Reaction Mechanism and Performance of Innovative 2D Germanane-Silicane Alloys: SixGe1- xH Electrodes in Lithium-Ion Batteries

. 2024 Jun ; 11 (24) : e2308955. [epub] 20240422

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38647404

Grantová podpora
101064653 European Union's Horizon 2021
101063410 European Union's Horizon 2021
22A0116 Research Foundation of Education Bureau of Hunan Province, China
2024JJ2050 Research Foundation of Education Bureau of Hunan Province, China
LL2101 Ministry of Education Youth and Sports
CZ.02.01.01/00/22_008/0004558 European Union

The adjustable structures and remarkable physicochemical properties of 2D monoelemental materials, such as silicene and germanene, have attracted significant attention in recent years. They can be transformed into silicane (SiH) and germanane (GeH) through covalent functionalization via hydrogen atom termination. However, synthesizing these materials with a scalable and low-cost fabrication process to achieve high-quality 2D SiH and GeH poses challenges. Herein, groundbreaking 2D SiH and GeH materials with varying compositions, specifically Si0.25Ge0.75H, Si0.50Ge0.50H, and Si0.75Ge0.25H, are prepared through a simple and efficient chemical exfoliation of their Zintl phases. These 2D materials offer significant advantages, including their large surface area, high mechanical flexibility, rapid electron mobility, and defect-rich loose-layered structures. Among these compositions, the Si0.50Ge0.50H electrode demonstrates the highest discharge capacity, reaching up to 1059 mAh g-1 after 60 cycles at a current density of 75 mA g-1. A comprehensive ex-situ electrochemical analysis is conducted to investigate the reaction mechanisms of lithiation/delithiation in Si0.50Ge0.50H. Subsequently, an initial assessment of the c-Li15(SixGe1- x)4 phase after lithiation and the a-Si0.50Ge0.50 phase after delithiation is presented. Hence, this study contributes crucial insights into the (de)lithiation reaction mechanisms within germanane-silicane alloys. Such understanding is pivotal for mastering promising materials that amalgamate the finest properties of silicon and germanium.

Zobrazit více v PubMed

Li X., Liang J., Hou Z., Zhang W., Wang Y., Zhu Y., Qian Y., J. Power Sources 2015, 293, 868.

Wang J., Huang W., Kim Y. S., Jeong Y. K., Kim S. C., Heo J., Lee H. K., Liu B., Nah J., Cui Y., Nano Res. 2020, 13, 1558.

Zhou J., Zhou Y., Zhang X., Cheng L., Qian M., Wei W., Wang H., Nanoscale 2020, 12, 79. PubMed

Zhang Q., Chen H., Luo L., Zhao B., Luo H., Han X., Wang J., Wang C., Yang Y., Zhu T., Liu M., Energy Environ. Sci. 2018, 11, 669.

Liu S., Feng J., Bian X., Qian Y., Liu J., Xu H., Nano Energy 2015, 13, 651.

Xiao X., Li X., Zheng S., Shao J., Xue H., Pang H., Adv. Mater. Interfaces 2017, 4, 1600798.

Arro C. R., Mohamed A. T. I., Bensalah N., Mater. Today Commun. 2022, 30, 103151.

Liu Y., Zhang S., Zhu T., ChemElectroChem 2014, 1, 706.

Bensalah N., Kamand F. Z., Mustafa N., Matalqeh M., J. Alloys Compd 2019, 811, 152088.

Peng J., Li W., Wu Z., Li H., Zeng P., Chen G., Chang B., Zhang X., Wang X., Sustain. Mater. and Technol. 2022, 32, e00410.

Loaiza L. C., Monconduit L., Seznec V., Batter. and Supercaps 2020, 3, 417.

Zhang W., Sun L., Nsanzimana J. M. V., Wang X., Adv. Mater. 2018, 30, 1705523. PubMed

Liu N., Xu K., Lei Y., Xi Y., Liu Y., Wang N., Wang Y.‐X., Xu X., Hao W., Dou S. X., Du Y., Small Struct. 2021, 2, 2100041.

Wang J., Li J., Li S.‐S., Liu Y., J. Appl. Phys. 2013, 114, 124309.

Bianco E., Butler S., Jiang S., Restrepo O. D., Windl W., Goldberger J. E., ACS Nano 2013, 7, 4414. PubMed

Nakamura D., Nakano H., Chem. Mater. 2018, 30, 5333.

Hartman T., Šturala J., Luxa J., Sofer Z., ACS Nano 2020, 14, 7319. PubMed

Sturala J., Luxa J., Matějková S., Plutnar J., Hartman T., Pumera M., Sofer Z., Chem. Mater. 2019, 31, 10126.

Cadogan J. M., Ryan D. H., Rejali R., Boyer C. D., J. Alloys Compd. 2016, 688, 51.

Yaokawa R., Nagoya A., Nakano H., J. Solid State Chem. 2021, 295, 121919.

Stokes K., Flynn G., Geaney H., Bree G., Ryan K. M., Nano Lett. 2018, 18, 5569. PubMed

Chen H., Zheng Y., Wu Q., Zhou W., Wei Q., Wei M., Electrochim. Acta 2022, 417, 140337.

Stokes K., Geaney H., Flynn G., Sheehan M., Kennedy T., Ryan K. M., ACS Nano 2017, 11, 10088. PubMed

Chen X., Loaiza L. C., Monconduit L., Seznec V., ACS Appl. Energy Mater. 2021, 4, 12552.

Duveau D., Fraisse B., Cunin F., Monconduit L., Chem. Mater. 2015, 27, 3226.

Guilhon I., Teles L. K., Marques M., Pela R. R., Bechstedt F., Phys. Rev. B 2015, 92, 075435.

Jamdagni P., Kumar A., Thakur A., Pandey R., Ahluwalia P. K., Mater. Res. Express 2015, 2, 016301.

Xia N., Yuan L.‐F., Yang J., Theor. Chem. Acc. 2014, 133, 1535.

Serino A. C., Ko J. S., Yeung M. T., Schwartz J. J., Kang C. B., Tolbert S. H., Kaner R. B., Dunn B. S., Weiss P. S., ACS Nano 2017, 11, 7995. PubMed

Loaiza L. C., Dupré N., Davoisne C., Madec L., Monconduit L., Seznec V., J. Electrochem. Soc. 2021, 168, 010510.

Bhuvaneswari R., Nagarajan V., Chandiramouli R., Mater. Res. Express 2018, 6, 035504.

Mortazavi B., Dianat A., Cuniberti G., Rabczuk T., Electrochim. Acta 2016, 213, 865.

Lim L. Y., Liu N., Cui Y., Toney M. F., Chem. Mater. 2014, 26, 3739.

An Y., Tian Y., Wei C., Zhang Y., Xiong S., Feng J., Qian Y., Energy Storage Mater. 2020, 32, 115.

Lin L., Xu X., Chu C., Majeed M. K., Yang J., Angew. Chem. 2016, 128, 14269. PubMed

Su A., Li J., Dong J., Yang D., Chen G., Wei Y., Small 2020, 16, 2001714. PubMed

Li X., Meng X., Liu J., Geng D., Zhang Y., Banis M. N., Li Y., Yang J., Li R., Sun X., Cai M., Verbrugge M. W., Adv. Funct. Mater. 2012, 22, 1647.

McDowell M. T., Lee S. W., Harris J. T., Korgel B. A., Wang C., Nix W. D., Cui Y., Nano Lett. 2013, 13, 758. PubMed

Chevrier V. L., Dahn J. R., J. Electrochem. Soc. 2009, 156, A454.

Legrain F., Malyi O. I., Manzhos S., Comput. Mater. Sci. 2014, 94, 214.

Casimir H. B. G., Wang Z., Fan S., Yu Z., Fan S., Kamal A., Clarke J., Devoret M. H., Kodera T., Sounas D. L., Caloz C., Kang M. S., Butsch A., Russell P. S. J., Lira H., Yu Z., Fan S., Lipson M., Sounas D. L., Caloz C., Lepri S., Casati G., Luo C., Joannopoulos J. D., Fan S., Shadrivov I. V, Fedotov V. A., Powell D. A., Kivshar Y. S., Zheludev N. I., et al., Science 2014, 343, 519. PubMed

Chen Q., Liang L., Potsi G., Wan P., Lu J., Giousis T., Thomou E., Gournis D., Rudolf P., Ye J., Nano Lett. 2019, 19, 1520. PubMed PMC

Yan P., Ji L., Liu X., Guan Q., Guo J., Shen Y., Zhang H., Wei W., Cui X., Xu Q., Nano Energy 2021, 86, 106139.

An Y., Tian Y., Wei C., Jiang H., Xi B., Xiong S., Feng J., Qian Y., ACS Nano 2019, 13, 13690. PubMed

Jiang Y., Zhang D., Li Y., Yuan T., Bahlawane N., Liang C., Sun W., Lu Y., Yan M., Nano Energy 2014, 4, 23.

Konečný J., Hartman T., Antonatos N., Mazánek V., Sofer Z., Sturala J., FlatChem 2022, 33, 100354.

Vogg G., Meyer A. J. P., Miesner C., Brandt M. S., Stutzmann M., Appl. Phys. Lett. 2001, 78, 3956.

Ng S., Sturala J., Vyskocil J., Lazar P., Martincova J., Plutnar J., Pumera M., ACS Nano 2021, 15, 11681. PubMed

Ledina M. A., Bui N., Liang X., Kim Y.‐G., Jung J., Perdue B., Tsang C., Drnec J., Carlà F., Soriaga M. P., Reber T. J., Stickney J. L., J. Electrochem. Soc. 2017, 164, D469.

Jiang S., Bianco E., Goldberger J. E., J. Mater. Chem. C 2014, 2, 3185.

Jiang S., Krymowski K., Asel T., Arguilla M. Q., Cultrara N. D., Yanchenko E., Yang X., Brillson L. J., Windl W., Goldberger J. E., Chem. Mater. 2016, 28, 8071.

Lu Y., Yao X., Yin J., Peng G., Cui P., Xu X., RSC Adv. 2015, 5, 7938.

Johnson E. V., Kroely L., Roca i Cabarrocas P., Sol. Energy Mater. Sol. Cells 2009, 93, 1904.

Li M., Zhou Q., Ren C., Shen N., Chen Q., Zhao J., Guo C., Zhang L., Li J., Nanoscale 2019, 11, 22550. PubMed

Liu R., Luo F., Zeng L., Liu J., Xu L., He X., Xu Q., Huang B., Qian Q., Wei M., Chen Q., J. Colloid Interface Sci. 2021, 584, 372. PubMed

Arnot D. J., Li W., Bock D. C., Stackhouse C. A., Tong X., Head A. R., Takeuchi E. S., Takeuchi K. J., Yan S., Wang L., Marschilok A. C., Adv. Mater. Interfaces 2022, 9, 2102238.

Dominguez D. Z, Berhaut C. L., Kumar P., Jouneau P.‐H., Desrues A., Herlin‐Boime N., Boudet N., Blanc N., Chahine G. A., Haon C., Tardif S., Lyonnard S., Pouget S., J. Mater. Chem. A 2023, 11, 19025.

Li W., Sun X., Yu Y., Small Methods 2017, 13, 160037.

Fang S., Shen L., Li S., Kim G. T., Bresser D., Zhang H., Zhang X., Maier J., Passerini S., ACS Nano 2019, 13, 9511. PubMed

Gogotsi Y., Penner R. M., ACS Nano 2018, 12, 2081. PubMed

McDowell M. T., Lee S. W., Nix W. D., Cui Y., Adv. Mater. 2013, 25, 4966. PubMed

Tsai H. S., Chen Y. Z., Medina H., Su T. Y., Chou T. S., Chen Y. H., Chueh Y. L., Liang J. H., Phys. Chem. Chem. Phys. 2015, 17, 21389. PubMed

Zhang X.‐P., Sun Y.‐Y., Sun Z., Yang C.‐S., Zhang T., Nat. Commun. 2019, 10, 3543. PubMed PMC

Wood K. N., Teeter G., ACS Appl. Energy Mater. 2018, 1, 4493.

Duan H., You Y., Wang G., Ou X., Wen J., Huang Q., Lyu P., Liang Y., Li Q., Huang J., Wang Y. X., Liu H. K., Dou S. X., Lai W. H., Nano‐Micro Lett. 2024, 16, 78. PubMed PMC

Rezqita A., Sauer M., Foelske A., Kronberger H., Trifonova A., Electrochim. Acta 2017, 247, 600.

Park H., Choi S., Lee S., Hwang G., Choi N. S., Park S., J. Mater. Chem. A 2015, 3, 1325.

Yao K. P. C., Kwabi D. G., Quinlan R. A., Mansour A. N., Grimaud A., Lee Y.‐L., Lu Y.‐C., Shao‐Horn Y., J. Electrochem. Soc. 2013, 160, A824.

Xiao W., Zhou J., Yu L., Wang D., Lou X. W. D., Angew. Chem. 2016, 128, 7553. PubMed

Bensalah N., Matalkeh M., Mustafa N. K., Merabet H., Phys. Status Solidi A 2020, 217, 1900414.

Jahel A., Darwiche A., Matei Ghimbeu C., Vix‐Guterl C., Monconduit L., J. Power Sources 2014, 269, 755.

Liang W., Yang H., Fan F., Liu Y., Liu X. H., Huang J. Y., Zhu T., Zhang S., ACS Nano 2013, 7, 3427. PubMed

Baggetto L., Notten P. H. L., J. Electrochem. Soc. 2009, 156, A169.

Klavetter K. C., Wood S. M., Lin Y.‐M., Snider J. L., Davy N. C., Chockla A. M., Romanovicz D. K., Korgel B. A., Lee J.‐W., Heller A., Mullins C. B., J. Power Sources 2013, 238, 123.

Gao P., Wu H., Liu W., Tian S., Mu J., Miao Z., Zhou P., Zhang H., Zhou T., Zhou J., J. Energy Chem. 2023, 79, 222.

Liao S.‐Y., Cui T.‐T., Zhang S.‐Y., Cai J.‐J., Zheng F., Liu Y.‐D., Min Y.‐G., Electrochim. Acta 2019, 326, 134992.

Yang Y., Liu S., Bian X., Feng J., An Y., Yuan C., ACS Nano 2018, 12, 2900. PubMed

Zhang Y., Du N., Xiao C., Wu S., Chen Y., Lin Y., Jiang J., He Y., Yang D., RSC Adv. 2017, 7, 33837.

Zhang H., Li J., RSC Adv. 2023, 13, 2672. PubMed PMC

Loaiza L. C., Salager E., Louvain N., Boulaoued A., Iadecola A., Johansson P., Stievano L., Seznec V., Monconduit L., J. Mater. Chem. A 2017, 5, 12462.

Bermejo D., Cardona M., J. Non‐Cryst. Solids 1978, 32, 405.

Li H., He Y., Dai Y., Ren Y., Gao T., Zhou G., Chem. Eng. J. 2022, 427, 131784.

Shen C., Fang X., Ge M., Zhang A., Liu Y., Ma Y., Mecklenburg M., Nie X., Zhou C., ACS Nano 2018, 12, 6280. PubMed

Vargas−Hernández R. A., J. Phys. Chem. A 1996, 124, 4053. PubMed

Kresse G., Joubert D., Phys. Rev. B 1999, 59, 1758.

Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett. 1996, 77, 3865. PubMed

Grimme S., Antony J., Ehrlich S., Krieg H., J. Chem. Phys. 2010, 132, 154104. PubMed

Henkelman G., Jónsson H., J. Chem. Phys. 2000, 113, 9978.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...