Novel Peptide-Based Fluorescent Probe for Simultaneous Sensing of Chymotrypsin and Hydrogen Peroxide

. 2024 Apr 16 ; 9 (15) : 17481-17490. [epub] 20240405

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38645371

The developed multifunctional fluorescent probe enables the simultaneous detection of chymotrypsin as a model protease and hydrogen peroxide as a representative of reactive oxygen species (ROS) in biologically relevant concentration ranges. The chymotrypsin sensing is based on the cleavage of its selectively recognizable peptide sequence and the consequent disruption of FRET between coumarin (DEAC) and fluorescein (FL). Analogously, the presence of hydrogen peroxide causes the gradual degradation of the H2O2-labile benzopyrylium-coumarin (BC) dye. Considering the fluorescence emission responses of individual chymotrypsin-peroxide probe-attached fluorophores after their excitation at 425 nm, the sole presence of either chymotrypsin (50-1000 ng/mL) or hydrogen peroxide (10-200 μM) in a sample could be unambiguously confirmed or refuted. In addition, reliable simultaneous detection and approximate quantification of both studied species in the concentration ranges of 100-1000 ng/mL and 20-200 μM for chymotrypsin and H2O2, respectively, could be performed as well. The obtained results are summarized and visualized in the graphical models.

Zobrazit více v PubMed

Cummings B. S.; Schnellmann R. G. Measurement of Cell Death in Mammalian Cells. Curr. Protoc. 2021, 1 (8), 206–211. 10.1002/cpz1.210. PubMed DOI

Choe Y.; Yu J. Y.; Son Y. O.; Park S. M.; Kim J. G.; Shi X.; Lee J. C. Continuously Generated H 2O 2 Stimulates the Proliferation and Osteoblastic Differentiation of Human Periodontal Ligament Fibroblasts. J. Cell. Biochem. 2012, 113 (4), 1426–1436. 10.1002/jcb.24017. PubMed DOI PMC

Nizami Z. N.; Aburawi H. E.; Semlali A.; Muhammad K.; Iratni R. Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence. Antioxidants 2023, 12 (6), 1159.10.3390/antiox12061159. PubMed DOI PMC

Giorgio M.; Trinei M.; Migliaccio E.; Pelicci P. G. Hydrogen Peroxide: A Metabolic by-Product or a Common Mediator of Ageing Signals?. Nat. Rev. Mol. Cell Biol. 2007, 8 (9), 722–728. 10.1038/nrm2240. PubMed DOI

Xiang J.; Wan C.; Guo R.; Guo D. Is Hydrogen Peroxide a Suitable Apoptosis Inducer for All Cell Types?. Biomed Res. Int. 2016, 2016, 1.10.1155/2016/7343965. PubMed DOI PMC

Goggins S.; Apsey E. A.; Mahon M. F.; Frost C. G. Ratiometric Electrochemical Detection of Hydrogen Peroxide and Glucose. Org. Biomol. Chem. 2017, 15 (11), 2459–2466. 10.1039/C7OB00211D. PubMed DOI

Jarza̧b A.; Stryjecka-Zimmer M. Oxidative Stress and Apoptosis. Ann. Univ. Mariae Curie-Sklodowska, Sect. B 2008, 63 (1), 67–71. 10.2478/v10079-008-0010-6. DOI

Wu Y.; Wang D.; Wang X.; Wang Y.; Ren F.; Chang D.; Chang Z.; Jia B.. Cellular Physiology and Biochemistry Biochemistry Caspase 3 Is Activated through Caspase 8 Instead of Caspase 9 during H 2 O 2 -Induced Apoptosis in HeLa Cells. 2011100084. PubMed

Tochigi M.; Inoue T.; Suzuki-Karasaki M.; Ochiai T.; Ra C.; Suzuki-Karasaki Y. Hydrogen Peroxide Induces Cell Death in Human TRAIL-Resistant Melanoma through Intracellular Superoxide Generation. Int. J. Oncol. 2013, 42 (3), 863–872. 10.3892/ijo.2013.1769. PubMed DOI

Wu T. T.; Li L. F.; Du R.; Jiang L.; Zhu Y. Q. Hydrogen Peroxide Induces Apoptosis in Human Dental Pulp Cells via Caspase-9 Dependent Pathway. J. Endod. 2013, 39 (9), 1151–1155. 10.1016/j.joen.2013.06.006. PubMed DOI

Yamakawa H.; Ito Y.; Naganawa T.; Banno Y.; Nakashima S.; Yoshimura S. I.; Sawada M.; Nishimura Y.; Nozawa Y.; Sakai N. Activation of Caspase-9 and −3 during H2O2-Induced Apoptosis of PC12 Cells Independent of Ceramide Formation. Neurol. Res. 2000, 22 (6), 556–564. 10.1080/01616412.2000.11740718. PubMed DOI

Aoshiba K.; Yasuda K.; Yasui S.; Tamaoki J.; Nagai A. Serine Proteases Increase Oxidative Stress in Lung Cells. Am. J. Physiol.: Lung Cell. Mol. Physiol. 2001, 281 (3 25–3), 556–564. 10.1152/ajplung.2001.281.3.l556. PubMed DOI

Senousy S. R.; Ahmed A. S. F.; Abdelhafeez D. A.; Khalifa M. M. A.; Abourehab M. A. S.; El-Daly M. Alpha-Chymotrypsin Protects Against Acute Lung, Kidney, and Liver Injuries and Increases Survival in CLP-Induced Sepsis in Rats Through Inhibition of TLR4/NF-KB Pathway. Drug Des., Dev. Ther. 2022, 16 (September), 3023–3039. 10.2147/DDDT.S370460. PubMed DOI PMC

Messina M. S.; Quargnali G.; Chang C. J. Activity-Based Sensing for Chemistry-Enabled Biology: Illuminating Principles, Probes, and Prospects for Boronate Reagents for Studying Hydrogen Peroxide. ACS Bio Med. Chem. Au 2022, 2 (6), 548–564. 10.1021/acsbiomedchemau.2c00052. PubMed DOI PMC

Giaretta J. E.; Duan H.; Oveissi F.; Farajikhah S.; Dehghani F.; Naficy S. Flexible Sensors for Hydrogen Peroxide Detection: A Critical Review. ACS Appl. Mater. Interfaces 2022, 14 (18), 20491–20505. 10.1021/acsami.1c24727. PubMed DOI PMC

Geng Y.; Wang Z.; Zhou J.; Zhu M.; Liu J.; James T. D. Recent Progress in the Development of Fluorescent Probes for Imaging Pathological Oxidative Stress. Chem. Soc. Rev. 2023, 52 (11), 3873–3926. 10.1039/D2CS00172A. PubMed DOI

Zheng D. J.; Yang Y. S.; Zhu H. L. Recent Progress in the Development of Small-Molecule Fluorescent Probes for the Detection of Hydrogen Peroxide. TrAC - Trends Anal. Chem. 2019, 118, 625–651. 10.1016/j.trac.2019.06.031. DOI

Nguyen V. N.; Ha J.; Cho M.; Li H.; Swamy K. M. K.; Yoon J. Recent Developments of BODIPY-Based Colorimetric and Fluorescent Probes for the Detection of Reactive Oxygen/Nitrogen Species and Cancer Diagnosis. Coord. Chem. Rev. 2021, 439, 21393610.1016/j.ccr.2021.213936. DOI

Ong I. L. H.; Yang K. L. Recent Developments in Protease Activity Assays and Sensors. Analyst 2017, 142 (11), 1867–1881. 10.1039/C6AN02647H. PubMed DOI

Rodriguez-Rios M.; Megia-Fernandez A.; Norman D. J.; Bradley M. Peptide Probes for Proteases - Innovations and Applications for Monitoring Proteolytic Activity. Chem. Soc. Rev. 2022, 51 (6), 2081–2120. 10.1039/D1CS00798J. PubMed DOI

Wu X.; Wang R.; Kwon N.; Ma H.; Yoon J. Activatable Fluorescent Probes for: In Situ Imaging of Enzymes. Chem. Soc. Rev. 2022, 51 (2), 450–463. 10.1039/D1CS00543J. PubMed DOI

Yang Y.; Gao F.; Wang Y.; Li H.; Zhang J.; Sun Z.; Jiang Y. Fluorescent Organic Small Molecule Probes for Bioimaging and Detection Applications. Molecules 2022, 27 (23), 8421.10.3390/molecules27238421. PubMed DOI PMC

Li L.; Wang J.; Xu S.; Li C.; Dong B. Recent Progress in Fluorescent Probes For Metal Ion Detection. Front. Chem. 2022, 10 (April), 1–15. 10.3389/fchem.2022.875241. PubMed DOI PMC

Qi Y. L.; Wang H. R.; Chen L. L.; Duan Y. T.; Yang S. Y.; Zhu H. L. Recent Advances in Small-Molecule Fluorescent Probes for Studying Ferroptosis. Chem. Soc. Rev. 2022, 51 (18), 7752–7778. 10.1039/D1CS01167G. PubMed DOI

Jun J. V.; Chenoweth D. M.; Petersson E. J. Rational Design of Small Molecule Fluorescent Probes for Biological Applications. Org. Biomol. Chem. 2020, 18 (30), 5747–5763. 10.1039/D0OB01131B. PubMed DOI PMC

Okorochenkova Y.; Porubský M.; Benická S.; Hlaváč J. A Novel Three-Fluorophore System as a Ratiometric Sensor for Multiple Protease Detection. Chem. Commun. 2018, 54 (55), 7589–7592. 10.1039/C8CC01731J. PubMed DOI

Milićević D.; Hlaváč J. Immobilized Fluorescent Probes for Simultaneous Multiple Protease Detection. Chemosensors 2021, 9 (6), 119.10.3390/chemosensors9060119. DOI

Milićević D.; Hlaváč J. Fluorescence-Based on-Resin Detection of Three Model Proteases. Chemosensors 2021, 9 (12), 359.10.3390/chemosensors9120359. DOI

Milićević D.; Hlaváč J. Triple-FRET Multi-Purpose Fluorescent Probe for Three-Protease Detection. RSC Adv. 2022, 12 (44), 28780–28787. 10.1039/D2RA05125G. PubMed DOI PMC

Porubský M.; Řezníčková E.; Křupková S.; Kryštof V.; Hlaváč J. Development of Fluorescent Dual-FRET Probe for Simultaneous Detection of Caspase-8 and Caspase-9 Activities and Their Relative Quantification. Bioorg. Chem. 2022, 129 (September), 10615110.1016/j.bioorg.2022.106151. PubMed DOI

Sanman L. E.; van der Linden W. A.; Verdoes M.; Bogyo M. Bifunctional Probes of Cathepsin Protease Activity and PH Reveal Alterations in Endolysosomal PH during Bacterial Infection. Cell Chem. Biol. 2016, 23 (7), 793–804. 10.1016/j.chembiol.2016.05.019. PubMed DOI PMC

Liu L.; You Y.; Zhou K.; Guo B.; Cao Z.; Zhao Y.; Wu H. C. A Dual-Response DNA Probe for Simultaneously Monitoring Enzymatic Activity and Environmental PH Using a Nanopore. Angew. Chem., Int. Ed. 2019, 58 (42), 14929–14934. 10.1002/anie.201907816. PubMed DOI

Suzuki M.; Husimi Y.; Komatsu H.; Suzuki K.; Douglas K. T. Quantum Dot FRET Biosensors That Respond to PH, to Proteolytic or Nucleolytic Cleavage, to DNA Synthesis, or to a Multiplexing Combination. J. Am. Chem. Soc. 2008, 130 (17), 5720–5725. 10.1021/ja710870e. PubMed DOI

Ma T.; Hou Y.; Zeng J.; Liu C.; Zhang P.; Jing L.; Shangguan D.; Gao M. Dual-Ratiometric Target-Triggered Fluorescent Probe for Simultaneous Quantitative Visualization of Tumor Microenvironment Protease Activity and PH in Vivo. J. Am. Chem. Soc. 2018, 140 (1), 211–218. 10.1021/jacs.7b08900. PubMed DOI

Shi Y.; Wu Q.; Li W.; Lin L.; Qu F.; Shen C.; Wei Y.; Nie P.; He Y.; Feng X. Ultra-Sensitive Detection of Hydrogen Peroxide and Levofloxacin Using a Dual-Functional Fluorescent Probe. J. Hazard. Mater. 2022, 432 (December 2021), 12860510.1016/j.jhazmat.2022.128605. PubMed DOI

Han J.; Liu X.; Xiong H.; Wang J.; Wang B.; Song X.; Wang W. Investigation of the Relationship between H2O2 and HClO in Living Cells by a Bifunctional, Dual-Ratiometric Responsive Fluorescent Probe. Anal. Chem. 2020, 92 (7), 5134–5142. 10.1021/acs.analchem.9b05604. PubMed DOI

Yuan L.; Lin W.; Xie Y.; Chen B.; Zhu S. Single Fluorescent Probe Responds to H 2O 2, NO, and H 2O 2/NO with Three Different Sets of Fluorescence Signals. J. Am. Chem. Soc. 2012, 134 (2), 1305–1315. 10.1021/ja2100577. PubMed DOI

Wang Y.; Li C.; Zhuo J.; Hui H.; Zhou B.; Tian J. The Detection of Divalent Iron and Reactive Oxygen Species During Ferroptosis with the Use of a Dual-Reaction Turn-On Fluorescent Probe. Mol. Imaging Biol. 2023, 25 (2), 423–434. 10.1007/s11307-022-01774-6. PubMed DOI

Peng H.; Wang T.; Li G.; Huang J.; Yuan Q. Dual-Locked Near-Infrared Fluorescent Probes for Precise Detection of Melanoma via Hydrogen Peroxide–Tyrosinase Cascade Activation. Anal. Chem. 2022, 94 (2), 1070–1075. 10.1021/acs.analchem.1c04058. PubMed DOI

Van De Bittner G. C.; Bertozzi C. R.; Chang C. J. Strategy for Dual-Analyte Luciferin Imaging: In Vivo Bioluminescence Detection of Hydrogen Peroxide and Caspase Activity in a Murine Model of Acute Inflammation. J. Am. Chem. Soc. 2013, 135 (5), 1783–1795. 10.1021/ja309078t. PubMed DOI PMC

Dong B.; Song X.; Kong X.; Wang C.; Tang Y.; Liu Y.; Lin W. Simultaneous Near-Infrared and Two-Photon In Vivo Imaging of H2O2Using a Ratiometric Fluorescent Probe Based on the Unique Oxidative Rearrangement of Oxonium. Adv. Mater. 2016, 28 (39), 8755–8759. 10.1002/adma.201602939. PubMed DOI

He G.; Guo D.; He C.; Zhang X.; Zhao X.; Duan C. A Color-Tunable Europium Complex Emitting Three Primary Colors and White Light. Angew. Chem., Int. Ed. 2009, 48 (33), 6132–6135. 10.1002/anie.200901266. PubMed DOI

Latha B.; Ramakrishnan M.; Jayaraman V.; Babu M. The Efficacy of Trypsin: Chymotrypsin Preparation in the Reduction of Oxidative Damage during Burn Injury. Burns 1998, 24 (6), 532–538. 10.1016/S0305-4179(98)00066-7. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...