Fine-Scale Vertical Stratification and Guild Composition of Saproxylic Beetles in Lowland and Montane Forests: Similar Patterns despite Low Faunal Overlap
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26978783
PubMed Central
PMC4792385
DOI
10.1371/journal.pone.0149506
PII: PONE-D-15-31984
Knihovny.cz E-zdroje
- MeSH
- brouci klasifikace fyziologie MeSH
- druhová specificita MeSH
- ekosystém MeSH
- lesy * MeSH
- stravovací zvyklosti MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
OBJECTIVE: The finer scale patterns of arthropod vertical stratification in forests are rarely studied and poorly understood. Further, there are no studies investigating whether and how altitude affects arthropod vertical stratification in temperate forests. We therefore investigated the fine-scale vertical stratification of diversity and guild structure of saproxylic beetles in temperate lowland and montane forests and compared the resulting patterns between the two habitats. METHODS: The beetles were sampled with flight intercept traps arranged into vertical transects (sampling heights 0.4, 1.2, 7, 14, and 21 m). A triplet of such transects was installed in each of the five sites in the lowland and in the mountains; 75 traps were used in each forest type. RESULTS: 381 species were collected in the lowlands and 236 species in the mountains. Only 105 species (21%) were found at both habitats; in the montane forest as well as in the lowlands, the species richness peaked at 1.2 m, and the change in assemblage composition was most rapid near the ground. The assemblages clearly differed between the understorey (0.4 m, 1.2 m) and the canopy (7 m, 14 m, 21 m) and between the two sampling heights within the understorey, but less within the canopy. The stratification was better pronounced in the lowland, where canopy assemblages were richer than those near the forest floor (0.4 m). In the mountains the samples from 14 and 21 m were more species poor than those from the lower heights. The guild structure was similar in both habitats. CONCLUSIONS: The main patterns of vertical stratification and guild composition were strikingly similar between the montane and the lowland forest despite the low overlap of their faunas. The assemblages of saproxylic beetles were most stratified near ground. The comparisons of species richness between canopy and understorey may thus give contrasting results depending on the exact sampling height in the understorey.
Biology Centre CAS Institute of Entomology České Budějovice Czech Republic
University of South Bohemia Faculty of Science Branišovská 31 370 05 České Budějovice Czech Republic
Zobrazit více v PubMed
Rahbek C. The elevational gradient of species richness: a uniform pattern? Ecography. 1995; 18: 200–205. 10.1111/j.1600-0587.1995.tb00341.x DOI
Meng H, Li K, Nie M, Wan J, Quan Z, Fang C, et al. Responses of bacterial and fungal communities to an elevation gradient in a subtropical montane forest of China. Appl Microbiol Biot. 2013; 97: 2219–2230. 10.1007/s00253-012-4063-7 PubMed DOI
Geml J, Pastor N, Fernandez L, Pacheco S, Semenova TA, Becerra AG, et al. Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover along an altitudinal gradient. Mol Ecol. 2014; 23: 2452–2472. 10.1111/mec.12765 PubMed DOI
Jung J, Kim S, Lee S, Park C, Park J, Lee J. Community structure of ground beetles (Coleoptera: Carabidae) along an altitudinal gradient on Mt. Sobaeksan, Korea. J Asia-Pacific Entomol. 2012; 15: 487–494. 10.1016/j.aspen.2012.05.007 DOI
Wu J, Pan H, Yang S, Niu X. Tree species and elevation influence the assemblage composition of saproxylic beetles in subtropical forest of east China. Forest Ecol Manag. 2013; 292: 29–38. 10.1016/j.foreco.2012.12.004 DOI
Zou Y, Sang W, Zhou H, Huang L, Axmacher JC. Altitudinal diversity patterns of ground beetles (Coleoptera: Carabidae) in the forests of Changbai Mountain, Northeast China. Insect Conserv Diver. 2014; 7: 161–171. 10.1111/icad.12039 DOI
Robertson HG. Comparison of leaf litter ant communities in woodlands, lowland forests and montane forests of north-eastern Tanzania. Biodivers Conserv. 2002; 11: 1637–1652. 10.1023/A:1016883901065 DOI
Escobar F, Halffter G, Arellano L. From forest to pasture: an elevation of the influence of environment and biogeography on the structure of dung beetle (Sarabaeinae) assemblages along three altitudinal gradients in the Neotropical region. Ecography. 2007; 30: 192–208. 10.1111/j.2007.0906-7590.04818.x DOI
Davis ALV, Scholtz CH, Chown SL. Species turnover, community boundaries and biogeographical composition of dung beetle assemblages across an altitudinal gradient in South Africa. J Biogeogr. 1999; 26: 1039–1055. 10.1046/j.1365-2699.1999.00335.x DOI
Yu X, Lü L, Luo T, Zhou H. Elevational gradient in species richness pattern of epigaeic beetles and underlying mechanisms at east slope of Balang mountain in southwestern China. PLOS One. 2013; 8(7), e69177 10.1371/journal.pone.0069177 PubMed DOI PMC
Basset Y, Hammond PM, Barrios H, Holloway JD, Miller SE. Vertical stratification of arthropod assemblages In: Basset Y, Novotny V, Miller SE, Kitching RL, editors. Arthropods of Tropical Forests. Cambridge University Press; 2003. pp 4–7
Tanabe S. Between-forest variation in vertical stratification of drosophilid populations. Ecol Entomol. 2002; 27: 720–731. 10.1046/j.1365-2311.2002.00469.x DOI
Leksono AS, Takada K, Shinsaku K, Nobukazu N, Anggraeni T, Nakamura K. Vertical and seasonal distribution of flying beetles in a suburban deciduous temperate forest collected by water pan traps. Insect Sci. 2005; 12: 199–206. 10.1111/j.1744-7917.2005.00025.x DOI
Wermelinger B, Flückiger PF, Obrist MK, Duelli P. Horizontal and vertical distribution of saproxylic beetles (Col., Buprestidae, Cerambycidae, Scolytinae) across sections of forest edges. J Appl Entomol. 2007; 131(2): 104–114. 10.1111/j.1439-0418.2006.01128 DOI
Maguire DY, Robert K, Brochu K, Larrivée M, Buddle CM, Wheeler TA. Vertical stratification of beetles (Coleoptera) and flies (Diptera) in temperate forest canopies. Environ Entomol. 2014; 43: 9–17. 10.1603/EN13056 PubMed DOI
Basset Y, Cizek L, Cuénoud P, Didham RK, Novotny V, Ødegaard F, et al. Arthropod distribution in a tropical rainforest: Tackling a four dimensional puzzle. PLOS One. 2015; 10.1371/journal.pone.0144110 PubMed DOI PMC
Wermelinger B. Ecology and management of the spruce bark beetle Ips typographus–a review of recent research. Forest Ecol Manag. 2004; 202: 67–82.
Müller J, Bussler H, Gossner M, Rettelbach T, Duelli P. The European spruce bark beetle Ips typographus in a national park: from pest to keystone species. Biodivers Conserv. 2008; 17: 2979–3001. 10.1007/s10531-008-9409-1 DOI
Siitonen J, Martikainen P, Punttila P, Rauh J. Coarse woody debris and stand characteristics in mature managed and old-growth boreal mesic forests in southern Finland. Forest Ecol Manag. 2000; 128: 211–225. 10.1016/S0378-1127(99)00148-6 DOI
Floren A, Schmidl J. Introduction: Canopy arthropod research in Europe In: Floren A, Schmidl J, editors. Canopy Arthropod Research in Europe: Basic and applied studies from the high frontier. Bioform Entomology; 2008. pp 13–20.
Stokland JN, Tomter SM, Söderberg GU. Development of dead wood indicators for biodiversity monitoring: experiences from Scandinavia In: Marchetti M editor. Monitoring and indicators of forest biodiversity in Europe–from ideas to operationality. European Forest Institute, EFI Proceedings 51; 2004. pp. 207–226.
Stokland JN, Siitonen J, Jonsson BG. Biodiversity in dead wood Cambridge University Press, Cambridge; 2012. 521 pp.
Bouget C, Larrieu L, Parmain G, Nusillard B. In search of the best local habitat drivers for saproxylic beetle diversity in temperate deciduous forests. Biodivers Conserv. 2013; 22: 2111–2130. 10.1007/s10531-013-0531-3 DOI
Martikainen P. Conservation of threatened saproxylic beetles: significance of retained aspen Populus tremula on clearcut areas. Ecol Bull. 2001; 49: 205–218. 10.2307/20113277 DOI
Grove SJ. Saproxylic insect ecology and the sustainable management of forests. In: Futuyama DJ editor. Annu Rev Ecol Syst 33; 2002. pp 1–23.
Tykarski P. Beetles associated with scolytids (Coleopotera, Scolytidae) and the elevational gradient: Diversity and dynamics in the Tatra National Park, Poland. Forest Ecol Manag. 2006; 225: 146–159. 10.1016/j.foreco.2005.12.034 DOI
Procházka J, Schlaghamerský J, Cizek L. Assemblage compostion and vertical stratification of bark beetles (Coleoptera: Curculionidae: Scolytinae) in temperate lowland and montane forests. Mit Sch Ges Ent. 2015; 88(1–2): 62.
Jonsell M, Weslien J. Felled or standing retained wood–it makes a difference for saproxylic beetles. Forest Ecol Manag. 2003; 175: 425–435. 10.1016/S0378-1127(02)00143-3 DOI
Hjältén J, Johansson T, Alinvi O, Danell K, Ball JP, Petterson R, et al. The importance of substrate type, shading and scorching for the attractiveness of dead wood to saproxylic beetles. Basic Appl Ecol. 2007; 8: 364–376. 10.1016/j.baae.2006.08.003 DOI
Ulyshen MD, Hanula JL. Habitat associations of saproxylic beetles in the southeastern United States: A comparison of forest types, tree species and wood postures. Forest Ecol Manag. 2009; 257: 653–664. 10.1016/j.foreco.2008.09.047 DOI
Bouget C, Brin A, Brustel H. Exploring the “last biotic frontier”: Are temperate forest canopies special for saproxylic beetles? Forest Ecol Manag. 2011; 261: 211–220. 10.1016/j.foreco.2010.10.007 DOI
Floren A, Mueller T, Dittrich M, Weiss M, Linsenmair KE. The influence of tree species, stratum and forest management on beetle assemblages responding to dead wood enrichment. Forest Ecol Manag. 2014; 323: 57–64. 10.1016/j.foreco.2014.03.028 DOI
Su JC, Woods SA. Importance of sampling along a vertical gradient to compare the insect fauna in managed forests. Environ Entomol. 2001; 30(2): 400–408. 10.1603/0046-225X-30.2.400 DOI
Vrška T, Hort L, Adam D, Odehnalová P, Král K, Horal D. Dynamika vývoje pralesovitých rezervací v České republice II—Lužní lesy–Cahnov-Soutok, Ranšpurk, Jiřina. [Developmental dynamics of virgin forest reserves in the Czech Republic. Volume II, Floodplain forests–Cahnov-Soutok, Ranšpurk, Jiřina] Academia, Praha; 2006. 214 pp. (in Czech)
Miklín J, Čížek L. Erasing a European biodiversity hot-spot: Open woodlands, veteran trees and mature forests succumb to forestry intensification, logging, and succession in a UNESCO Biosphere Reserve. J Nat Conserv. 2014; 22(1): 35–41. 10.1016/j.jnc.2013.08.002 DOI
Rozkošný R, Vaňhara J. Terrestrial Invertebrates of the Pálava Biosphere Reserve of UNESCO, I–III. Folia Fac Sci Nat Un Biol 1995–1996; 92: 1–208, 93: 209–408, 94: 409–630.
Schlaghamerský J. The saproxylic beetles (Coleoptera) and ants (Formicidae) of central European hardwood floodplain forests. Folia Fac Sci Nat Un Biol. 2000; 103: 1–168.
Vrška T, Adam D, Hort L, Kolář T, Janík D. European beech (Fagus sylvatica L.) and silver fir (Abies alba Mill.) rotation in the Carpathians–a developmental cycle or a linear trend induced by man? Forest Ecol Manag. 2009; 258: 347–356. 10.1016/j.foreco.2009.03.007 DOI
Horák J, Mertlik J, Chobot K, Kubáň V. Distribution of a rare saproxylic beetle Cucujus haematodes (Coleoptera: Cucujidae) in the Czech Republic with notes to occurrence in central Europe. Klapalekiana. 2009; 45: 191–197.
Vávra JC and Stanovský J. Brouci (Coleoptera) In: Roháček J, Ševčík J, Vlk P editors. Příroda Slezska. Slezské zemské muzeum. Opava; 2013. 480 pp.
Frazer GW, Canham CD, Lertzman KP. Gap Light Analyzer (GLA): Imaging software to extract canopy structure and gap light transmission indices from true colour fisheye photographs. Users manual and program documentation Burnaby, Simon Fraser University; Millbrook–New York, Institute of Ecosystem Studies: 1999; 36 Available at http://www.rem.sfu.ca/forestry/downloads/Files/GLAV2UsersManual.pdf
Sebek P, Barnouin T, Brin A, Brustel H, Dufrêne M, Gosselin F, et al. A test for assessment of saproxylic beetle biodiversity using subsets of “monitoring species”. Ecol Indic. 2012; 20: 304–315. 10.1016/j.ecolind.2012.02.033 DOI
Parmain G, Bouget C, Müller J, Horak J, Gossner MM, Lachat T, et al. Can rove beetles (Staphylinidae) be excluded in studies focusing on saproxylic beetles in central European beech forests? B Entomol Res. 2015; 105: 101–109. 10.1017/S0007485314000741 PubMed DOI
Leschen RAB, Beutel RG, Lawrence JF. Coleoptera, Beetles In: Kristensen NP, Beutel RG, editors. Handbook of Zoology, Arthropoda: Insecta. De Gruyter, Berlin/New York: 2010
Farkač J, Král D, Škorpík M. Cervený seznam ohrozených druhu Ceské Republiky Bezobratlí [Red List of threatened species in the Czech Republic Invertebrates]. Praha; 2005
Schmidl J, Bussler H. Ökologische Gilden xylobionter Käfer Deutschlands und ihr Einsatz in der landschaftsökologischen Praxis–ein Bearbeitungsstandard. Nat.schutz Landsch.plan. 2004; 36: 202–218.
Colwell, RK. EstimateS: Statistical estimation of species richness and shared species from samples. Version 9. 2013. User's Guide and application published at: http://purl.oclc.org/estimates
Chao A. Non-parametric estimation of the number of classes in a population. Scand J Stat. 1984; 11: 265–270.
Chen YC, Hwang WH, Chao A, Kuo CY. Estimating the number of common species. Analysis of the number of common bird species in Ke-Yar Stream and Chung-Kang Stream. (In Chinese with English abstract.) J Chin Stat Assoc. 1995; 33: 373–393.
Šmilauer P, Lepš J. Multivariate analysis of ecological data using CANOCO, second edition Cambridge University Press, Cambridge; 2014
Ter Braak CJF, Šmilauer P. Canoco reference manual and user's guide: software for ordination, version 5.0. Microcomputer Power. Ithaca, USA; 2012. 496 pp.
Baselga A. Partitioning the turnover and nestedness components of beta diversity. Global Ecol Biogeogr. 2010; 19: 134–143. 10.1111/j.1466-8238.2009.00490.x DOI
Baselga A, Orme CDL. Betapart: an R package for the study of beta diversity. Methods Ecol Evol. 2012; 3: 808–812. 10.1111/j.2041-210X.2012.00224.x DOI
R Core Team. R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria: 2014.
Dufrêne M, Legendre P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr. 1997; 67(3): 345–366. 10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2 DOI
Roberts DW. (2012). labdsv: ordination and multivariate analysis for ecology, R Package Version 1.5–0 edn.
Bail JG, Schmidl J. Xylobiontic beetles (Insecta: Coleoptera) on oak canopies of the central European Danube Floodplain: species composition, ecological guilds and the impact of flooding and forestry In: Floren A, Schmidl J, editors. Canopy Arthropod Research in Europe. Basic and applied studies from the high frontier. Bioform Entomology; 2008. pp 327–338.
Seibold S, Brandl R, Buse J, Hothorn T, Schmidl J, Thorn S, et al. Association of extinction risk of saproxylic beetles with ecological degradation in forests of Europe. Conserv Biol. 2014; 29: 382–390. 10.1111/cobi.12427 PubMed DOI
Vodka Š, Cizek L. The effects of edge-interior and understorey-canopy gradients on the distribution of saproxylic beetles in a temperate lowland forest. Forest Ecol Manag. 2013; 304: 33–41. 10.1016/j.foreco.2013.04.007 DOI
Šipoš J, Drozdová M, Drozd P. Assessment of trends in predation pressure on insects across temperate forest microhabitats. Agr Forest Entomol. 2013; 15: 255–261. 10.1111/afe.12012 DOI
Janik D, Adam D, Hort L, Král K, Šamonil P, Unar P, et al. Spatiotemporal differences in tree spatial patterns between alluvial hardwood and mountain beech-fir forests: do characteristic patterns exist? J Veg Sci. 2013; 24: 1141–1153. 10.1111/jvs.12018 DOI
Duelli P, Obrist MK, Fluckinger PF. Forest edges are biodiversity hotspots: also for Neuroptera. Acta Zool. Acad. Sci. Hung. 2002; 48, 75–87 (Suppl. 2).
Gossner MM. Light intensity affects spatial distribution of Heteroptera in deciduous forests. Eur J Entomol. 2009; 106: 241–252.
Vance CC, Kirby KR, Malcolm JR, Smith SM. Community composition of longhorned beetles (Coleoptera: Cerambycidae) in the canopy and understorey of sugar maple and white pine stands in south-central Ontario. Environ Entomol. 2003. 32: 1066–1074.
Hirao T, Murakami M, Kashizaki A. Importance of the understory stratum to entomofaunal diversity in temperate deciduous forest. Eco Res. 2009; 24: 263–272.
Schroeder B, Buddle CM, Saint-Germain M. Activity of flying beetles (Coleptera) at two heights in canopy gaps and intact forests in a hardwood forest in Quebec. Can Entomol. 2009. 141 (5): 515–520.
Müller J, Brustel H, Brin A, Bussler H, Bouget C, Obermeier E, et al. Increasing temperature may compensate for lower amounts of dead wood in driving richness of saproxylic beetles. Ecography. 2014; 37: 1–11. 10.1111/ecog.00908 DOI
Gómez-Hernández M, Williams-Linera G, Guevara R, Lodge DJ. Patterns of macromycete community assemblage along an elevational gradient: options for fungal gradient and metacommunity analyses. Biodivers Conserv. 2012; 21: 2247–2268. 10.1007/s10531-011-0180-3 DOI
Hulcr J, Beaver RA, Puranasakul W, Dole SA, Sonthichai S. A Comparison of Bark and Ambrosia Beetle Communities in Two Forest Types in Northern Thailand (Coleoptera: Curculionidae: Scolytinae and Platypodinae) Environ Entomol. 2008; 37(6): 461–1470. 10.1603/0046-225X-37.6.1461 PubMed DOI
Ulyshen MD. Arthropod vertical stratification in temperate deciduous forests: Implications for conservation oriented management. Forest Ecol Manag. 2011; 261: 1479–1489. 10.1016/j.foreco.2011.01.033 DOI