Quantitative Estimation of Promoter Activity in Cannabis sativa Using Agroinfiltration-Based Transient Gene Expression
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
- Klíčová slova
- Cannabis sativa, GUS, Transient expression, Vacuum infiltration,
- MeSH
- Cannabis * genetika metabolismus MeSH
- exprese genu genetika MeSH
- geneticky modifikované rostliny * genetika MeSH
- glukuronidasa genetika metabolismus MeSH
- promotorové oblasti (genetika) * MeSH
- regulace genové exprese u rostlin * MeSH
- reportérové geny MeSH
- tabák * genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glukuronidasa MeSH
To properly assess promoter activity, which is critical for understanding biosynthetic pathways in different plant species, we use agroinfiltration-based transient gene expression assay. We compare the activity of several known promoters in Nicotiana benthamiana with their activity in Cannabis sativa (both hemp and medicinal cannabis), which has attracted much attention in recent years for its industrial, medicinal, and recreational properties. Here we describe an optimized protocol for transient expression in Cannabis combined with a ratiometric GUS reporter system that allows more accurate evaluation of promoter activity and reduces the effects of variable infiltration efficiency.
Zobrazit více v PubMed
Johansen LK, Carrington JC (2001) Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol 126(3):930–938 PubMed DOI PMC
Vaghchhipawala Z, Rojas CM, Senthil-Kumar M et al (2011) Agroinoculation and agroinfiltration: simple tools for complex gene function analyses. In: Pereira A (ed) Plant reverse genetics: methods and protocols, vol 678. Humana, Totowa, pp 65–76 DOI
Zhou Z, Bi G, Zhou JM (2018) Luciferase complementation assay for protein-protein interactions in plants. Curr Protoc Plant Biol 3(1):42–50 PubMed DOI
Deguchi M, Bogush D, Weeden H et al (2020) Establishment and optimization of a hemp (Cannabis sativa L.) agroinfiltration system for gene expression and silencing studies. Sci Rep 10(1):3504 PubMed DOI PMC
Zuk-Golaszewska K, Golaszewski J (2018) Cannabis sativa L.–cultivation and quality of raw material. J Elem 23(3):971–984
Ahmed A, Islam MZ, Mahmud MS et al (2022) Hemp as a potential raw material toward a sustainable world: a review. Heliyon 8(1):e08753 PubMed DOI PMC
Adhikary D, Kulkarni M, El-Mezawy A et al (2021) Medical cannabis and industrial hemp tissue culture: present status and future potential. Front Plant Sci 12:627240 PubMed DOI PMC
Sarris J, Sinclair J, Karamacoska D et al (2020) Medicinal cannabis for psychiatric disorders: a clinically-focused systematic review. BMC Psychiatry 20(1):24 PubMed DOI PMC
Ar K, Bhatnagar S (2020) Use of cannabis and cannabinoids in palliative care setting. Curr Opin Anaesthesiol 33(6):841–546 PubMed DOI
Chiu V, Leung J, Hall W et al (2021) Public health impacts to date of the legalisation of medical and recreational cannabis use in the USA. Neuropharmacology 193:108610 PubMed DOI
Sherf BA, Navarro SL, Hannah RR et al (1996) Novel reporter gene technology integrating firefly and Renilla luciferase assays for internal control. Mol Biol Cell 7:925–925
Martin T, Wohner R, Hummel S et al (1992) The GUS reporter system as a tool to study plant gene expression. In: Galagher S (ed) GUS Protocols. Academic Press, San Diego, pp 23–43 DOI
Khosla A, Rodriguez-Furlan C et al (2020) A series of dual-reporter vectors for ratiometric analysis of protein abundance in plants. Plant Direct 4(6):e00231 PubMed DOI PMC
Xiong AS, Peng RH, Cheng ZM et al (2007) Concurrent mutations in six amino acids in beta-glucuronidase improve its thermostability. Protein Eng Des Sel 20(7):319–325 PubMed DOI
Fior S, Vianelli A, Gerola PD (2009) A novel method for fluorometric continuous measurement of β-glucuronidase (GUS) activity using 4-methyl-umbelliferyl-beta-D-glucuronide (MUG) as substrate. Plant Sci 176(1):130–135 DOI
Hood EE, Gelvin SB, Melchers LS et al (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2(4):208–218 DOI
Hoekema A, Hirsch P, Hooykaas P et al (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180 DOI
Hellens RP, Edwards EA, Leyland NR et al (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42(6):819–832 PubMed DOI
White FF, Taylor BH, Huffman GA et al (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164(1):33–44 PubMed DOI PMC
Collier R, Fuchs B, Walter N et al (2005) Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J 43(3):449–457 PubMed DOI
Veena V, Taylor CG (2007) Agrobacterium rhizogenes: recent developments and promising applications. In Vitro Cell Dev Biol – Plant 43(5):383–403 DOI
Sarrion-Perdigones A, Vazquez-Vilar M, Palaci J et al (2013) GoldenBraid 2.0: a comprehensive DNA assembly framework for plant synthetic biology. Plant Physiol 162(3):1618–1631 PubMed DOI PMC
Dusek J, Plchova H, Cerovska N et al (2020) Extended set of GoldenBraid compatible vectors for fast assembly of multigenic constructs and their use to create geminiviral expression vectors. Front Plant Sci 11:522059 PubMed DOI PMC