Novel Peptide-Based Fluorescent Probe for Simultaneous Sensing of Chymotrypsin and Hydrogen Peroxide
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38645371
PubMed Central
PMC11024966
DOI
10.1021/acsomega.4c00303
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The developed multifunctional fluorescent probe enables the simultaneous detection of chymotrypsin as a model protease and hydrogen peroxide as a representative of reactive oxygen species (ROS) in biologically relevant concentration ranges. The chymotrypsin sensing is based on the cleavage of its selectively recognizable peptide sequence and the consequent disruption of FRET between coumarin (DEAC) and fluorescein (FL). Analogously, the presence of hydrogen peroxide causes the gradual degradation of the H2O2-labile benzopyrylium-coumarin (BC) dye. Considering the fluorescence emission responses of individual chymotrypsin-peroxide probe-attached fluorophores after their excitation at 425 nm, the sole presence of either chymotrypsin (50-1000 ng/mL) or hydrogen peroxide (10-200 μM) in a sample could be unambiguously confirmed or refuted. In addition, reliable simultaneous detection and approximate quantification of both studied species in the concentration ranges of 100-1000 ng/mL and 20-200 μM for chymotrypsin and H2O2, respectively, could be performed as well. The obtained results are summarized and visualized in the graphical models.
Zobrazit více v PubMed
Cummings B. S.; Schnellmann R. G. Measurement of Cell Death in Mammalian Cells. Curr. Protoc. 2021, 1 (8), 206–211. 10.1002/cpz1.210. PubMed DOI
Choe Y.; Yu J. Y.; Son Y. O.; Park S. M.; Kim J. G.; Shi X.; Lee J. C. Continuously Generated H 2O 2 Stimulates the Proliferation and Osteoblastic Differentiation of Human Periodontal Ligament Fibroblasts. J. Cell. Biochem. 2012, 113 (4), 1426–1436. 10.1002/jcb.24017. PubMed DOI PMC
Nizami Z. N.; Aburawi H. E.; Semlali A.; Muhammad K.; Iratni R. Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence. Antioxidants 2023, 12 (6), 1159.10.3390/antiox12061159. PubMed DOI PMC
Giorgio M.; Trinei M.; Migliaccio E.; Pelicci P. G. Hydrogen Peroxide: A Metabolic by-Product or a Common Mediator of Ageing Signals?. Nat. Rev. Mol. Cell Biol. 2007, 8 (9), 722–728. 10.1038/nrm2240. PubMed DOI
Xiang J.; Wan C.; Guo R.; Guo D. Is Hydrogen Peroxide a Suitable Apoptosis Inducer for All Cell Types?. Biomed Res. Int. 2016, 2016, 1.10.1155/2016/7343965. PubMed DOI PMC
Goggins S.; Apsey E. A.; Mahon M. F.; Frost C. G. Ratiometric Electrochemical Detection of Hydrogen Peroxide and Glucose. Org. Biomol. Chem. 2017, 15 (11), 2459–2466. 10.1039/C7OB00211D. PubMed DOI
Jarza̧b A.; Stryjecka-Zimmer M. Oxidative Stress and Apoptosis. Ann. Univ. Mariae Curie-Sklodowska, Sect. B 2008, 63 (1), 67–71. 10.2478/v10079-008-0010-6. DOI
Wu Y.; Wang D.; Wang X.; Wang Y.; Ren F.; Chang D.; Chang Z.; Jia B.. Cellular Physiology and Biochemistry Biochemistry Caspase 3 Is Activated through Caspase 8 Instead of Caspase 9 during H 2 O 2 -Induced Apoptosis in HeLa Cells. 2011100084. PubMed
Tochigi M.; Inoue T.; Suzuki-Karasaki M.; Ochiai T.; Ra C.; Suzuki-Karasaki Y. Hydrogen Peroxide Induces Cell Death in Human TRAIL-Resistant Melanoma through Intracellular Superoxide Generation. Int. J. Oncol. 2013, 42 (3), 863–872. 10.3892/ijo.2013.1769. PubMed DOI
Wu T. T.; Li L. F.; Du R.; Jiang L.; Zhu Y. Q. Hydrogen Peroxide Induces Apoptosis in Human Dental Pulp Cells via Caspase-9 Dependent Pathway. J. Endod. 2013, 39 (9), 1151–1155. 10.1016/j.joen.2013.06.006. PubMed DOI
Yamakawa H.; Ito Y.; Naganawa T.; Banno Y.; Nakashima S.; Yoshimura S. I.; Sawada M.; Nishimura Y.; Nozawa Y.; Sakai N. Activation of Caspase-9 and −3 during H2O2-Induced Apoptosis of PC12 Cells Independent of Ceramide Formation. Neurol. Res. 2000, 22 (6), 556–564. 10.1080/01616412.2000.11740718. PubMed DOI
Aoshiba K.; Yasuda K.; Yasui S.; Tamaoki J.; Nagai A. Serine Proteases Increase Oxidative Stress in Lung Cells. Am. J. Physiol.: Lung Cell. Mol. Physiol. 2001, 281 (3 25–3), 556–564. 10.1152/ajplung.2001.281.3.l556. PubMed DOI
Senousy S. R.; Ahmed A. S. F.; Abdelhafeez D. A.; Khalifa M. M. A.; Abourehab M. A. S.; El-Daly M. Alpha-Chymotrypsin Protects Against Acute Lung, Kidney, and Liver Injuries and Increases Survival in CLP-Induced Sepsis in Rats Through Inhibition of TLR4/NF-KB Pathway. Drug Des., Dev. Ther. 2022, 16 (September), 3023–3039. 10.2147/DDDT.S370460. PubMed DOI PMC
Messina M. S.; Quargnali G.; Chang C. J. Activity-Based Sensing for Chemistry-Enabled Biology: Illuminating Principles, Probes, and Prospects for Boronate Reagents for Studying Hydrogen Peroxide. ACS Bio Med. Chem. Au 2022, 2 (6), 548–564. 10.1021/acsbiomedchemau.2c00052. PubMed DOI PMC
Giaretta J. E.; Duan H.; Oveissi F.; Farajikhah S.; Dehghani F.; Naficy S. Flexible Sensors for Hydrogen Peroxide Detection: A Critical Review. ACS Appl. Mater. Interfaces 2022, 14 (18), 20491–20505. 10.1021/acsami.1c24727. PubMed DOI PMC
Geng Y.; Wang Z.; Zhou J.; Zhu M.; Liu J.; James T. D. Recent Progress in the Development of Fluorescent Probes for Imaging Pathological Oxidative Stress. Chem. Soc. Rev. 2023, 52 (11), 3873–3926. 10.1039/D2CS00172A. PubMed DOI
Zheng D. J.; Yang Y. S.; Zhu H. L. Recent Progress in the Development of Small-Molecule Fluorescent Probes for the Detection of Hydrogen Peroxide. TrAC - Trends Anal. Chem. 2019, 118, 625–651. 10.1016/j.trac.2019.06.031. DOI
Nguyen V. N.; Ha J.; Cho M.; Li H.; Swamy K. M. K.; Yoon J. Recent Developments of BODIPY-Based Colorimetric and Fluorescent Probes for the Detection of Reactive Oxygen/Nitrogen Species and Cancer Diagnosis. Coord. Chem. Rev. 2021, 439, 21393610.1016/j.ccr.2021.213936. DOI
Ong I. L. H.; Yang K. L. Recent Developments in Protease Activity Assays and Sensors. Analyst 2017, 142 (11), 1867–1881. 10.1039/C6AN02647H. PubMed DOI
Rodriguez-Rios M.; Megia-Fernandez A.; Norman D. J.; Bradley M. Peptide Probes for Proteases - Innovations and Applications for Monitoring Proteolytic Activity. Chem. Soc. Rev. 2022, 51 (6), 2081–2120. 10.1039/D1CS00798J. PubMed DOI
Wu X.; Wang R.; Kwon N.; Ma H.; Yoon J. Activatable Fluorescent Probes for: In Situ Imaging of Enzymes. Chem. Soc. Rev. 2022, 51 (2), 450–463. 10.1039/D1CS00543J. PubMed DOI
Yang Y.; Gao F.; Wang Y.; Li H.; Zhang J.; Sun Z.; Jiang Y. Fluorescent Organic Small Molecule Probes for Bioimaging and Detection Applications. Molecules 2022, 27 (23), 8421.10.3390/molecules27238421. PubMed DOI PMC
Li L.; Wang J.; Xu S.; Li C.; Dong B. Recent Progress in Fluorescent Probes For Metal Ion Detection. Front. Chem. 2022, 10 (April), 1–15. 10.3389/fchem.2022.875241. PubMed DOI PMC
Qi Y. L.; Wang H. R.; Chen L. L.; Duan Y. T.; Yang S. Y.; Zhu H. L. Recent Advances in Small-Molecule Fluorescent Probes for Studying Ferroptosis. Chem. Soc. Rev. 2022, 51 (18), 7752–7778. 10.1039/D1CS01167G. PubMed DOI
Jun J. V.; Chenoweth D. M.; Petersson E. J. Rational Design of Small Molecule Fluorescent Probes for Biological Applications. Org. Biomol. Chem. 2020, 18 (30), 5747–5763. 10.1039/D0OB01131B. PubMed DOI PMC
Okorochenkova Y.; Porubský M.; Benická S.; Hlaváč J. A Novel Three-Fluorophore System as a Ratiometric Sensor for Multiple Protease Detection. Chem. Commun. 2018, 54 (55), 7589–7592. 10.1039/C8CC01731J. PubMed DOI
Milićević D.; Hlaváč J. Immobilized Fluorescent Probes for Simultaneous Multiple Protease Detection. Chemosensors 2021, 9 (6), 119.10.3390/chemosensors9060119. DOI
Milićević D.; Hlaváč J. Fluorescence-Based on-Resin Detection of Three Model Proteases. Chemosensors 2021, 9 (12), 359.10.3390/chemosensors9120359. DOI
Milićević D.; Hlaváč J. Triple-FRET Multi-Purpose Fluorescent Probe for Three-Protease Detection. RSC Adv. 2022, 12 (44), 28780–28787. 10.1039/D2RA05125G. PubMed DOI PMC
Porubský M.; Řezníčková E.; Křupková S.; Kryštof V.; Hlaváč J. Development of Fluorescent Dual-FRET Probe for Simultaneous Detection of Caspase-8 and Caspase-9 Activities and Their Relative Quantification. Bioorg. Chem. 2022, 129 (September), 10615110.1016/j.bioorg.2022.106151. PubMed DOI
Sanman L. E.; van der Linden W. A.; Verdoes M.; Bogyo M. Bifunctional Probes of Cathepsin Protease Activity and PH Reveal Alterations in Endolysosomal PH during Bacterial Infection. Cell Chem. Biol. 2016, 23 (7), 793–804. 10.1016/j.chembiol.2016.05.019. PubMed DOI PMC
Liu L.; You Y.; Zhou K.; Guo B.; Cao Z.; Zhao Y.; Wu H. C. A Dual-Response DNA Probe for Simultaneously Monitoring Enzymatic Activity and Environmental PH Using a Nanopore. Angew. Chem., Int. Ed. 2019, 58 (42), 14929–14934. 10.1002/anie.201907816. PubMed DOI
Suzuki M.; Husimi Y.; Komatsu H.; Suzuki K.; Douglas K. T. Quantum Dot FRET Biosensors That Respond to PH, to Proteolytic or Nucleolytic Cleavage, to DNA Synthesis, or to a Multiplexing Combination. J. Am. Chem. Soc. 2008, 130 (17), 5720–5725. 10.1021/ja710870e. PubMed DOI
Ma T.; Hou Y.; Zeng J.; Liu C.; Zhang P.; Jing L.; Shangguan D.; Gao M. Dual-Ratiometric Target-Triggered Fluorescent Probe for Simultaneous Quantitative Visualization of Tumor Microenvironment Protease Activity and PH in Vivo. J. Am. Chem. Soc. 2018, 140 (1), 211–218. 10.1021/jacs.7b08900. PubMed DOI
Shi Y.; Wu Q.; Li W.; Lin L.; Qu F.; Shen C.; Wei Y.; Nie P.; He Y.; Feng X. Ultra-Sensitive Detection of Hydrogen Peroxide and Levofloxacin Using a Dual-Functional Fluorescent Probe. J. Hazard. Mater. 2022, 432 (December 2021), 12860510.1016/j.jhazmat.2022.128605. PubMed DOI
Han J.; Liu X.; Xiong H.; Wang J.; Wang B.; Song X.; Wang W. Investigation of the Relationship between H2O2 and HClO in Living Cells by a Bifunctional, Dual-Ratiometric Responsive Fluorescent Probe. Anal. Chem. 2020, 92 (7), 5134–5142. 10.1021/acs.analchem.9b05604. PubMed DOI
Yuan L.; Lin W.; Xie Y.; Chen B.; Zhu S. Single Fluorescent Probe Responds to H 2O 2, NO, and H 2O 2/NO with Three Different Sets of Fluorescence Signals. J. Am. Chem. Soc. 2012, 134 (2), 1305–1315. 10.1021/ja2100577. PubMed DOI
Wang Y.; Li C.; Zhuo J.; Hui H.; Zhou B.; Tian J. The Detection of Divalent Iron and Reactive Oxygen Species During Ferroptosis with the Use of a Dual-Reaction Turn-On Fluorescent Probe. Mol. Imaging Biol. 2023, 25 (2), 423–434. 10.1007/s11307-022-01774-6. PubMed DOI
Peng H.; Wang T.; Li G.; Huang J.; Yuan Q. Dual-Locked Near-Infrared Fluorescent Probes for Precise Detection of Melanoma via Hydrogen Peroxide–Tyrosinase Cascade Activation. Anal. Chem. 2022, 94 (2), 1070–1075. 10.1021/acs.analchem.1c04058. PubMed DOI
Van De Bittner G. C.; Bertozzi C. R.; Chang C. J. Strategy for Dual-Analyte Luciferin Imaging: In Vivo Bioluminescence Detection of Hydrogen Peroxide and Caspase Activity in a Murine Model of Acute Inflammation. J. Am. Chem. Soc. 2013, 135 (5), 1783–1795. 10.1021/ja309078t. PubMed DOI PMC
Dong B.; Song X.; Kong X.; Wang C.; Tang Y.; Liu Y.; Lin W. Simultaneous Near-Infrared and Two-Photon In Vivo Imaging of H2O2Using a Ratiometric Fluorescent Probe Based on the Unique Oxidative Rearrangement of Oxonium. Adv. Mater. 2016, 28 (39), 8755–8759. 10.1002/adma.201602939. PubMed DOI
He G.; Guo D.; He C.; Zhang X.; Zhao X.; Duan C. A Color-Tunable Europium Complex Emitting Three Primary Colors and White Light. Angew. Chem., Int. Ed. 2009, 48 (33), 6132–6135. 10.1002/anie.200901266. PubMed DOI
Latha B.; Ramakrishnan M.; Jayaraman V.; Babu M. The Efficacy of Trypsin: Chymotrypsin Preparation in the Reduction of Oxidative Damage during Burn Injury. Burns 1998, 24 (6), 532–538. 10.1016/S0305-4179(98)00066-7. PubMed DOI