Species turnover in ant assemblages is greater horizontally than vertically in the world's tallest tropical forest

. 2022 Aug ; 12 (8) : e9158. [epub] 20220729

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35919394

Abiotic and biotic factors structure species assembly in ecosystems both horizontally and vertically. However, the way community composition changes along comparable horizontal and vertical distances in complex three-dimensional habitats, and the factors driving these patterns, remains poorly understood. By sampling ant assemblages at comparable vertical and horizontal spatial scales in a tropical rainforest, we tested hypotheses that predicted differences in vertical and horizontal turnover explained by different drivers in vertical and horizontal space. These drivers included environmental filtering, such as microclimate (temperature, humidity, and photosynthetic photon flux density) and microhabitat connectivity (leaf area), which are structured differently across vertical and horizontal space. We found that both ant abundance and richness decreased significantly with increasing vertical height. Although the dissimilarity between ant assemblages increased with vertical distance, indicating a clear distance-decay pattern, the dissimilarity was higher horizontally where it appeared independent of distance. The pronounced horizontal and vertical structuring of ant assemblages across short distances is likely explained by a combination of microclimate and microhabitat connectivity. Our results demonstrate the importance of considering three-dimensional spatial variation in local assemblages and reveal how highly diverse communities can be supported by complex habitats.

Zobrazit více v PubMed

Adams, B. J. , Schnitzer, S. A. , & Yanoviak, S. P. (2017). Trees as islands: Canopy ant species richness increases with the size of liana‐free trees in a Neotropical forest. Ecography, 40, 1067–1075.

Adams, B. J. , Schnitzer, S. A. , & Yanoviak, S. P. (2019). Connectivity explains local ant community structure in a Neotropical forest canopy: a large‐scale experimental approach. Ecology, 100, e02673. PubMed

Antoniazzi, R. , Viana‐Junior, A. B. , Pelayo‐Martínez, J. , Ortiz‐Lozada, L. , Neves, F. S. , Leponce, M. , & Dáttilo, W. (2021). Distance–decay patterns differ between canopy and ground ant assemblages in a tropical rainforest. Journal of Tropical Ecology, 36, 1–9.

Baselga, A. , & Orme, C. D. L. (2012). betapart: an R package for the study of beta diversity. Methods in Ecology and Evolution, 3, 808–812.

Basham, E. W. , & Scheffers, B. R. (2020). Vertical stratification collapses under seasonal shifts in climate. Journal of Biogeography, 47, 1888–1898.

Basham, E. W. , Seidl, C. M. , Andriamahohatra, L. R. , Oliveira, B. F. , & Scheffers, B. R. (2018). Distance–decay differs among vertical strata in a tropical rainforest. The Journal of Animal Ecology, 88, 114–124. PubMed

Basset, Y. , Cizek, L. , Cuénoud, P. , Didham, R. K. , Guilhaumon, F. , Missa, O. , Novotny, V. , Ødegaard, F. , Roslin, T. , Schmidl, J. , Tishechkin, A. K. , Winchester, N. N. , Roubik, D. W. , Aberlenc, H. P. , Bail, J. , Barrios, H. , Bridle, J. R. , Castano‐Meneses, G. , Cobara, B. , … Leponce, M. (2012). Arthropod diversity in a tropical forest. Science, 338, 1481–1484. PubMed

Basset, Y. , Cizek, L. , Cuénoud, P. , Didham, R. K. , Novotny, V. , Ødegaard, F. , Roslin, T. , Tishechkin, A. K. , Schmidl, J. , Winchester, N. N. , Roubik, D. W. , Aberlenc, H. P. , Bail, J. , Barrios, H. , Bridle, J. R. , Castaño‐Meneses, G. , Corbara, B. , Curletti, G. , Duarte da Rocha, W. , … Leponce, M. (2015). Arthropod distribution in a tropical rainforest: Tackling a four dimensional puzzle. PLoS One, 10(12), e0144110. PubMed PMC

Beaulieu, F. , Walter, D. E. , Proctor, H. C. , & Kitching, R. L. (2010). The canopy starts at 0.5°m: Predatory mites (Acari: Mesostigmata) differ between rain forest floor soil and suspended soil at any height. Biotropica, 42, 704–709.

Bélisle, M. (2005). Measuring landscape connectivity: The challenge of behavioral landscape ecology. Ecology, 88, 1988–1995.

Blanchet, F. G. , Legendre, P. , & Borcard, D. (2008). Forward selection of explanatory variables. Ecology, 89, 2623–2632. PubMed

Borowiec, M. L. (2016). Generic revision of the ant subfamily dorylinae (hymenoptera, formicidae). ZooKeys, 608, 1–280. PubMed PMC

Brown, N. (1993). The implications of climate and gap microclimate for seedling growth conditions in a Bornean lowland rain forest. Journal of Tropical Ecology, 9, 153–168.

Bütikofer, L. , Anderson, K. , Bebber, D. P. , Bennie, J. J. , Early, R. I. , & Maclean, I. M. D. (2020). The problem of scale in predicting biological responses to climate. Global Change Biology, 26, 6657–6666. PubMed

Chesters, D. , Beckschäfer, P. , Orr, M. C. , Adamowicz, S. J. , Chun, K. P. , & Zhu, C. D. (2019). Climatic and vegetational drivers of insect beta diversity at the continental scale. Ecology and Evolution, 9, 13764–13775. PubMed PMC

Daily, G. C. , & Ehrlich, P. R. (1995). Preservation of biodiversity in small rainforest patches: rapid evaluations using butterfly trapping. Biodiversity and Conservation, 4, 35–55.

Davies, A. B. , & Asner, G. P. (2014). Advances in animal ecology from 3D‐LiDAR ecosystem mapping. Trends in Ecology & Evolution, 29, 681–691. PubMed

Davis, K. T. , Dobrowski, S. Z. , Holden, Z. A. , Higuera, P. E. , & Abatzoglou, J. T. (2019). Microclimatic buffering in forests of the future: the role of local water balance. Ecography, 42, 1–11.

De Frenne, P. , Zellweger, F. , Rodríguez‐Sánchez, F. , Scheffers, B. R. , Hylander, K. , Luoto, M. , Vellend, M. , Verheyen, K. , & Lenoir, J. (2019). Global buffering of temperatures under forest canopies. Nature Ecology and Evolution, 3, 744–749. PubMed

Dial, R. , Bloodworth, B. , Lee, A. , Boyne, P. , & Heys, J. (2004). The distribution of free space and its relation to canopy composition at six forest sites. Forest Science, 50, 312–325.

Dial, R. J. , Ellwood, M. D. F. , Turner, E. C. , & Foster, W. A. (2006). Arthropod abundance, canopy structure, and microclimate in a bornean lowland tropical rain forest. Biotropica, 38, 643–652.

Dial, R. J. , Nadkarni, N. M. , & Jewell, C. D., III . (2011). Canopy structure in a 650‐year Douglas‐fir chronosequence in western Washington: Distribution of canopy elements and open space. Forest Science, 57, 309–319.

Dial, R. J. , Sillett, S. C. , Antoine, M. E. , & Spickler, J. C. (2004). Methods for horizontal movement through forest canopies. Selbyana, 25, 151–163.

Dorow, W. H. , & Kohout, R. J. (1995). A review of the subgenus Hemioptica Roger of the genus Polyrhachis Fr. Smith with description of a new species (Hymenoptera: Formicidae: Formicinae). Zoologische Mededelingen, 69, 93–104.

Ehrlich, P. R. , & Wilson, E. O. (1991). Biodiversity studies: Science and policy. Science, 253, 758–762. PubMed

Fayle, T. M. , Turner, E. C. , Snaddon, J. L. , Chey, V. K. , Chung, A. Y. C. , Eggleton, P. , & Foster, W. A. (2010). Oil palm expansion into rain forest greatly reduces ant biodiversity in canopy, epiphytes and leaf‐litter. Basic and Applied Ecology, 11, 337–345.

Fayle, T. M. , Yusah, K. M. , & Hashimoto, Y. (2014). Key to the ant genera of Borneo in English and Malay. https://www.tomfayle.com/Ant%20key.htm

Fetcher, N. , Oberbauer, S. F. , & Strain, B. R. (1985). Vegetation effects on microclimate in lowland tropical forest in Costa Rica. International Journal of Biometeorology, 29, 145–155.

Floren, A. , Wetzel, W. , & Staab, M. (2014). The contribution of canopy species to overall ant diversity (Hymenoptera: Formicidae) in temperate and tropical ecosystems. Myrmecological News, 19, 65–74.

Goslee, S. C. , & Urban, D. L. (2007). The ecodist package for dissimilarity‐based analysis of ecological data. Journal of Statistical Software, 22, 1–19.

Hardwick, S. R. , Toumi, R. , Pfeifer, M. , Turner, E. C. , Nilus, R. , & Ewers, R. M. (2015). The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in microclimate. Agricultural and Forest Meteorology, 201, 187–195. PubMed PMC

Huang, G. , & Catterall, C. P. (2021). Effects of habitat transitions on rainforest bird communities across an anthropogenic landscape mosaic. Biotropica, 53, 130–141.

Hung, A. C. (1970). A revision of ants of the subgenus Polyrhachis Fr. Smith (Hymenoptera: Formicidae: Formicinae). Oriental Insects, 4, 1–36.

Jarron, L. R. , Coops, N. C. , MacKenzie, W. H. , Tompalski, P. , & Dykstra, P. (2020). Detection of sub‐canopy forest structure using airborne LiDAR. Remote Sensing of Environment, 244, 111770.

Jorda, G. , Marbà, N. , Bennett, S. , Santana‐Garcon, J. , Agusti, S. , & Duarte, C. M. (2020). Ocean warming compresses the three‐dimensional habitat of marine life. Nature Ecology and Evolution, 4, 109–114. PubMed

Kaspari, M. (1993). Body size and microclimate use in Neotropical granivorous ants. Oecologia, 96, 500–507. PubMed

Kaspari, M. , Clay, N. A. , Lucas, J. , Yanoviak, S. P. , & Kay, A. (2015). Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Global Change Biology, 21, 1092–1102. PubMed

Kaspari, M. , & Yanoviak, S. P. (2001). Bait use in tropical litter and canopy ants—evidence of differences in nutrient limitation1. Biotropica, 33, 207–211.

Klimes, P. , Idigel, C. , Rimandai, M. , Fayle, T. M. , Janda, M. , Weiblen, G. D. , & Novotny, V. (2012). Why are there more arboreal ant species in primary than in secondary tropical forests? The Journal of Animal Ecology, 81, 1103–1112. PubMed

Kohout, R. J. (2006a). Review of Polyrhachis (Cyrtomyrma) Forel (Hymenoptera: Formicidae: Formicinae) of Australia, Borneo, New Guinea and the Solomon Islands with descriptions of new species. Memoirs‐Queensland Museum, 52, 87.

Kohout, R. J. (2006b). A review of the Polyrhachis cryptoceroides species‐group with description of a new species from Thailand (Hymenoptera: Formicidae). Myrmecologische Nachrichten, 8, 145–150.

Law, S. J. , Bishop, T. R. , Eggleton, P. , Griffiths, H. , Ashton, L. , & Parr, C. (2020). Darker ants dominate the canopy: Testing macroecological hypotheses for patterns in colour along a microclimatic gradient. The Journal of Animal Ecology, 89, 347–359. PubMed PMC

Lessard, J. P. , Dunn, R. R. , & Sanders, N. J. (2009). Temperature‐mediated coexistence in temperate forest ant communities. Insectes Sociaux, 56, 149–156.

Li, G. , Cheng, L. , Zhu, J. , Trenberth, K. E. , Mann, M. E. , & Abraham, J. P. (2020). Increasing ocean stratification over the past half‐century. Nature Climate Change, 10, 1116–1123.

MacArthur, R. H. , & Horn, H. S. (1969). Foliage profile by vertical measurements. Ecology, 50, 802–804.

MacArthur, R. H. , & MacArthur, J. W. (1961). On bird species diversity. Ecology, 42, 594–598.

Nakamura, A. , Kitching, R. L. , Cao, M. , Creedy, T. J. , Fayle, T. M. , Freiberg, M. , Hewitt, C. N. , Itioka, T. , Koh, L. P. , Ma, K. , Malhi, Y. , Mitchell, A. , Novotny, V. , Ozanne, C. M. P. , Song, L. ,  Wang, H. , & Ashton, L. A. (2017). Forests and their canopies: Achievements and horizons in canopy science. Trends in Ecology & Evolution, 32, 438–451. PubMed

Novotny, V. , Miller, S. E. , Hulcr, J. , Drew, R. A. I. , Basset, Y. , Janda, M. , Setliff, G. P. , Darrow, K. , Stewart, A. J. A. , Auga, J. , Isua, B. , Molem, K. , Manumbor, M. , Tamtiai, E. , Mogia, M. , & Weiblen, G. D. (2007). Low beta diversity of herbivorous insects in tropical forests. Nature, 448, 692–695. PubMed

Oksanen, J. , Blanchet, F. G. , Kindt, R. , Legendre, P. , Minchin, P. R. , O'hara, R. B. , Simpson, G. L. , Solymos, P. , Stevens, M. H. H. , & Wagner, H . (2013). Community ecology package. R package version, 2–0.

Oliveira, B. F. , & Scheffers, B. R. (2019). Vertical stratification influences global patterns of biodiversity. Ecography, 42, 249.

Parker, G. G. (1995). Structure and microclimate of forest canopies. In Lowman M. D. & Nadkarni N. M. (Eds.), Forest canopies (pp. 73–106). Academic Press Inc.

Perfecto, I. , & Vandermeer, J. (1996). Microclimatic changes and the indirect loss of ant diversity in a tropical agroecosystem. Oecologia, 108, 577–582. PubMed

Plowman, N. S. , Mottl, O. , Novotny, V. , Idigel, C. , Philip, F. J. , Rimandai, M. , & Klimes, P. (2019). Nest microhabitats and tree size mediate shifts in ant community structure across elevation in tropical rainforest canopies. Ecography, 43, 431–442.

Powell, S. , Costa, A. N. , Lopes, C. T. , & Vasconcelos, H. L. (2011). Canopy connectivity and the availability of diverse nesting resources affect species coexistence in arboreal ants. The Journal of Animal Ecology, 80, 352–360. PubMed

R Development Core Team . (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/

Ramette, A. , & Tiedje, J. M. (2007). Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. Proceedings. National Academy of Sciences of the United States of America, 104, 2761–2766. PubMed PMC

Reaka‐Kudla, M. L. (1997). The global biodiversity of coral reefs: A comparison with rain forests. In Biodiversity II: Understanding and protecting our biological resources (Vol. 2, pp. 551). Joseph Henry Press.

Ribas, C. R. , & Schoereder, J. H. (2007). Ant communities, environmental characteristics and their implications for conservation in the Brazilian Pantanal. Biodiversity and Conservation, 16, 1511–1520.

Roisin, Y. , Dejean, A. , Corbara, B. , Orivel, J. , Samaniego, M. , & Leponce, M. (2006). Vertical stratification of the termite assemblage in a neotropical rainforest. Oecologia, 149, 301–311. PubMed

Scheffers, B. R. , Edwards, D. P. , Macdonald, S. L. , Senior, R. A. , Andriamahohatra, L. R. , Roslan, N. , Rogers, A. M. , Haugaasen, T. , Wright, P. , & Williams, S. E. (2017). Extreme thermal heterogeneity in structurally complex tropical rain forests. Biotropica, 49, 35–44.

Scheffers, B. R. , Phillips, B. L. , Laurance, W. F. , Sodhi, N. S. , Diesmos, A. , & Williams, S. E. (2013). Increasing arboreality with altitude: A novel biogeographic dimension. Proceeding og the Royal Society B, 1770, 20131581. PubMed PMC

Schödl, S. (1998). Taxonomic revision of Oriental Meranoplus F. Smith, 1853 (Insecta: Hymenoptera: Formicidae: Myrmicinae). Annalen des Naturhistorischen Museums in Wien. Serie B für Botanik und Zoologie, 361–394.

Sheehan, T. N. , Ulyshen, M. D. , Horn, S. , & Hoebeke, E. R. (2019). Vertical and horizontal distribution of bark and woodboring beetles by feeding guild: is there an optimal trap location for detection? Journal of Pest Science, 92, 327–341.

Shenkin, A. , Chandler, C. J. , Boyd, D. S. , Jackson, T. , Disney, M. , Majalap, N. , Nilus, R. , Foody, G. ,  Jami, J. B. , Reynolds, G. , Wilkes, P. , Cutler, M. E. J. , Van der Heijden, G. M. F. , Burslem, D. F. R. P. , Coomes, D. A. , Bentley, L. P. , & Malhi, Y. (2019). The World's Tallest Tropical Tree in Three Dimensions. Frontiers in Forest and Global Change, 2, 32.

Soininen, J. , Heino, J. , & Wang, J. (2018). A meta‐analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Global Ecology and Biogeography, 27, 96–109.

Southwood, T. R. E. , & Kennedy, C. E. J. (1983). Trees as Islands. Oikos, 41, 359–371.

Stark, A. Y. , Adams, B. J. , Fredley, J. L. , & Yanoviak, S. P. (2017). Out on a limb: Thermal microenvironments in the tropical forest canopy and their relevance to ants. Journal of Thermal Biology, 69, 32–38. PubMed

Venegas‐Li, R. , Levin, N. , Possingham, H. , & Kark, S. (2018). 3D spatial conservation prioritisation: Accounting for depth in marine environments. Methods in Ecology and Evolution, 9, 773–784.

Vieira, E. M. , & Monteiro‐Filho, E. L. A. (2003). Vertical stratification of small mammals in the Atlantic rain forest of south‐eastern Brazil. Journal of Tropical Ecology, 19, 501–507.

Walsh, R. P. D. , & Newbery, D. M. (1999). The ecoclimatology of Danum, Sabah, in the context of the world's rainforest regions, with particular reference to dry periods and their impact. Proceedings of Royal Society B., 354, 1869–1883. PubMed PMC

Ward, P. S. , Blaimer, B. B. , & Fisher, B. L. (2016). A revised phylogenetic classification of the ant subfamily Formicinae (Hymenoptera: Formicidae), with resurrection of the genera Colobopsis and Dinomyrmex . Zootaxa, 4072, 343–357. PubMed

Ward, P. S. , Brady, S. G. , Fisher, B. L. , & Schultz, T. R. (2015). The evolution of myrmicine ants: Phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). Systematic Entomology, 40, 61–81.

Weiss, M. , Procházka, J. , Schlaghamerský, J. , & Cizek, L. (2016). Fine‐Scale vertical stratification and guild composition of saproxylic beetles in lowland and montane forests: Similar patterns despite low faunal overlap. PLoS One, 11, e0149506. PubMed PMC

Wermelinger, B. , Flückiger, P. F. , Obrist, M. K. , & Duelli, P. (2007). Horizontal and vertical distribution of saproxylic beetles (Col., Buprestidae, Cerambycidae, Scolytinae) across sections of forest edges. Journal of Applied Entomology, 131, 104–114.

Yusah, K. M. , & Foster, W. A. (2016). Tree size and habitat complexity affect ant communities (Hymenoptera: Formicidae) in the high canopy of Bornean rain forest. Myrmecological News, 23, 15–23.

Yusah, K. M. , Foster, W. A. , Reynolds, G. , & Fayle, T. M. (2018). Ant mosaics in Bornean primary rain forest high canopy depend on spatial scale, time of day, and sampling method. PeerJ, 6, e4231. PubMed PMC

Zobrazit více v PubMed

Dryad
10.5061/dryad.12jm63z1g

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...