plants. Nat. Commun. 13 (2022). PubMed PMC
Zhang, J. et al. Phylogenetic analysis of Arthrospira strains from Ordos based on 16S rRNA. Sci. Rep. 12 (2022). PubMed PMC
Chen, Z. et al. Impact of preservation method and 16S rRNA hypervariable region on gut microbiota profiling. mSystems4, 13 (2019).10.1128/msystems.00271-18 PubMed DOI PMC
Shang, S., Chen, G., Wu, Y., Du, L. & Zhao, Z. Rapid diagnosis of bacterial sepsis with PCR amplification and microarray hybridization in 16S rRNA gene. Pediatr. Res.58, 143–148 (2005). 10.1203/01.PDR.0000169580.64191.8B PubMed DOI
Church, D. L. et al. Performance and application of 16S rRNA gene cycle sequencing for routine identification of bacteria in the clinical microbiology laboratory. Clin. Microbiol. Rev.33(4), 10–1128 (2020).10.1128/CMR.00053-19 PubMed DOI PMC
Cuénod, A., Foucault, F., Pflüger, V. & Egli, A. Factors associated with MALDI-TOF mass spectral quality of species identification in clinical routine diagnostics. Front. Cell. Infect. Microbiol. 11 (2021). PubMed PMC
Alizadeh, M. et al. MALDI–TOF mass spectroscopy applications in clinical microbiology. Adv. Pharmacol. Pharmaceut. Sci.2021, 1–8 (2021). PubMed PMC
Singhal, N., Kumar, M., Kanaujia, P. K. & Virdi, J. S. MALDI–TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 6 (2015). PubMed PMC
Lee, I., Ouk Kim, Y., Park, S. C. & Chun, J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evolut. Microbiol.66, 1100–1103 (2016).10.1099/ijsem.0.000760 PubMed DOI
Miyazaki, K. & Tomariguchi, N. Occurrence of randomly recombined functional 16S rRNA genes in Thermus thermophilus suggests genetic interoperability and promiscuity of bacterial 16S rRNAs. Sci. Rep.9, 11233 (2019). 10.1038/s41598-019-47807-z PubMed DOI PMC
Jain, R., Rivera, M. C. & Lake, J. A. Horizontal gene transfer among genomes: The complexity hypothesis. Proc. Natl. Acad. Sci.96, 3801–3806 (1999). 10.1073/pnas.96.7.3801 PubMed DOI PMC
Tian, R. M., Cai, L., Zhang, W. P., Cao, H. L. & Qian, P.-Y. Rare events of intragenus and intraspecies horizontal transfer of the 16S rRNA gene. Genome Biol. Evolut.7, 2310–2320 (2015).10.1093/gbe/evv143 PubMed DOI PMC
Kitahara, K., Yasutake, Y. & Miyazaki, K. Mutational robustness of 16S ribosomal RNA, shown by experimental horizontal gene transfer in Escherichia coli. Proc. Natl. Acad. Sci.109, 19220–19225 (2012). 10.1073/pnas.1213609109 PubMed DOI PMC
Schadt, E. E., Turner, S. & Kasarskis, A. A window into third-generation sequencing. Hum. Mol. Genet.19, R227–R240 (2010). 10.1093/hmg/ddq416 PubMed DOI
Colnaghi, M., Lane, N. & Pomiankowski, A. Repeat sequences limit the effectiveness of lateral gene transfer and favored the evolution of meiotic sex in early eukaryotes. Proc. Natl. Acad. Sci.119, 220504119 (2022).10.1073/pnas.2205041119 PubMed DOI PMC
Kitahara, K. & Miyazaki, K. Revisiting bacterial phylogeny. Mobile genetic. Elements3, e24210 (2013). PubMed PMC
Hassler, H. B. et al. Phylogenies of the 16S rRNA gene and its hypervariable regions lack concordance with core genome phylogenies. Microbiome10, 104 (2022). 10.1186/s40168-022-01295-y PubMed DOI PMC
Caudill, M. T. & Brayton, K. A. The use and limitations of the 16S rRNA sequence for species classification of anaplasma samples. Microorganisms10, 605 (2022). 10.3390/microorganisms10030605 PubMed DOI PMC
Higgs, P. G. Chemical evolution and the evolutionary definition of life. J. Mol. Evolut.84, 225–235 (2017).10.1007/s00239-017-9799-3 PubMed DOI
Roberts, E., Sethi, A., Montoya, J., Woese, C. R. & Luthey-Schulten, Z. Molecular signatures of ribosomal evolution. Proc. Natl. Acad. Sci.105, 13953–13958 (2008). 10.1073/pnas.0804861105 PubMed DOI PMC
Hsiao, C., Mohan, S., Kalahar, B. K. & Williams, L. D. Peeling the onion: Ribosomes are ancient molecular fossils. Mol. Biol. Evolut.26, 2415–2425 (2009).10.1093/molbev/msp163 PubMed DOI
Bowman, J. C., Petrov, A. S., Frenkel-Pinter, M., Penev, P. I. & Williams, L. D. Root of the tree: The significance, evolution, and origins of the ribosome. Chem. Rev.120, 4848–4878 (2020). 10.1021/acs.chemrev.9b00742 PubMed DOI
Pietromonaco, S. F., Hessler, R. A. & O’Brien, T. W. Evolution of proteins in mammalian cytoplasmic and mitochondrial ribosomes. J. Mol. Evolut.24, 110–117 (1986).10.1007/BF02099958 PubMed DOI
O’Brien, T. Properties of human mitochondrial ribosomes. IUBMB Life (International Union of Biochemistry and Molecular Biology: Life)55, 505–513 (2003). 10.1080/15216540310001626610 PubMed DOI
Petrov, A. S. et al. Structural patching fosters divergence of mitochondrial ribosomes. Mol. Biol. Evolut.36, 207–219 (2018).10.1093/molbev/msy221 PubMed DOI PMC
Kim, M., Oh, H. S., Park, S. C. & Chun, J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evolut. Microbiol.64, 346–351 (2014).10.1099/ijs.0.059774-0 PubMed DOI
Baldauf, S. L. Phylogeny for the faint of heart: A tutorial. Trends Genet.19, 345–351 (2003). 10.1016/S0168-9525(03)00112-4 PubMed DOI
Koonin, E. V. Systemic determinants of gene evolution and function. Mol. Syst. Biol.1 (2005). PubMed PMC
Alvarez-Ponce, D., Sabater-Muñoz, B., Toft, C., Ruiz-González, M. X. & Fares, M. A. Essentiality is a strong determinant of protein rates of evolution during mutation accumulation experiments in Escherichia coli. Genome Biol. Evolut.8, 2914–2927 (2016).10.1093/gbe/evw205 PubMed DOI PMC
Acinas, S. G., Marcelino, L. A., Klepac-Ceraj, V. & Polz, M. F. Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J. Bacteriol.186, 2629–2635 (2004). 10.1128/JB.186.9.2629-2635.2004 PubMed DOI PMC
Mano, S. & Innan, H. The evolutionary rate of duplicated genes under concerted evolution. Genetics180, 493–505 (2008). 10.1534/genetics.108.087676 PubMed DOI PMC
Espejo, R. T. & Plaza, N. Multiple ribosomal RNA operons in bacteria; their concerted evolution and potential consequences on the rate of evolution of their 16S rRNA. Front. Microbiol.9, 1232 (2018). 10.3389/fmicb.2018.01232 PubMed DOI PMC
Kimura, M. Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles. Genet. Res.11, 247–270 (1968). 10.1017/S0016672300011459 PubMed DOI
Ohta, T. The nearly neutral theory of molecular evolution. Ann. Rev. Ecol. Syst.23, 263–286 (1992).10.1146/annurev.es.23.110192.001403 DOI
Bosshard, L., Peischl, S., Ackermann, M. & Excoffier, L. Dissection of the mutation accumulation process during bacterial range expansions. BMC Genomics 21 (2020). PubMed PMC
Xia, X., Xie, Z., Salemi, M., Chen, L. & Wang, Y. An index of substitution saturation and its application. Mol. Phylogenet. Evolut.26, 1–7 (2003).10.1016/S1055-7903(02)00326-3 PubMed DOI
van Wolferen, M., Ajon, M., Driessen, A. J. M. & Albers, S.-V. How hyperthermophiles adapt to change their lives: DNA exchange in extreme conditions. Extremophiles17, 545–563 (2013). 10.1007/s00792-013-0552-6 PubMed DOI
Vos, M. The evolution of bacterial pathogens in the Anthropocene. Infect. Genet. Evolut.86, 104611 (2020).10.1016/j.meegid.2020.104611 PubMed DOI
Sessions, S. K. Genome size. In Brenner’s Encyclopedia of Genetics. 301–305 10.1016/b978-0-12-374984-0.00639-2 (2013).
Deagle, B. E., Jarman, S. N., Coissac, E., Pompanon, F. & Taberlet, P. DNA metabarcoding and the cytochrome c oxidase subunit I marker: Not a perfect match. Biol. Lett.10(9), 20140562 (2014). 10.1098/rsbl.2014.0562 PubMed DOI PMC
Sato, Y., Miya, M., Fukunaga, T., Sado, T. & Iwasaki, W. MitoFish and MiFish pipeline: A mitochondrial genome database of fish with an analysis pipeline for environmental DNA metabarcoding. Mol. Biol. Evolut.35(6), 1553–1555 (2018).10.1093/molbev/msy074 PubMed DOI PMC
Scornavacca, C. & Galtier, N. Incomplete lineage sorting in mammalian phylogenomics. Syst. Biol. syw082 (2016). PubMed
Kurylo, C. M. et al. Endogenous rRNA sequence variation can regulate stress response gene expression and phenotype. Cell Rep.25(1), 236–248 (2018). 10.1016/j.celrep.2018.08.093 PubMed DOI PMC
Ferretti, M. B. & Karbstein, K. Does functional specialization of ribosomes really exist?. RNA25(5), 521–538 (2019). 10.1261/rna.069823.118 PubMed DOI PMC
Barna, M. Ribosomes take control. Proc. Natl. Acad. Sci.110(1), 9–10 (2013). 10.1073/pnas.1218764110 PubMed DOI PMC
Lim, J. Y., Yoon, J. W. & Hovde, C. J. A brief overview of Escherichia coli O157: H7 and its plasmid O157. J. Microbiol. Biotechnol.20(1), 5 (2010). 10.4014/jmb.0908.08007 PubMed DOI PMC
Ameer, M. A., Wasey, A., & Salen, P.. Escherichia coli (E Coli 0157 H7) (2018). PubMed
Nearing, J. T., Comeau, A. M. & Langille, M. G. I. Identifying biases and their potential solutions in human microbiome studies. Microbiome9, 113 (2021). 10.1186/s40168-021-01059-0 PubMed DOI PMC
Santoyo, G. & Romero, D. Gene conversion and concerted evolution in bacterial genomes. FEMS Microbiol. Rev.29(2), 169–183 (2005). 10.1016/j.femsre.2004.10.004 PubMed DOI
Dover, G. Molecular drive. Trends Genet.18(11), 587–589 (2002). 10.1016/S0168-9525(02)02789-0 PubMed DOI