Transient expression
Dotaz
Zobrazit nápovědu
The transient receptor potential ion channel TRPA1 is a Ca2+-permeable nonselective cation channel widely expressed in sensory neurons, but also in many nonneuronal tissues typically possessing barrier functions, such as the skin, joint synoviocytes, cornea, and the respiratory and intestinal tracts. Here, the primary role of TRPA1 is to detect potential danger stimuli that may threaten the tissue homeostasis and the health of the organism. The ability to directly recognize signals of different modalities, including chemical irritants, extreme temperatures, or osmotic changes resides in the characteristic properties of the ion channel protein complex. Recent advances in cryo-electron microscopy have provided an important framework for understanding the molecular basis of TRPA1 function and have suggested novel directions in the search for its pharmacological regulation. This chapter summarizes the current knowledge of human TRPA1 from a structural and functional perspective and discusses the complex allosteric mechanisms of activation and modulation that play important roles under physiological or pathophysiological conditions. In this context, major challenges for future research on TRPA1 are outlined.
- MeSH
- alosterická regulace MeSH
- elektronová kryomikroskopie metody MeSH
- kationtové kanály TRP metabolismus chemie fyziologie MeSH
- kationtový kanál TRPA1 * metabolismus chemie fyziologie MeSH
- lidé MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Keratin 19 and nuclear reactivity to an endogenous lectin, galectin-1, represent a potential marker of epidermal stem cells. We detected expression of keratin 19 and nuclear binding sites for galectin-1 in adult cells migrating from the hair follicle, where cells expressing keratin 19 are located in the bulge region. The results were compared with the expression of both markers in cells adhering from suspension prepared from the interfollicular epidermis without keratin-19-positive cells and with nuclear binding sites for galectin-1. The results were compared with data from basal cell carcinomas. All cells were analyzed concerning size, as it is known that cell diameter influences the clonogenic potential of keratinocytes. The major result of this study is the observation of transient expression of keratin 19 and nuclear galectin-1 binding sites in originally negative interfollicular epidermal cells induced by adhesion. These cells were very small in size, similar to basal cells of the interfollicular epidermis or the bulge region of the hair follicle. The influence of the suspension regimen on beta1-integrin expression, cell diameter and growth was also monitored. A population of cells highly positive for beta1 integrin of the same diameter as keratin-19-positive cells insensitive to induction of terminal differentiation by lack of anchorage was characterized. Cells of the same size were also observed in the keratin-19-positive cells of basal cell carcinomas. In conclusion, the expression of poor levels of differentiation induced by cell adhesion is transient. Also, keratin 19 expression should not be exclusively regarded as a marker of stem cell activity.
- MeSH
- antigeny CD29 analýza MeSH
- bazocelulární karcinom metabolismus patologie MeSH
- buněčná adheze MeSH
- buněčné kultury MeSH
- časové faktory MeSH
- epidermální buňky MeSH
- epidermis chemie MeSH
- financování organizované MeSH
- galektin 1 analýza MeSH
- galektin 3 analýza MeSH
- keratinocyty cytologie chemie MeSH
- keratiny analýza MeSH
- kultivované buňky MeSH
- lidé MeSH
- nádory kůže metabolismus patologie MeSH
- pohyb buněk MeSH
- proteiny intermediálních filament analýza MeSH
- vlasový folikul cytologie chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- srovnávací studie MeSH
Anionic phospholipids represent only minor fraction of cell membranes lipids but they are critically important for many membrane-related processes, including membrane identity, charge, shape, the generation of second messengers, and the recruitment of peripheral proteins. The main anionic phospholipids of the plasma membrane are phosphoinositides phosphatidylinositol 4-phosphate (PI4P), phosphatidylinositol 4,5-bisphosphate (PI4,5P2), phosphatidylserine (PS), and phosphatidic acid (PA). Recent insights in the understanding of the nature of protein-phospholipid interactions enabled the design of genetically encoded fluorescent molecular probes that can interact with various phospholipids in a specific manner allowing their imaging in live cells. Here, we describe the use of transiently transformed plant cells to study phospholipid-dependent membrane recruitment.
- MeSH
- exprese genu MeSH
- fluorescenční barviva analýza metabolismus MeSH
- fluorescenční mikroskopie metody MeSH
- fosfatidylinositoly analýza metabolismus MeSH
- fosfolipidy analýza metabolismus MeSH
- konfokální mikroskopie metody MeSH
- luminescentní proteiny analýza genetika MeSH
- pyl chemie genetika MeSH
- rostlinné buňky chemie metabolismus MeSH
- tabák chemie cytologie genetika MeSH
- transformace genetická MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In mammals, double-stranded RNA (dsRNA) can mediate sequence-specific RNA interference, activate sequence-independent interferon response, or undergo RNA editing by adenosine deaminases. We showed that long hairpin dsRNA expression had negligible effects on mammalian somatic cells--expressed dsRNA was slightly edited, poorly processed into siRNAs, and it did not activate the interferon response. At the same time, we noticed reduced reporter expression in transient co-transfections, which was presumably induced by expressed dsRNA. Since transient co-transfections are frequently used for studying gene function, we systematically explored the role of expressed dsRNA in this silencing phenomenon. We demonstrate that dsRNA expressed from transiently transfected plasmids strongly inhibits the expression of co-transfected reporter plasmids but not the expression of endogenous genes or reporters stably integrated in the genome. The inhibition is concentration-dependent, it is found in different cell types, and it is independent of transfection method and dsRNA sequence. The inhibition occurs at the level of translation and involves protein kinase R, which binds the expressed dsRNA. Thus, dsRNA expression represents a hidden danger in transient transfection experiments and must be taken into account during interpretation of experimental results.
- MeSH
- buňky 3T3 MeSH
- dvouvláknová RNA metabolismus MeSH
- HEK293 buňky MeSH
- HeLa buňky MeSH
- imunoprecipitace MeSH
- lidé MeSH
- malá interferující RNA genetika MeSH
- myši MeSH
- plazmidy genetika MeSH
- protein-serin-threoninkinasy metabolismus MeSH
- průtoková cytometrie MeSH
- regulace genové exprese genetika MeSH
- reportérové geny genetika MeSH
- transfekce metody MeSH
- western blotting MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Transient expression of foreign genes based on plant viral vectors is a suitable system for the production of relevant immunogens that can be used for the development of a new generation of vaccines against a variety of infectious diseases. In the present study the epitope derived from HPV-16 L2 minor capsid protein (amino acids 108-120) was expressed from Potato virus X (PVX)-based vector pGR106 as N- or C-terminal fusion with the PVX coat protein (PVX CP) in transgenic Nicotiana benthamiana plants. The fusion protein L2 108-120-PVX CP was successfully expressed in plants at a level of 170 mg/kg of fresh leaf tissue. The C-terminal fusion protein PVX CP- L2 108-120 was expressed using mutated vector sequence to avoid homologous recombination at a level of 8 mg/kg of fresh leaf tissue. Immunogenicity of L2 108-120-PVX CP virus-like particles was tested after immunization of mice by subcutaneous injection or tattoo administration. In animal sera the antibodies against the PVX CP and the L2 108-120 epitope were found after both methods of vaccine delivery.
- MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- ELISA MeSH
- epitopy genetika metabolismus MeSH
- genetické vektory genetika MeSH
- geneticky modifikované rostliny MeSH
- imunizace MeSH
- klonování DNA MeSH
- lidé MeSH
- listy rostlin metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- oligonukleotidy genetika MeSH
- onkogenní proteiny virové metabolismus MeSH
- protilátky virové krev MeSH
- rekombinantní fúzní proteiny imunologie metabolismus MeSH
- tabák metabolismus MeSH
- transmisní elektronová mikroskopie MeSH
- virion imunologie MeSH
- virové plášťové proteiny metabolismus MeSH
- western blotting MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Ulinastatin [or called as urinary trypsin inhibitor (UTI)] plays a role in regulating neurological deficits evoked by transient cerebral ischemia. However, the underlying mechanisms still need to be determined. The present study was to examine the effects of UTI on autophagy, Nrf2-ARE and apoptosis signal pathway in the hippocampus in the process of neurological functions after cerebral ischemia using a rat model of cardiac arrest (CA). CA was induced by asphyxia followed by cardiopulmonary resuscitation (CPR) in rats. Western blot analysis was employed to determine the expression of representative autophagy (namely, Atg5, LC3, Beclin 1), p62 protein (a maker of autophagic flux), and Nrf2-ARE pathways. Neuronal apoptosis was assessed by determining expression levels of Caspase-3 and Caspase-9, and by examining terminal deoxynucleotide transferase-mediated dUTP nick-end labeling (TUNEL). The modified neurological severity score (mNSS) and spatial working memory performance were used to assess neurological deficiencies in CA rats. Our results show that CA amplified autophagy and apoptotic Caspase-3/Caspase-9, and downregulated Nrf2-ARE pathway in the hippocampus CA1 region. Systemic administration of UTI attenuated autophagy and apoptosis, and largely restored Nrf2-ARE signal pathway following cerebral ischemia and thereby alleviated neurological deficits with increasing survival of CA rats. Our data suggest that UTI improves the worsened protein expression of autophagy and apoptosis, and restores Nrf2-ARE signals in the hippocampus and this is linked to inhibition of neurological deficiencies in transient cerebral ischemia. UTI plays a beneficial role in modulating neurological deficits induced by transient cerebral ischemia via central autophagy, apoptosis and Nrf2-ARE mechanisms.
- MeSH
- antioxidační responzivní elementy účinky léků fyziologie MeSH
- apoptóza účinky léků fyziologie MeSH
- autofagie účinky léků fyziologie MeSH
- faktor 2 související s NF-E2 metabolismus MeSH
- glykoproteiny farmakologie terapeutické užití MeSH
- hipokampus účinky léků metabolismus patologie MeSH
- inhibitory trypsinu farmakologie terapeutické užití MeSH
- krysa rodu rattus MeSH
- náhodné rozdělení MeSH
- neuroprotektivní látky farmakologie terapeutické užití MeSH
- potkani Sprague-Dawley MeSH
- signální transdukce účinky léků fyziologie MeSH
- tranzitorní ischemická ataka farmakoterapie metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Genetic studies in humans and rodent models should help to identify altered genes important in the development of cardiovascular diseases, such as hypertension. Despite the considerable research effort, it is still difficult to identify all of the genes involved in altered blood pressure regulation thereby leading to essential hypertension. We should keep in mind that genetic hypertension and other cardiovascular diseases might develop as a consequence of early errors in well-co-ordinated systems regulating cardiovascular homoeostasis. If these early abnormalities in the ontogenetic cascade of expression of genetic information occur in critical periods of development (developmental windows), they can adversely modify subsequent development of the cardiovascular system. The consideration that hypertension and/or other cardiovascular diseases are late consequences of abnormal ontogeny of the cardiovascular system could explain why so many complex interactions among genes and environmental factors play such a significant role in the pathogenesis of these diseases. The detailed description and precise time resolution of major developmental events occurring during particular stages of ontogeny in healthy individuals (including advanced knowledge of gene expression) could facilitate the detection of abnormalities crucial for the development of cardiovascular alterations characteristic of the respective diseases. Transient gene switch-on or switch-off in specific developmental windows might be a useful approach for in vivo modelling of pathological processes. This should help to elucidate the mechanisms underlying cardiovascular diseases (including hypertension) and to develop strategies to prevent the development of such diseases.
- MeSH
- financování organizované MeSH
- hypertenze etiologie genetika MeSH
- kardiovaskulární nemoci etiologie genetika MeSH
- lidé MeSH
- rizikové faktory MeSH
- věkové faktory MeSH
- vývojová regulace genové exprese MeSH
- životní prostředí MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- přehledy MeSH