Reaction Mechanism and Performance of Innovative 2D Germanane-Silicane Alloys: SixGe1- xH Electrodes in Lithium-Ion Batteries
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
101064653
European Union's Horizon 2021
101063410
European Union's Horizon 2021
22A0116
Research Foundation of Education Bureau of Hunan Province, China
2024JJ2050
Research Foundation of Education Bureau of Hunan Province, China
LL2101
Ministry of Education Youth and Sports
CZ.02.01.01/00/22_008/0004558
European Union
PubMed
38647404
PubMed Central
PMC11199986
DOI
10.1002/advs.202308955
Knihovny.cz E-zdroje
- Klíčová slova
- 2D materials, DTF calculation, lithium‐ion batteries, reaction mechanisms, silicane‐germanane alloys,
- Publikační typ
- časopisecké články MeSH
The adjustable structures and remarkable physicochemical properties of 2D monoelemental materials, such as silicene and germanene, have attracted significant attention in recent years. They can be transformed into silicane (SiH) and germanane (GeH) through covalent functionalization via hydrogen atom termination. However, synthesizing these materials with a scalable and low-cost fabrication process to achieve high-quality 2D SiH and GeH poses challenges. Herein, groundbreaking 2D SiH and GeH materials with varying compositions, specifically Si0.25Ge0.75H, Si0.50Ge0.50H, and Si0.75Ge0.25H, are prepared through a simple and efficient chemical exfoliation of their Zintl phases. These 2D materials offer significant advantages, including their large surface area, high mechanical flexibility, rapid electron mobility, and defect-rich loose-layered structures. Among these compositions, the Si0.50Ge0.50H electrode demonstrates the highest discharge capacity, reaching up to 1059 mAh g-1 after 60 cycles at a current density of 75 mA g-1. A comprehensive ex-situ electrochemical analysis is conducted to investigate the reaction mechanisms of lithiation/delithiation in Si0.50Ge0.50H. Subsequently, an initial assessment of the c-Li15(SixGe1- x)4 phase after lithiation and the a-Si0.50Ge0.50 phase after delithiation is presented. Hence, this study contributes crucial insights into the (de)lithiation reaction mechanisms within germanane-silicane alloys. Such understanding is pivotal for mastering promising materials that amalgamate the finest properties of silicon and germanium.
Institute of Micro Nano Materials and Devices Ningbo University of Technology Ningbo 315211 China
School of Materials Science and Engineering Xiangtan University Xiangtan 411105 China
School of Physics Xi'an Jiaotong University Xi'an 710049 China
Zobrazit více v PubMed
Li X., Liang J., Hou Z., Zhang W., Wang Y., Zhu Y., Qian Y., J. Power Sources 2015, 293, 868.
Wang J., Huang W., Kim Y. S., Jeong Y. K., Kim S. C., Heo J., Lee H. K., Liu B., Nah J., Cui Y., Nano Res. 2020, 13, 1558.
Zhou J., Zhou Y., Zhang X., Cheng L., Qian M., Wei W., Wang H., Nanoscale 2020, 12, 79. PubMed
Zhang Q., Chen H., Luo L., Zhao B., Luo H., Han X., Wang J., Wang C., Yang Y., Zhu T., Liu M., Energy Environ. Sci. 2018, 11, 669.
Liu S., Feng J., Bian X., Qian Y., Liu J., Xu H., Nano Energy 2015, 13, 651.
Xiao X., Li X., Zheng S., Shao J., Xue H., Pang H., Adv. Mater. Interfaces 2017, 4, 1600798.
Arro C. R., Mohamed A. T. I., Bensalah N., Mater. Today Commun. 2022, 30, 103151.
Liu Y., Zhang S., Zhu T., ChemElectroChem 2014, 1, 706.
Bensalah N., Kamand F. Z., Mustafa N., Matalqeh M., J. Alloys Compd 2019, 811, 152088.
Peng J., Li W., Wu Z., Li H., Zeng P., Chen G., Chang B., Zhang X., Wang X., Sustain. Mater. and Technol. 2022, 32, e00410.
Loaiza L. C., Monconduit L., Seznec V., Batter. and Supercaps 2020, 3, 417.
Zhang W., Sun L., Nsanzimana J. M. V., Wang X., Adv. Mater. 2018, 30, 1705523. PubMed
Liu N., Xu K., Lei Y., Xi Y., Liu Y., Wang N., Wang Y.‐X., Xu X., Hao W., Dou S. X., Du Y., Small Struct. 2021, 2, 2100041.
Wang J., Li J., Li S.‐S., Liu Y., J. Appl. Phys. 2013, 114, 124309.
Bianco E., Butler S., Jiang S., Restrepo O. D., Windl W., Goldberger J. E., ACS Nano 2013, 7, 4414. PubMed
Nakamura D., Nakano H., Chem. Mater. 2018, 30, 5333.
Hartman T., Šturala J., Luxa J., Sofer Z., ACS Nano 2020, 14, 7319. PubMed
Sturala J., Luxa J., Matějková S., Plutnar J., Hartman T., Pumera M., Sofer Z., Chem. Mater. 2019, 31, 10126.
Cadogan J. M., Ryan D. H., Rejali R., Boyer C. D., J. Alloys Compd. 2016, 688, 51.
Yaokawa R., Nagoya A., Nakano H., J. Solid State Chem. 2021, 295, 121919.
Stokes K., Flynn G., Geaney H., Bree G., Ryan K. M., Nano Lett. 2018, 18, 5569. PubMed
Chen H., Zheng Y., Wu Q., Zhou W., Wei Q., Wei M., Electrochim. Acta 2022, 417, 140337.
Stokes K., Geaney H., Flynn G., Sheehan M., Kennedy T., Ryan K. M., ACS Nano 2017, 11, 10088. PubMed
Chen X., Loaiza L. C., Monconduit L., Seznec V., ACS Appl. Energy Mater. 2021, 4, 12552.
Duveau D., Fraisse B., Cunin F., Monconduit L., Chem. Mater. 2015, 27, 3226.
Guilhon I., Teles L. K., Marques M., Pela R. R., Bechstedt F., Phys. Rev. B 2015, 92, 075435.
Jamdagni P., Kumar A., Thakur A., Pandey R., Ahluwalia P. K., Mater. Res. Express 2015, 2, 016301.
Xia N., Yuan L.‐F., Yang J., Theor. Chem. Acc. 2014, 133, 1535.
Serino A. C., Ko J. S., Yeung M. T., Schwartz J. J., Kang C. B., Tolbert S. H., Kaner R. B., Dunn B. S., Weiss P. S., ACS Nano 2017, 11, 7995. PubMed
Loaiza L. C., Dupré N., Davoisne C., Madec L., Monconduit L., Seznec V., J. Electrochem. Soc. 2021, 168, 010510.
Bhuvaneswari R., Nagarajan V., Chandiramouli R., Mater. Res. Express 2018, 6, 035504.
Mortazavi B., Dianat A., Cuniberti G., Rabczuk T., Electrochim. Acta 2016, 213, 865.
Lim L. Y., Liu N., Cui Y., Toney M. F., Chem. Mater. 2014, 26, 3739.
An Y., Tian Y., Wei C., Zhang Y., Xiong S., Feng J., Qian Y., Energy Storage Mater. 2020, 32, 115.
Lin L., Xu X., Chu C., Majeed M. K., Yang J., Angew. Chem. 2016, 128, 14269. PubMed
Su A., Li J., Dong J., Yang D., Chen G., Wei Y., Small 2020, 16, 2001714. PubMed
Li X., Meng X., Liu J., Geng D., Zhang Y., Banis M. N., Li Y., Yang J., Li R., Sun X., Cai M., Verbrugge M. W., Adv. Funct. Mater. 2012, 22, 1647.
McDowell M. T., Lee S. W., Harris J. T., Korgel B. A., Wang C., Nix W. D., Cui Y., Nano Lett. 2013, 13, 758. PubMed
Chevrier V. L., Dahn J. R., J. Electrochem. Soc. 2009, 156, A454.
Legrain F., Malyi O. I., Manzhos S., Comput. Mater. Sci. 2014, 94, 214.
Casimir H. B. G., Wang Z., Fan S., Yu Z., Fan S., Kamal A., Clarke J., Devoret M. H., Kodera T., Sounas D. L., Caloz C., Kang M. S., Butsch A., Russell P. S. J., Lira H., Yu Z., Fan S., Lipson M., Sounas D. L., Caloz C., Lepri S., Casati G., Luo C., Joannopoulos J. D., Fan S., Shadrivov I. V, Fedotov V. A., Powell D. A., Kivshar Y. S., Zheludev N. I., et al., Science 2014, 343, 519. PubMed
Chen Q., Liang L., Potsi G., Wan P., Lu J., Giousis T., Thomou E., Gournis D., Rudolf P., Ye J., Nano Lett. 2019, 19, 1520. PubMed PMC
Yan P., Ji L., Liu X., Guan Q., Guo J., Shen Y., Zhang H., Wei W., Cui X., Xu Q., Nano Energy 2021, 86, 106139.
An Y., Tian Y., Wei C., Jiang H., Xi B., Xiong S., Feng J., Qian Y., ACS Nano 2019, 13, 13690. PubMed
Jiang Y., Zhang D., Li Y., Yuan T., Bahlawane N., Liang C., Sun W., Lu Y., Yan M., Nano Energy 2014, 4, 23.
Konečný J., Hartman T., Antonatos N., Mazánek V., Sofer Z., Sturala J., FlatChem 2022, 33, 100354.
Vogg G., Meyer A. J. P., Miesner C., Brandt M. S., Stutzmann M., Appl. Phys. Lett. 2001, 78, 3956.
Ng S., Sturala J., Vyskocil J., Lazar P., Martincova J., Plutnar J., Pumera M., ACS Nano 2021, 15, 11681. PubMed
Ledina M. A., Bui N., Liang X., Kim Y.‐G., Jung J., Perdue B., Tsang C., Drnec J., Carlà F., Soriaga M. P., Reber T. J., Stickney J. L., J. Electrochem. Soc. 2017, 164, D469.
Jiang S., Bianco E., Goldberger J. E., J. Mater. Chem. C 2014, 2, 3185.
Jiang S., Krymowski K., Asel T., Arguilla M. Q., Cultrara N. D., Yanchenko E., Yang X., Brillson L. J., Windl W., Goldberger J. E., Chem. Mater. 2016, 28, 8071.
Lu Y., Yao X., Yin J., Peng G., Cui P., Xu X., RSC Adv. 2015, 5, 7938.
Johnson E. V., Kroely L., Roca i Cabarrocas P., Sol. Energy Mater. Sol. Cells 2009, 93, 1904.
Li M., Zhou Q., Ren C., Shen N., Chen Q., Zhao J., Guo C., Zhang L., Li J., Nanoscale 2019, 11, 22550. PubMed
Liu R., Luo F., Zeng L., Liu J., Xu L., He X., Xu Q., Huang B., Qian Q., Wei M., Chen Q., J. Colloid Interface Sci. 2021, 584, 372. PubMed
Arnot D. J., Li W., Bock D. C., Stackhouse C. A., Tong X., Head A. R., Takeuchi E. S., Takeuchi K. J., Yan S., Wang L., Marschilok A. C., Adv. Mater. Interfaces 2022, 9, 2102238.
Dominguez D. Z, Berhaut C. L., Kumar P., Jouneau P.‐H., Desrues A., Herlin‐Boime N., Boudet N., Blanc N., Chahine G. A., Haon C., Tardif S., Lyonnard S., Pouget S., J. Mater. Chem. A 2023, 11, 19025.
Li W., Sun X., Yu Y., Small Methods 2017, 13, 160037.
Fang S., Shen L., Li S., Kim G. T., Bresser D., Zhang H., Zhang X., Maier J., Passerini S., ACS Nano 2019, 13, 9511. PubMed
Gogotsi Y., Penner R. M., ACS Nano 2018, 12, 2081. PubMed
McDowell M. T., Lee S. W., Nix W. D., Cui Y., Adv. Mater. 2013, 25, 4966. PubMed
Tsai H. S., Chen Y. Z., Medina H., Su T. Y., Chou T. S., Chen Y. H., Chueh Y. L., Liang J. H., Phys. Chem. Chem. Phys. 2015, 17, 21389. PubMed
Zhang X.‐P., Sun Y.‐Y., Sun Z., Yang C.‐S., Zhang T., Nat. Commun. 2019, 10, 3543. PubMed PMC
Wood K. N., Teeter G., ACS Appl. Energy Mater. 2018, 1, 4493.
Duan H., You Y., Wang G., Ou X., Wen J., Huang Q., Lyu P., Liang Y., Li Q., Huang J., Wang Y. X., Liu H. K., Dou S. X., Lai W. H., Nano‐Micro Lett. 2024, 16, 78. PubMed PMC
Rezqita A., Sauer M., Foelske A., Kronberger H., Trifonova A., Electrochim. Acta 2017, 247, 600.
Park H., Choi S., Lee S., Hwang G., Choi N. S., Park S., J. Mater. Chem. A 2015, 3, 1325.
Yao K. P. C., Kwabi D. G., Quinlan R. A., Mansour A. N., Grimaud A., Lee Y.‐L., Lu Y.‐C., Shao‐Horn Y., J. Electrochem. Soc. 2013, 160, A824.
Xiao W., Zhou J., Yu L., Wang D., Lou X. W. D., Angew. Chem. 2016, 128, 7553. PubMed
Bensalah N., Matalkeh M., Mustafa N. K., Merabet H., Phys. Status Solidi A 2020, 217, 1900414.
Jahel A., Darwiche A., Matei Ghimbeu C., Vix‐Guterl C., Monconduit L., J. Power Sources 2014, 269, 755.
Liang W., Yang H., Fan F., Liu Y., Liu X. H., Huang J. Y., Zhu T., Zhang S., ACS Nano 2013, 7, 3427. PubMed
Baggetto L., Notten P. H. L., J. Electrochem. Soc. 2009, 156, A169.
Klavetter K. C., Wood S. M., Lin Y.‐M., Snider J. L., Davy N. C., Chockla A. M., Romanovicz D. K., Korgel B. A., Lee J.‐W., Heller A., Mullins C. B., J. Power Sources 2013, 238, 123.
Gao P., Wu H., Liu W., Tian S., Mu J., Miao Z., Zhou P., Zhang H., Zhou T., Zhou J., J. Energy Chem. 2023, 79, 222.
Liao S.‐Y., Cui T.‐T., Zhang S.‐Y., Cai J.‐J., Zheng F., Liu Y.‐D., Min Y.‐G., Electrochim. Acta 2019, 326, 134992.
Yang Y., Liu S., Bian X., Feng J., An Y., Yuan C., ACS Nano 2018, 12, 2900. PubMed
Zhang Y., Du N., Xiao C., Wu S., Chen Y., Lin Y., Jiang J., He Y., Yang D., RSC Adv. 2017, 7, 33837.
Zhang H., Li J., RSC Adv. 2023, 13, 2672. PubMed PMC
Loaiza L. C., Salager E., Louvain N., Boulaoued A., Iadecola A., Johansson P., Stievano L., Seznec V., Monconduit L., J. Mater. Chem. A 2017, 5, 12462.
Bermejo D., Cardona M., J. Non‐Cryst. Solids 1978, 32, 405.
Li H., He Y., Dai Y., Ren Y., Gao T., Zhou G., Chem. Eng. J. 2022, 427, 131784.
Shen C., Fang X., Ge M., Zhang A., Liu Y., Ma Y., Mecklenburg M., Nie X., Zhou C., ACS Nano 2018, 12, 6280. PubMed
Vargas−Hernández R. A., J. Phys. Chem. A 1996, 124, 4053. PubMed
Kresse G., Joubert D., Phys. Rev. B 1999, 59, 1758.
Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett. 1996, 77, 3865. PubMed
Grimme S., Antony J., Ehrlich S., Krieg H., J. Chem. Phys. 2010, 132, 154104. PubMed
Henkelman G., Jónsson H., J. Chem. Phys. 2000, 113, 9978.